

BERKELEY LAB

Particle mass [GeV]

The Higgs boson

- In the Standard Model (SM), the Brout-Englert-Higgs (BEH) mechanism provides masses to elementary particles
- It predicts a CP-even scalar particle: the Higgs boson
- Couplings of fermions (bosons) to Higgs boson proportional to $m_{fermion}$ (m_{boson}^2)

Fish discovered water

Hongtao Yang (LBNL)

SM Higgs boson production at LHC

H

- Distinct topology from each production mode
- Cross section of main production modes calculated with relatively high accuracy
- Rare production modes difficult to probe, but important for beyond the SM (BSM) scenarios

Hongtao Yang (LBNL)

- "Big five": үү, ZZ, WW, тт, bb
 - Among them, yy and ZZ→4I have best precision due to excellent detector resolution and high S/B
- "Rare" channels: $\mu\mu$, Z γ , cc, etc. Challenging but also important!

Hongtao Yang (LBNL)

Why do we study Higgs physics?

- Experimental measurements of Higgs boson properties serve as a test bench for the SM and a portal to look for possible new physics
- New physics could show up in
 - Inclusive production and decay rates,
 in particular loop induced processes
 such as ggF and H→γγ
 - Differential distributions, e.g. high
 p_T(H) sensitive to content of ggF loop
 - Rare processes, e.g. $H \rightarrow \mu\mu$, $H \rightarrow inv$.

"exploit the Higgs boson as a new tool for discovery"

The ATLAS detector

Hongtao Yang (LBNL)

Run 2 data taking

- 139 fb⁻¹ of 13 TeV proton-proton collision data collected for physics by ATLAS detector
 - Average 34 interactions per bunch crossing
- Thanks to the excellent LHC performance and smooth operation of ATLAS detector

Hongtao Yang (LBNL)

Combined measurements of Higgs boson couplings

ATLAS-CONF-2020-027 With up to 139 fb⁻¹ of 13 TeV data

Channel	ggF	VBF	VH	ttH
H→γγ (139 fb⁻¹)	V	V	V	 ✓
H→ZZ (139 fb ⁻¹)	V	 ✓ 	 Image: A second s	 ✓
H→WW (36 fb⁻¹)	 Image: A second s	 ✓ 	 ✓ 	 ✓
Н→тт (36 fb ⁻¹)	V	 ✓ 	 ✓ 	V
H→bb (VH 139 fb ⁻¹ , others 36 fb ⁻¹)	V	 ✓ 	 ✓ 	 ✓
H→μμ (139 fb⁻¹)	V	V	 ✓ 	 Image: A second s
H→inv. (139 fb⁻¹)	V	 ✓ 	V	V

channel included in the combination
 channel available but not included in combination

Hongtao Yang (LBNL)

Invariant mass spectra from input channels

Hongtao Yang (LBNL)

Other input channels

Hongtao Yang (LBNL)

How many Higgs bosons do we have?

Every fb ⁻¹ of pp collision at 13 TeV	Н→үү	H→ZZ	H→WW	Н→тт	H→bb
Produced	130	1,500	12,000	3,500	32,000
Selected	46	1.5	42	17	66
Efficiency [%]	35.4%	0.1%	0.4%	0.5%	0.2%

*Assuming $m_H = 125.09 \text{ GeV}$ from Run 1 ATLAS-CMS combined measurement

- With every fb⁻¹ of 13 TeV pp collision data, the SM predicts about 56,000 Higgs bosons produced
- Analyses included in the combination will select about 170 SM Higgs boson candidates in every fb⁻¹
 - Large background from proton-proton collisions introduces difficulty in trigger and event selection
 - Number will increase once more analyses are added

Inclusive signal strength

Statistical uncertainty				
Systematic uncertainties Overall cross-section				
Theory uncertainties uncertainty				
Signal	4.2			
Background	2.6			
Experimental uncertainties (excl. MC stat.)	4.1			
Luminosity	2.0			
Background modeling	1.6			
Jets, $E_{\rm T}^{\rm miss}$	1.4			
Flavor tagging	1.1			
Electrons, photons	2.2			
Muons	0.2			
au-lepton	0.4			
Other				
MC statistical uncertainty				

