

ALL THE DARK WE CANNOT SEE THE STATE-OF-THE-ART IN DIRECT SEARCHES FOR PARTICLE DARK MATTER

LAURA BAUDIS UNIVERSITY OF ZURICH

PHYSICS COLLOQUIUM, PEKING UNIVERSITY JUNE 23, 2021

WHEN YOU LOOK AT THE SKY IN A DARK, CLEAR NIGHT...

...YOU ARE MARVELLING AT A MINORITY OF MATTER IN THE UNIVERSE

DARK MATTER IN GALAXY CLUSTERS

- > Zwicky: first astronomer to make a compelling case for the existence of invisible, or dark matter
- Very large dispersion in the radial velocities of galaxies in the Coma cluster~ 1000 km/s
 - Not enough gravitational attraction from stars and gas within galaxies to keep the cluster together ⇒ "dunkle Materie"

Fritz Zwicky, Helv. Phys. Acta, 1933, 110-127

DARK MATTER IN SPIRAL GALAXIES

No sign of a Keplerian decrease in the orbital speeds of stars and gas at large galactic radii!

Vera Rubin, Kent Ford, Norbert Thonnard, The Astrophysical Journal 1978

Vera Rubin:

"In a spiral galaxy, the ratio of dark-to-light matter is about a factor of 10. That's probably a good number for the ratio of our ignorance-to-knowledge. We're out of kindergarten, but only in about third grade."

MOST OF OUR UNIVERSE IS INVISIBLE

- > The evidence for dark matter in the Universe is overwhelming
 - Early and late cosmology (CMBR, LSS)
 - Clusters of galaxies

. . .

- Galactic rotation curves
- Big Bang Nucleosynthesis

Planck (esa.int): "An almost perfect Universe"

- And ACDM describes all observations well
- > The fundamental nature of dark matter is still a mystery!

• What is it, how does it interact?

100%

Dark matter 27%

Barvons

Dark

energy 68%

WHAT DO WE KNOW ABOUT DARK MATTER?

- Exists today and in the early Universe
- Constraints from astrophysics and from searches for new particles
 - No colour charge
 - No electric charge
 - No strong self-interaction
 - Slow-moving (NR) as LSS formed
- Stable, or very long lived

Probing dark matter through gravity

~ 80 orders of magnitude in mass: *a much higher number* for the ratio of our ignorance-to-knowledge!

DARK MATTER IN THE MILKY WAY

Look for scatters of *galactic dark matter particles* in terrestrial detectors

9

DIRECT DARK MATTER DETECTION

 χ (p')

Observe DM collisions with nuclei (NRs) or with electrons in the atomic shell (ERs)

Look for absorption of light bosons via e.g., the axioelectric effect

N (q=p-p')

DIRECT DARK MATTER DETECTION

- Main physical observable: a differential recoil spectrum
- Its modelling relies on several phenomenological inputs

ASTROPHYSICS: LOCAL DARK MATTER DENSITY

- Local measures: vertical kinematics of stars near Sun as 'tracers' (smaller error bars, stronger assumptions about the halo shape)
- Global measures: extrapolate the density from Milky Way's rotation curve derived from kinematic measurements of gas, stars... (larger errors, fewer assumptions)

See review by Justin Read, Journal of Phys. G 41 (2014)

Gaia DR3 2020: positions, parallaxes, and proper motions for 2.5 x 10⁹ stars

Major source of uncertainty: contribution of baryons (stars, gas, stellar remnants, ...) to the local dynamical mass

M. Cautun et al, MNRAS 494 (2020) 3, using Gaia DR2

ASTROPHYSICS: DARK MATTER VELOCITY DISTRIBUTION

 Standard halo model: Maxwellian distribution (isotropic velocities)

 $\rho(r) \propto r^{-2}$

- Goal: determine f(v) from observation (e.g., motion of stars that share kinematics with DM)
- Recent studies: some deviations from SHM, due to anisotropies in the local stellar distribution (in Gaia data)
- These arise from accretion events, where the "Gaia-sausage" seems to be the dominant merger in the solar neighbourhood
- Effects for direct detection: relevant mostly at low dark matter masses

Necib, Lissanti, Belorukov 2018, Evans, O'Hare, McCabe, PRD99, 2019; Buch, Fan, Leung, PRD101, 2020; and others

Normalised Gaia DM velocity distribution in heliocentric frame

KINEMATICS: DARK MATTER PARTICLE MASS

Dark matter particle mass

Figure: Tongyan Lin, TASI lectures on DM models and direct detection, arXiv:1904.07915

