Updates of the global analysis

Gang Li, Libo Liao, Peixun Shen, Weimin Song, Shudong Wang, Zhaoling Zhang

CEPC detector plenary, June 16, 2021

PreviousStatistical method© Efficiency matrixUpdates© Results

Classification of 9 signals

Higgs	s ->	CC,	bb,	mm	, ττ,	gg,	γγ,	ZZ,	WW,	, γZ	
		1	2	3	4	5	6	7	8	9	
$\langle \rangle$		/								\	
$\begin{pmatrix} n_1 \end{pmatrix}$		ϵ_{11}	ϵ_{12}	ϵ_{13}	ϵ_{14}	ϵ_{15}	ϵ_{16}	ϵ_{17}	ϵ_{18}	ϵ_{19}	$\left(\begin{array}{c} N_1 \end{array} \right)$
n_2		ϵ_{21}	ϵ_{22}	ϵ_{23}	ϵ_{24}	ϵ_{25}	ϵ_{26}	ϵ_{27}	ϵ_{28}	ϵ_{29}	N_2
n_3		ϵ_{31}	ϵ_{32}	ϵ_{23}	ϵ_{34}	ϵ_{35}	ϵ_{36}	ϵ_{37}	ϵ_{38}	ϵ_{39}	N_3
n_4		ϵ_{41}	ϵ_{42}	ϵ_{33}	ϵ_{44}	ϵ_{45}	ϵ_{46}	ϵ_{47}	ϵ_{48}	ϵ_{49}	N_4
n_5	=	ϵ_{51}	ϵ_{52}	ϵ_{43}	ϵ_{54}	ϵ_{55}	ϵ_{56}	ϵ_{57}	ϵ_{58}	ϵ_{59}	N_5
n_6		ϵ_{61}	ϵ_{62}	ϵ_{53}	ϵ_{64}	ϵ_{65}	ϵ_{66}	ϵ_{67}	ϵ_{68}	ϵ_{69}	N_6
n_7		ϵ_{71}	ϵ_{72}	ϵ_{63}	ϵ_{74}	ϵ_{75}	ϵ_{76}	ϵ_{77}	ϵ_{78}	ϵ_{79}	N_7
n_8		ϵ_{81}	ϵ_{82}	ϵ_{73}	ϵ_{84}	ϵ_{85}	ϵ_{86}	ϵ_{87}	ϵ_{88}	ϵ_{89}	N_8
$\left(\begin{array}{c} n_9 \end{array} \right)$		$\left(\epsilon_{91} \right)$	ϵ_{92}	ϵ_{83}	ϵ_{94}	ϵ_{95}	ϵ_{96}	ϵ_{97}	ϵ_{98}	ϵ_{99} /	$\left(N_{9} \right)$

- ***** N: signals generated
- n: observed candidates
- ★ Determination of N or B is an inverse problem

Method: solving B by minimizing the χ^2

$$\chi^{2} = \sum_{i} \frac{\left(\sum \epsilon_{ij}N_{j} - n_{i}\right)^{2}}{\sigma_{n_{i}}^{2}} + \frac{\left(\sum_{l}N_{l} - N\right)^{2}}{\sigma_{N}^{2}}$$

$$\sum_{i} B_{i} = 1$$
Based on N
instead of n, multinomial
$$\Sigma^{N} = N_{t}^{e} \begin{pmatrix} B_{1}(1 - B_{1}) & -B_{1}B_{2} & \dots & -B_{1}B_{m} \\ -B_{2}B_{1} & B_{2}(1 - B_{2}) & \dots & -B_{2}B_{m} \\ \vdots & \vdots & \ddots & \vdots \\ -B_{m}B_{1} & -B_{m}B_{2} & \dots & B_{m}(1 - B_{m}) \end{pmatrix}$$

Covariance of 9 Bs has a simple quantitive property

$$\mathbf{\Sigma}^{\mathbf{B}} = \mathbf{J}_{BN} \mathbf{E}^{-1} \mathbf{\Sigma}^{n} \left(\mathbf{E}^{T} \right)^{-1} \mathbf{J}_{BN}^{T}$$