*All numbers are in percentage. Table is obsolete

 $\mu = 1.06 \pm 0.07 = 1.06 \pm 0.04 (\text{stat.}) \pm 0.03 (\text{exp.})^{+0.05}_{-0.04} (\text{sig. th.}) \pm 0.02 (\text{bkg. th.})$

Reaching 8% precision. Good agreement with SM

Hongtao Yang (LBNL)

Production mode cross-sections (assuming the SM BRs)

- ggF cross-section measured with precision of 7%, close to 5% uncertainty on the N³LO cross section prediction
- All production modes observed with significance $>5\sigma$
- Small correlations between different production modes

Hongtao Yang (LBNL)

Production cross-section measured in each decay channel

ATLAS Preliminary	Hereit Total	Stat. — S	Syst. 🔲 SM		
$m_{H} = 125.09 \text{ GeV}, y_{} < 2.5$					
p _{SM} = 87%		Total	Stat. Syst.		
ggF γγ 📥		1.03 ± 0.11 (± 0.08 , $^{+0.08}_{-0.07}$)		
ggF ZZ		0.94 +0.11 (± 0.10 , ± 0.04)		
ggF WW 📥		1.08 +0.19 (± 0.11 , ± 0.15)		
ggFττ ⊢		1.02 + 0.60 - 0.55 ($^{+0.39}_{-0.38}$, $^{+0.47}_{-0.39}$)		
ggF comb. 🙀		1.00 ± 0.07 (± 0.05 , ± 0.05)		
VBF γγ μ οσι		1.31 +0.26 ($^{+0.19}_{-0.18}$, $^{+0.18}_{-0.15}$)		
VBF ZZ		1.25 +0.50 -0.41 ($^{+0.48}_{-0.40}$, $^{+0.12}_{-0.08}$)		
VBF WW		$0.60 {}^{+ 0.36}_{- 0.34}$ ($^{+0.29}_{-0.27}$, ± 0.21)		
VBF ττ ι		1.15 ^{+0.57} _{-0.53} ($^{+0.42}_{-0.40}$, $^{+0.40}_{-0.35}$)		
VBF bb		3.03 + 1.67 ($^{+1.63}_{-1.60}$, $^{+0.38}_{-0.24}$)		
VBF comb. 🖷		1.15 +0.18 (± 0.13 , $^{+0.12}_{-0.10}$)		
VH γγ		1.32 +0.33 ($+0.31 + 0.11 \\ -0.29 - 0.09$		
		1.53 +1.13 ((+1.10 + 0.28) (-0.90 + 0.21)		
VH bb		1.02 +0.18 (± 0.11 , $\begin{array}{c} +0.14\\ -0.12\end{array}$		
VH comb.		1.10 +0.18 (± 0.11 , ± 0.12)		
$ttH+tH\gamma\gamma$		$0.90 \begin{array}{c} +0.27 \\ -0.24 \end{array}$	$+0.23 + 0.09 \\ -0.23 + 0.06 \end{pmatrix}$		
	⊦•	1.72 - 0.53 (-0.40, -0.34)		
	-	1.20 - 0.93 (-0.74, -0.57)		
		0.79 - 0.59 (± 0.29 , -0.51) + 0.16 + 0.14		
	I	1.10 <u>- 0.20</u> (-0.15, -0.13)		
2 0 2	4	6	8		
$\sigma \times B$ normalized to SM					

- Good compatibility among decay channels and also with the SM
- Results commonly used for theory interpretations

Hongtao Yang (LBNL)

Interpretation using kappa framework

 Leading order motivated framework: assign coupling modifier to each (effective) interaction vertex (e.g. κ_W, κ_Z, κ_t...) and total width (κ_H)

Simple models

- κ_V vs. κ_F : vector boson vs. fermion coupling
- κ_g vs. κ_γ : focus on loop-induced ggH and Hyy interactions, with other coupling strengths fixed to SM