INTERACTION CROSS SECTION VS MASS

P. Klos et al., PRD 88 (2013)

Essig, Volanski, Yu, PRD 96, 2017

17

MAIN EXPERIMENTAL CHALLENGES TOWARDS THE "NEUTRINO FOG"

- ▶ To observe a signal which is:
 - very small \rightarrow low recoil energies: \sim eV to keV (perhaps even meV)
 - very rare \rightarrow <1 event/(kg y) at low masses and < 1 event/(t y) at high masses
 - buried in backgrounds with > 10⁶ x higher rates → deep underground & lowradioactivity materials

BACKGROUNDS: OVERVIEW

- Muon-induced neutrons: NRs
- Cosmogenic activation of materials/targets (³H, ³²Si, ⁶⁰Co, ³⁹Ar): ERs
- Radioactivity of detector materials (n, γ, α, e⁻): NRs and ERs
- ▶ Target intrinsic isotopes (⁸⁵Kr, ²²²Rn, ¹³⁶Xe, ³⁹Ar, etc): ERs
- Neutrinos (solar, atmospheric, DSNB): NRs and ERs

BACKGROUNDS AND SHIELDS

Go deep underground

- However, can't shield neutrinos
- On the bright side: possible signals (pp, ⁷Be, ⁸B, SN,...)

FURTHER BACKGROUND REDUCTION

Avoid cosmic activation

• Fiducialise

• Select low-radioactivity materials

Use active shields

DARK MATTER SIGNATURES

- Rate and shape of recoil spectrum depend on:
- DM particle mass
- Target material

Motion of Earth causes:

Annual event rate modulation: June December asymmetry ~ 2-10%

 Sidereal directional modulation: asymmetry ~20-100% in forwardbackward event rate

Ar: DEAP-3600 Csl: KIMS Nal: ANAIS DAMA/LIBRA, COSINE, SABRE

THE DIRECT DETECTION LANDSCAPE

Scattering off electrons

Scattering off nuclei

CRYOGENIC EXPERIMENTS

- Sub-keV (< 100 eV) energy thresholds</p>
- Cryogenic detectors: phonons and/or ionisation/light ⇒background discrimination
- Probe light dark matter

CRESST

CRYOGENIC EXPERIMENTS

- Sub-keV (< 100 eV) energy thresholds</p>
- Cryogenic detectors: phonons and/or ionisation/light ⇒background discrimination
- Probe light dark matter

EDELWEISS

Super-CDMS at SNOLAB

ARGON AND XENON DETECTORS

- Use a large amount of clean liquid argon or xenon target & detect ionisation and excitation from particle interactions
- Argon, "the inactive one", xenon, "the strange one", concentration in the atmosphere:
 0.934% and 0.87 ppb (by volume)

LIQUEFIED NOBLE GASES

- Single and two-phase Ar & Xe detectors
- Time projection chambers:
 - energy determination, 3D position resolution via light (S1) & charge (S2): fiducialisation
 - S2/S1 \Rightarrow ER/NR discrimination
 - Single versus multiple interactions

LIQUEFIED NOBLE GASES

- Single and two-phase Ar & Xe detectors
- Time projection chambers:
 - energy determination, 3D position resolution via light (S1) & charge (S2): fiducialisation
 - S2/S1⇒ ER/NR discrimination
 - Single versus multiple interactions

 $\sigma_{\rm SI} < 4.1 \times 10^{-47} {\rm cm}^2$ at $30 \, {\rm GeV/c^2}$

PandaX-II

XENON1T: ELECTRONIC RECOIL EXCESS

- Excess between (1,7) keV; number of observed events: 285, expected from background: (232±15) events
- Unknown origin: tritium, solar axions, ALPs, dark photons, something else?