Combining multiple tagging modes

$$\chi^{2} = \chi^{2}_{ee} + \chi^{2}_{\mu\mu} + \chi^{2}_{\tau\tau} + \chi^{2}_{q\bar{q}}$$

Unknowns: 9 Bs (only 8 independent) and a cross section Knowns: 36 ns

The key ingredient is efficiency matrix To be determined with ML techniques

Preliminary performance : Averaged accuracy ~ 87%

Updates

4x9 channels – 4 ML tasks $e^+e^- \rightarrow ZH, Z \rightarrow \mu^+\mu^-, e^+e^-, \tau^+\tau^-, q\bar{q}$

- 400 k evts for each channel: $cc, bb, \mu\mu, \tau\tau, gg, \gamma\gamma, ZZ, WW, \gamma Z$
- Train: validation: test = 8:1:1
- Fast simulation
 - momenta of tracks and energies of neutrals smeared according to CEPC_v4
 - Ideal PID and Impact parameters
- The SM background left out temporally

Loss and accuracy Take ee mode as an example

Converged without obvious over training

Predicted

(c)

(d)

Likelihood distribution of predictions ee example

Dimensionality reduction

Maaten&Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research (2008).

- Improvement about 2
- Both have no the SM background
- Improved if
 - One suffers from background

ightarrow cc, ZZ, γZ

One has large Bs

- $\Box \tau \tau and \gamma \gamma$ not significant
 - Background low
 - ✓ B small

😒 bb

The SM background

- Fair comparison between the individual and global analysis because both have no the SM background.
 - The uncertainties calculated with the generated numbers of events, insensitive to backgrounds.
 - Full efficiency matrix used
- For the individual analysis and CDR: roughly 2 times better. Because
 - The SM background
 - Full simulation
- Conclusion: Improvement understandable. The global analysis could keep its advantages when all the SM background and full simulation are used

Decay Mode	Ind.Ana.	Gl.Ana.	IP
H ightarrow c ar c	1.8%	0.65%	2.7
$H ightarrow b ar{b}$	0.19%	0.09%	2.1
$H o \mu^+ \mu^-$	12%	7.2%	1.7
$H o au^+ au^-$	0.61%	0.41%	1.4
H ightarrow gg	0.7%	0.35%	2.0
$H o \gamma \gamma$	3.3%	2.3%	1.4
H ightarrow ZZ	2.0%	0.65%	3.0
$H ightarrow W^+ W^-$	0.37%	0.21%	1.7
$H ightarrow \gamma Z$	11%	2.8%	3.9

Decay Mode	Ind.Ana.	CEPC CDR.	Ratio
$H \rightarrow c \bar{c}$	1.8%	3.3%	1.8
$H ightarrow b ar{b}$	0.19%	0.56%	2.9
$H ightarrow \mu^+ \mu^-$	12%	17%	1.4
$H ightarrow au^+ au^-$	0.61%	1.0%	1.6
H ightarrow gg	0.7%	1.4%	2.0
$H ightarrow \gamma \gamma$	3.3%	6.9%	2.1
$H \rightarrow ZZ$	2.0%	5.1%	2.6
$H ightarrow W^+ W^-$	0.37%	1.1%	3.0
$H ightarrow \gamma Z$	11%	15%	1.4

Summary and plan

• A proof-of-principle study shows

- ✓ Global analysis enhances the precision by a factor of ~2
- Confusion matrix as a metric for detector optimization singlepurpose
- ✓ ArXiv: 2105.14997, submitted to JHEP

O Plan

- Verify background effect
- Factorize the impacts of detector performances
- Setup a framework for detector optimization
- Move to full simulation of CEPCSW

The end

Thanks a lot

Figure 3. PFN_CONF $ee + \mu\mu$

Figure 7. PFN_CONF $ee + \mu\mu + \tau\tau$

1.0

0.8

- 0.6

0.4

0.2

0.0

Figure 5. PFN_CONF $\tau \tau + qq$

True

Figure 9. PFN_CONF $ee + \mu\mu + \tau\tau + qq$