Hongtao Yang (LBNL)

RKELEY LAF

ERKELEY LAB

Generic model

- LHC experiments do not have sensitivity to directly constrain Γ(H) (<< detector resolution)
 - B_{inv.} < 9% @95%
 CL, mainly
 constrained by
 H→inv.
 - B_{undet.} < 19%
 @95% CL,
 constrained by
 inclusive rate +
 assuming lk√l ≤ 1

Ratios of coupling strength modifiers

- Ratios are what we can measure best at LHC: less model assumptions; common systematic uncertainties cancel out
 - λ_{tg}: compare the direct determination of the top coupling through ttH production (κ_t) to the indirect determination in the ggF loop (κ_g)
 - λ_{yz} : probe new physics in H $\rightarrow\gamma\gamma$ process by comparing with H \rightarrow ZZ

STXS framework

- Simplified template cross-section (STXS) framework: measure cross-section per production mode in different phase-space regions
 - Decay is inclusive so far. No kinematic bins introduced yet
- STXS has several advantages
 - Reduce model dependence while still allow aggressive analysis techniques (e.g. machine learning)
 - Easy to combine multiple production & decay channels
 - Facilitate kinematic-dependent interpretations (e.g. EFT)

Hongtao Yang (LBNL)

' کر (X8.0

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

_1

0

STXS measurements

Hongtao Yang (LBNL)

STXS measurements: gg→H

Hongtao Yang (LBNL)

STXS measurements: ttH and tH

- Providing differential measurements in p_T(H) bins for ttH
- Start having sensitivity for tH production

Hongtao Yang (LBNL)

STXS interpretation: EFT

- LHC will not have a major increase of √s in the future. On the other hand, LHC will accumulate very large dataset
- In case new physics is beyond reach of LHC, need to rely on EFT to extract hints of new physics from precision measurements
- EFT operators will introduce nontrivial kinematic-dependent effect: ideal application case for STXS measurements

Hongtao Yang (LBNL)

STXS interpretation: constraining self-coupling (80 fb⁻¹)

June 24, 2021, PKU HEP Seminar

Hongtao Yang (LBNL)

20

κλ

The detection of this extremely rare association, which was first observed by both @ATLASexperiment and @CMSExperiment in 2018, required the full capacities of the detectors and analysis techniques.

Study of CP properties of top-Higgs interaction in ttH/tH, H→γγ channel

PRL 125 (2020) 061802, CERN news With full Run 2 (139 fb⁻¹ @13 TeV) dataset

Recent years have seen the study of the Higgs boson progress from the discovery age to the measurement age. Among the latest studies of the ... & home.cern

11:58 AM · Apr 29, 2020 · Buffer

Hongtao Yang (LBNL)

CP study in Higgs sector

- Large matter-antimatter asymmetry in Universe cannot be explained by known CP violation mechanism in SM
 - Well motivated to look for additional CP violation sources
- Study of CP properties in Higgs sector started with V-H interactions in VBF production or H→VV decay since Run 1
- CP properties of fermion Yukawa coupling, on the other hand, were not directly studied until end of Run 2

Highlight of Run 2 Higgs physics: Yukawa couplings

- Direct observation of 3rd generation fermion
 Yukawa couplings all established. Among them,
 top Yukawa coupling is particularly interesting
 - Largest (O(1)) Yukawa coupling in SMs
 - Rich phenomenology at LHC
- First evidence of 2nd generation Yukawa coupling

CP properties of top Yukawa coupling

• The Lagrangian for t-H interaction including CP mixing is

$$\mathscr{L}_{t} = -\frac{m}{\nu}\kappa_{t}(\cos(\alpha)\bar{t}t + i\sin(\alpha)\bar{t}\gamma_{5}t)H, \ \kappa_{t} > 0, \ \alpha \in [-\pi,\pi]$$

SM corresponds to $\mathbf{a} = \mathbf{0}$, $\mathbf{\kappa}_t = \mathbf{1}$, full CP odd is $\mathbf{a} = \mathbf{90}^\circ$