Solar axion favoured over background-only at 3.4 σ (however discrepancy with stellar cooling constraints, see e.g. 2006.12487); Tritium favoured over background-only at 3.2 $\sigma \cong$ to (6.2 ± 2) x 10⁻²⁵ mol/mol

FUTURE: LIQUEFIED NOBLE GASES

- In construction, commissioning or first data taking:
 - LUX-ZEPLIN, PandaX-4T, XENONnT, DarkSide-20k
- Planned (design and R&D stage)
 - DARWIN (50 t LXe), ARGO (300 t LAr)

DARWIN: 50 t LXe Data taking ~2027/28

LUX-ZEPLIN, PANDAX-4T, AND XENON-NT

- Scale: 10 t, 6 t and 8.6 t LXe in total
 - TPCs with 2 arrays of 3-inch PMTs
 - Kr and Rn removal techniques
 - Ultra-pure water shields; neutron & muon vetos (LZ, XENON-nT)
 - External and internal calibration sources
- Status: commissioning at SURF, Jinping and LNGS

XENON-NT FIRST LIGHT

- All new systems (TPC, liquid purification system, neutron veto, radon distillation column) commissioned
 - First ^{83m}Kr calibration data with S1 and S2
 - Electron lifetime*: 7 ms (0.6 ms in XENON1T)
 - e ²²²Rn reduction factor due to distillation column ≥ 3.6

Start a first science run in June 2021

*e-lifetime: a measure of the charge that is lost during e-drift to liquid/gas interface

DARWIN: DESIGN AND R&D

- Detector, Xe target, background mitigation, photosensors, etc
- Two large-scale demonstrators (in z & in x-y) supported by ERC grants: demonstrate electron drift over 2.6 m, operate 2.6 m ø electrodes
- Demonstrators (Xenoscope, 2.6 m tall & Pancake, 2.6 m diam TPCs) in commissioning stage

BUBBLE CHAMBERS

▶ PICO: superheated liquid C₃F₈ octafluoropropane

- Acoustic + visual readout : impressive background rejection
- PICO-500 at SNOLAB: under design, installation/data in 2022/23
- New detector: the scintillating bubble chamber (SBC)
 - superheated 10 kg Xe-doped LAr, cooled to 130 K, piezoelectric sensors + cameras readout + SiPMs for scintillation signal

WIMP Mass (GeV)

MP events from simulation

Plot from [6]

Energy (keV)

ANAIS at Canfran

36

DIRECTIONAL DETECTORS

- Low-pressure gas, nuclear emulsion and graphene detectors to measure the recoil direction (30° & 13° res) correlated to galactic motion towards Cygnus
- Challenge: good angular resolution plus head/tails at low recoil energies
- Cygnus: proto-collaboration to coordinate R&D efforts for gas based (He-CF₄) TPCs with ~ 1 keV threshold

IONISATION DETECTORS

- Point contact HPGe detectors: low energy threshold and (potentially) large total mass (CDEX)
- Si CCDs: low ionisation energy, low noise, and particle tracks for background reduction ⇒ particle ID (DAMIC-M, SENSEI)
- NEWS-G: spherical proportional counter, light targets (H, He, Ne), pulse shape discrimination against surface events, low energy threshold (very low capacitance)

NEWS-G

Reach of NEWS-G at SNOLAB

DAMIC

DD EXPERIMENTS: PAST, PRESENT, FUTURE

• Example: spin-independent cross section upper limits at 60 GeV WIMP mass

10⁻⁴¹cm² in ~1998 to few x 10⁻⁴⁷ cm² in ~2018

SUMMARY & OUTLOOK

- Dark matter particle candidates cover large mass & cross section range
- A variety of technologies employed for their detection & many new ideas
- So far: we have mostly learned what dark matter is not... we have been narrowing down the options
- However, tremendous progress over the past decades & expected for next
- Pragmatic goal: broaden the searches & probe the experimentally accessible parameter space
- Rich non-WIMP physics programme: neutrinos, solar axions, ALPs, dark photons...
- Remember that yesterday's background might be today's signal ;-)

Of course, "the probability of success is difficult to estimate, but if we never search, the chance of success is zero" G. Cocconi & P. Morrison, Nature, 1959

Eugene Jansson Hornsgatan Nattetid, 1902

ADDITIONAL MATERIAL

KINEMATICS: DARK MATTER PARTICLE MASS

- Light DM: nuclear recoil energy well below the threshold of most experiments
- Total energy in scattering: larger, and can induce inelastic atomic processes \rightarrow visible signals

INTERACTION RATES: DM ABSORPTION

- > Absorption of bosonic DM (ALPs, dark photons) via the "axioelectric" effect
- Rates ~ $\phi x \sigma ~ \rho x v/m x \sigma$ (here $\rho = 0.3$ GeV/cm³)

BACKGROUNDS: THE NEUTRINO FOG

Figures: Knut Moraa

Shaded grey areas: the "neutrino fog" -> the lightest area shows the WIMP cross-section where more than 1 v event is expected in the 50% most signal-like (S1, S2) region; subsequent shaded areas: 10-fold increases of the v expectation