- Only indirect constraints on CP mixing in t-H interaction existed before ttH observation
 - Stringent limits from EDMs (e, n, ...): $\kappa_t \sin(\alpha) < 10^{-3}$
 - Also from loop-induced $\mathbf{H} \rightarrow \mathbf{\gamma} \mathbf{\gamma}$ and \mathbf{ggF} rates: $\kappa_t \sin(\alpha) < \sim 0.5$
- The ttH/tH production mode opens a new possibility to probe CP mixing directly in the top Yukawa coupling at tree-level
- The H→yy channel is ideal for this study due to excellent sensitivity and clean signature

- The presence of a CP odd component in t-H coupling alters:
 - Cross sections as well as kinematics of ttH & tH processes: provide direct constraint of CP mixing in top Yukawa coupling (focus of this analysis)
 - H→γγ BR and ggF cross-sections: indirect constraint, also sensitive to other new physics scenarios

Hongtao Yang (LBNL)

Analysis strategy

- Divide diphoton sample into two regions
 - Hadronic (≥3 jets, ≥1 b-jet, 0 lep)
 - Leptonic (≥1 b-jet, ≥1 lep)
- In each region, train following two BDTs (using XGBoost package)
 - **Bkg. rejection BDT**: separate ttH-like events from continuum background
 - **CP BDT**: separate CP-even ttH/tH events from CP-odd
- Divide categories on 2D plane of bkg. rejection vs. CP BDTs
- Fit the m_{YY} spectrum in all categories simultaneously to extract signal

Hongtao Yang (LBNL)

- Use the same BDT discriminant (but not categories!) from <u>ttH</u> search, which is trained using **low-level inputs** such as 4-vec.
 of γ, j, I, and MET
- Serves the purpose of CP analysis very well
 - Good rejection of background; good acceptance of ttH/tH signal
 - Weak dependence on CP mixing angle

- Compared with SM (CP even), CP odd ttH/tH gives
 - Larger m_{tH} and $m_{t\bar{t}}$; more boosted $p_T(H)$
 - Less back-to-back $\phi(t\bar{t})$; larger opening $\eta(t\bar{t})$
- Exploit shape information in this analysis. Avoid relying on normalization dependence

Hongtao Yang (LBNL)

Categorization

crimir

0.9

告 0.8

Hadron 1adron

0.5

0.4

0.3

Fraction of Data Eve

10-3

- Scan category boundaries on 2D bkg.
 rejection BDT vs. CP BDT plane to optimize both SM ttH significance and CP separation
- · 20 analysis categories defined in total
 - 12 categories in hadronic region, 8 in leptonic

Hongtao Yang (LBNL)

- Parameterize **ttH** and **tH** signal yields in each category as **mixing angle** α and **top Yukawa coupling strength** κ_t
- For ttH process, use

$$A\kappa_t^2\cos^2(\alpha) + B\kappa_t^2\sin^2(\alpha) + E\kappa_t^2\sin(\alpha)\cos(\alpha)$$

- Parameterization describe MC predictions well in all categories
- Coefficient E for interference term found to be negligible as expected

 For tHW and tHjb processes, need to use more complicated parameterizations considering interference between t-H and W-H

Hongtao Yang (LBNL)

• Single-channel ttH observation at 5.2σ, assuming SM for other prod. modes

 $\mu = 1.43^{+0.33}_{-0.31}$ (stat.) $^{+0.21}_{-0.15}$ (syst.)

tH cross-section < 12×SM @95% CL

Hongtao Yang (LBNL)

CP constraint: not resolve H \rightarrow \gamma \gamma / ggF loops

- Provide **direct** constrain mixing angle α using **only ttH and tH info**
 - Use κ_{γ} vs κ_{g} contour (80 fb⁻¹) to constrain H $\rightarrow\gamma\gamma$ and ggF rates
- $|\alpha| > 43^{\circ}$ excluded @95% CL without assumption on κ_t

Hongtao Yang (LBNL)

$\overset{\frown}{\mathsf{CP}} CP constraint: resolve H \rightarrow \gamma\gamma/ggF loops$

• Assume potential new physics in $H \rightarrow \gamma \gamma/ggF$ is only in t-H coupling, and can be parameterized as function of α and κ_t (Ellis et. al. JHEP 04 (2014) 004)

$$\kappa_g^2 = \kappa_t^2 \cos^2(\alpha) + 2.6\kappa_t^2 \sin^2(\alpha) + 0.11\kappa_t \cos(\alpha)(\kappa_t \cos(\alpha) - 1)$$

$$\kappa_\gamma^2 = (1.28 - 0.28\kappa_t \cos(\alpha))^2 + (0.43\kappa_t \sin(\alpha))^2$$

• Exclude $|\alpha| > 43^\circ$ @95% CL without assumption on κ_t

Hongtao Yang (LBNL)

Conclusions

- Measurements of Higgs boson productions and decays now reaching
 ~10% precision. Agree with SM so far
- Hints for new physics could be currently covered by uncertainties
 - Combining with CMS: x2 stat
 - HL-LHC could hopefully reduce uncertainty to a couple of percent
 - Higgs Factory can further reduce the uncertainty to sub-percent
- In the meantime, keep trying out innovative ideas on current dataset
 - E.g. using 4-top process to explore CP mixing in top Yukawa coupling proposed by PRD 99 (2019) 113003
 by Q. Cao et. al.

Current dataset only 5% of expected LHC total!

Backup

Hongtao Yang (LBNL)

Process	Generator	Showering	PDF set	$\sigma \text{ [pb]} \\ \sqrt{s} = 13 \text{ TeV}$	Order of σ calculation
ggF	Powheg NNLOPS	Pythia 8	PDF4LHC15	48.52	$N^{3}LO(QCD)+NLO(EW)$
VBF	Powheg-Box	Pythia 8	PDF4LHC15	3.78	approximate-NNLO(QCD)+NLO(EW)
WH	Powheg-Box	Pythia 8	PDF4LHC15	1.37	NNLO(QCD)+NLO(EW)
$q\bar{q}' \rightarrow ZH$	Powheg-Box	Pythia 8	PDF4LHC15	0.76	NNLO(QCD)+NLO(EW)
$gg {\rightarrow} ZH$	Powheg-Box	Pythia 8	PDF4LHC15	0.12	NNLO(QCD) + NLO(EW)
$t\bar{t}H$	Powheg-Box	Pythia 8	PDF4LHC15	0.51	NNLO(QCD)+NLO(EW)
$b \overline{b} H$	Powheg-Box	Pythia 8	PDF4LHC15	0.49	NNLO(QCD)+NLO(EW)
tHq	MG5_AMC@NLO	Pythia 8	CT10	0.07	4FS(LO)
tHW	MG5_AMC@NLO	Herwig++	CT10	0.02	5 FS(NLO)

- Construct combined likelihood model as multiplication of individual channel likelihoods
 - Common parameters, e.g. signal cross-sections and nuisance parameters for the same systematic uncertainties, are shared between likelihood of individual channels
- Use profile likelihood ratio Λ as test statistic:

$$\Lambda(\alpha) = \frac{L(\alpha, \hat{\hat{\theta}}(\alpha))}{L(\hat{\alpha}, \hat{\theta})}$$

- 1-D 68% confidence interval defined by -2In∧ increasing by 1 (asymptotic limit)
 - Assumption validated with pseudoexperiments in low statistics case