BACKGROUNDS: THE NEUTRINO FOG

- Sensitivity of DDNR experiments: eventually limited by the neutrino backgrounds
- Discovery of a signal: only possible if excess in events > stat. fluctuations in the background
- The "neutrino fog" depends on
 - systematic uncertainty in neutrino fluxes (~2% in ⁸B, ~20% for atmospheric neutrinos)
 - nuclear and astro inputs for the DM signal

C. A. J. O'Hare PRD 94, 2016

Neutrino "floor" for 3 sets of $1-\sigma$ uncertainties on the local density, speed and escape velocity for a xenon target

Discovery limit of a 5 TeV WIMP in an argon target, as a function of the atm. neutrino event N and fract. uncertainty on the atm v flux: $\delta \Phi_{atm}/\Phi_{atm}$

TPC (5.9 t LXe, 4 t fiducial), 1.3 m diameter, 1.5 m tall

PMT array (494 PMTs in total, in 2 arrays)

LXe, faster cleaning; 2500 slpm)

LXe purification system (5 L/min

Rn distillation column (reduce ²²²Rn - hence also ²¹⁴Bi - from pipes, cables, cryogenic system)

Neutron veto (120 additional PMTs, Gd doped (0.5% Gd₂(SO₄)₃))

THE DARWIN PROJECT

- Two-phase Xe TPC: 2.6 m ø, 2.6 m height
- ▶ 50 t (40 t) LXe in total (in the TPC)
- Two arrays of photosensors (e.g., 1800 3inch PMTs)
- PTFE reflectors and Cu field shaping rings
- Low-background, double-walled titanium cryostat
- Shield: Gd-doped water, for μ and n

DARWIN collaboration, JCAP 1611 (2016) 017

Alternative TPC designs, photosensors etc under study

BACKGROUND MODEL AND DATA

- Good fit over most of the energy region
- Excess between (1,7) keV
- Number of observed events: 285, expected from background: (232±15) events

HIGH-ENERGY ANALYSIS FOR A DOUBLE BETA SEARCH OF ¹³⁶XE

- Motivation: search for $0\nu\beta\beta$ -decay of ¹³⁶Xe, at $Q_{\beta\beta}$ = (2457.83±0.37) keV, understand background rate and spectrum at high energies
- Correct for signal saturation, determine event multiplicity, energy scale, resolution
- Achieved $\sigma/E \sim 0.8\%$; $0v\beta\beta$ -decay data analysis and data/MC matching in progress

XENON-NT: BACKGROUND PREDICTIONS

Source	Rate $[(t y)^{-1}]$	
ER background		
Detector radioactivity	25 ± 3	
222 Rn	55 ± 6	
85 Kr	13 ± 1	
136 Xe	16 ± 2	
124 Xe	4 ± 1	
Solar neutrinos	34 ± 1	
Total	148 ± 7	
NR background		
Neutrons	$(4.1 \pm 2.1) imes 10^{-2}$	
$CE\nu NS$ (Solar ν)	$(6.3 \pm 0.3) imes 10^{-3}$	
$CE\nu NS$ (Atm+DSN)	$(5.4 \pm 1.1) \times 10^{-2}$	
Total	$(1.0 \pm 0.2) \times 10^{-1}$	

rates in a fiducial mass of 4 t of LXe, 1-13 keV ER, 4 -50 keV NR energy range

XENON-NT: BACKGROUND PREDICTIONS

Model component	Expectation value (μ) in 20 ty		Rate uncertainty
	Observable ROI	Reference signal region	(ξ)
Background			
ER	2440	1.56	
Neutrons	0.29	0.15	50%
$CE\nu NS$ (Solar ν)	7.61	5.41	4%
$CE\nu NS$ (Atm+DSN)	0.82	0.36	20%
WIMP signal			
$6 \text{GeV/c}^2 \ (\sigma_{\text{DM}} = 3 \times 10^{-44} \text{cm}^2)$	25	19	
$50 \mathrm{GeV/c^2} ~(\sigma_{\mathrm{DM}} = 5 \times 10^{-47} \mathrm{cm^2})$	186	88	
$1 \mathrm{TeV/c^2}$ ($\sigma_{\mathrm{DM}} = 8 imes 10^{-46} \mathrm{cm^2}$)	286	118	

Number of events in the ROI and in a reference WIMP signal region for an exposure of 20 t years