 κ_{γ}

Kappa parameterization

		Main	Effective		g roomer	ຸ ^{H g} ຕ	00000 H
Production	Loops	interference	modifier	Resolved modifier			
$\sigma(\text{ggF})$	\checkmark	t–b	κ_{g}^{2}	$1.040\kappa_t^2 + 0.002\kappa_b^2 - 0.038\kappa_t\kappa_b - 0.005\kappa_t\kappa_c$	t/b	ma	t/b
$\sigma(\text{VBF})$	-	-	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$		/ Z \	,
$\sigma(qq/qg \to ZH)$	-	-	-	κ_Z^2	1000000	ر م	00000
$\sigma(gg\to ZH)$	\checkmark	t–Z	$\kappa_{(ggZH)}$	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t \\ - 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$	g	Ζ 9 Φ	Z
$\sigma(WH)$	-	-	-	κ_W^2			_
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2		yy→∠r	1
$\sigma(tHW)$	-	t–W	-	$2.909\kappa_t^2 + 2.310\kappa_W^2 - 4.220\kappa_t\kappa_W$			
$\sigma(tHq)$	-	t–W	-	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$	g $$	- t g	$a e^W$
$\sigma(bar{b}H)$	-	-	-	κ_b^2			The second secon
Partial decay wid	lth					`` <i>H</i>	
Γ^{bb}	-	-	-	κ_b^2			
Γ^{WW}	-	-	-	κ_W^2	. ———	······	
Γ^{gg}	\checkmark	t–b	κ_{g}^{2}	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$	Ь	W b	t
$\Gamma^{\tau\tau}$	-	-	-	$\kappa_{ au}^2$			
Γ^{ZZ}	-	-	-	κ_Z^2			
Γ^{cc}	-	-	-	$\kappa_c^2 \ (= \kappa_t^2)$		+Η\//	
				$1.589\kappa_W^2 + 0.072\kappa_t^2 - 0.674\kappa_W\kappa_t$			
$\Gamma^{\gamma\gamma}$	\checkmark	t–W	κ_{γ}^2	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$		_	_
				$-0.002\kappa_t\kappa_b-0.002\kappa_t\kappa_\tau$	q	q'	$q \sim q'$
$\Gamma^{Z\gamma}$	\checkmark	t–W	$\kappa^2_{(Z\gamma)}$	$1.118\kappa_W^2 - 0.125\kappa_W\kappa_t + 0.004\kappa_t^2 + 0.003\kappa_W\kappa_b$			
Γ^{ss}	-	-	-	$\kappa_s^2 \; (= \kappa_b^2)$	W	H	
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2		$\rightarrow t$	
Total width $(B_{i.} =$	$= B_{u.} =$	0)			00000000		00000000
Γ_H	√	_	κ_{H}^{2}	$ \begin{array}{c} 0.581 \kappa_{b}^{2} + 0.215 \kappa_{W}^{2} + 0.082 \kappa_{g}^{2} \\ + 0.063 \kappa_{\tau}^{2} + 0.026 \kappa_{Z}^{2} + 0.029 \kappa_{c}^{2} \\ + 0.0023 \kappa_{\gamma}^{2} + 0.0015 \kappa_{(Z\gamma)}^{2} \\ + 0.0004 \kappa_{\tau}^{2} + 0.00022 \kappa_{\tau}^{2} \end{array} $	<i>y</i>	ь tHa	y b
				$\pm 0.0004 \kappa_s \pm 0.00022 \kappa_\mu$		<u>ייי</u>	

Hongtao Yang (LBNL)

STXS framework

STXS measurements: ratios of BR

- Ratio of branching ratio is a free parameter determined by data
 - Normalize to H→ZZ as it is the cleanest channel at LHC

Hongtao Yang (LBNL)

STXS measurements: $qq \rightarrow Hqq$

Hongtao Yang (LBNL)

STXS measurements: V(II)H

Hongtao Yang (LBNL)

Self-coupling interpretation: dependence on production/decay

BERKELEY LAB

Data & signal MC samples for ttH CP analysis

- Data: full Run 2 dataset of 139 fb⁻¹
- ttH/tH signal: NLO MG5_aMC+Pythia8 using Higgs Characterization (HC) model
 - ttH: $\kappa_t = 1$, $\alpha = 0^\circ$, 15° , 30° , ..., 90°
 - tHjb/tWH: sample generated with both κ_t = 1 and ≠ 1 at different mixing angles. κ_W = 1
- ggF signal: PowHeg NNLOPS
 - Kinematic dependence on CP mixing checked to be wellcovered by syst. using MG_aMC HC model ggF+2j samples
- Other Higgs production modes: same as typical ATLAS Run 2 Higgs analyses