
Parallel GMRES solver for fast analysis of large linear dynamic systems
on GPU platforms$

Kai He a, Sheldon X.-D. Tan a,n, Hengyang Zhao a, Xue-Xin Liu b, Hai Wang c, Guoyong Shi d

a Department of Electrical and Computer Engineering, University of California at Riverside, Riverside, CA 92521, USA
b Synopsys Inc., Mountain View, CA 94043, USA
c School of Microelectronics & Solid-State Electronics, University of Electronic Science & Technology of China, Chengdu, Sichuan 610054, China
d School of Microelectronics, Shanghai Jiao Tong University, Shanghai 200240, China

a r t i c l e i n f o

Article history:
Received 17 February 2015
Received in revised form
16 June 2015
Accepted 13 July 2015
Available online 31 July 2015

Keywords:
Parallel analysis
GPU
Sparse vector and matrix multiplication
Dynamic linear systems
Circuit simulation

a b s t r a c t

In this paper, we propose an efficient parallel dynamic linear solver, called GPU-GMRES, for transient
analysis of large linear dynamic systems such as large power grid networks. The newmethod is based on
the preconditioned generalized minimum residual (GMRES) iterative method implemented on hetero-
geneous CPU–GPU platforms. The new solver is very robust and can be applied to power grids with
different structures as well as for general analysis problems for large linear dynamic systems with
asymmetric matrices. The proposed GPU-GMRES solver adopts the very general and robust incomplete
LU based preconditioner. We show that by properly selecting the right amount of fill-ins in the
incomplete LU factors, a good trade-off between GPU efficiency and convergence rate can be achieved for
the best overall performance. Such tunable feature can make this algorithm very adaptive to different
problems. GPU-GMRES solver properly partitions the major computing tasks in GMRES solver to
minimize the data traffic between CPU and GPUs to enhance performance of the proposed method.
Furthermore, we propose a new fast parallel sparse matrix–vector (SpMV) multiplication algorithm to
further accelerate the GPU-GMRES solver. The new algorithm, called segSpMV, can enjoy full coalesced
memory access compared to existing approaches. To further improve the scalability and efficiency,
segSpMV method is further extended to multi-GPU platforms, which leads to more scalable and faster
multi-GPU GMRES solver. Experimental results on the set of the published IBM benchmark circuits and
mesh-structured power grid networks show that the GPU-GMRES solver can deliver order of magnitudes
speedup over the direct LU solver, UMFPACK. The resulting multi-GPU-GMRES can also deliver
3–12� speedup over the CPU implementation of the same GMRES method on transient analysis.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The verification of today's large linear global networks such as on-
chip large power grid networks is very challenging for chip designers.
Fast verification of voltage drops and other noises on power delivery
networks is critical for final design closure. As the VLSI technology
proceeds into sub-65 nm scale [15], one challenging job of power
grid network is to predict and ensure a reliable on-chip power
delivery. Since the power grid network usually comes with a huge
size, its simulation and verification take a lot of time, and sometimes
even make the analysis completely failed. Intensive researches have
been carried out to seek for efficient analysis of large power grid

networks in the past decade. Various algorithms have been proposed
to improve scalability in computing time and to reduce memory
footprints [25,36,30,9,17]. But most of those techniques are based on
the homogeneous single-core architectures.

The course of computing has been permanently altered by the
recent leap from single-core to multi-core or many-core technol-
ogies. Among them, the graphics processing unit (GPU), is one of
the most powerful many-core computing systems arousing inter-
ests and input from both research and industry community [28].
Today, more and more high performance computing servers are
equipped with GPUs as co-processors. These GPUs work in tandem
with CPUs (on same computing node) connected by high-speed
link like PCIe buses. GPU's massively parallel architecture allows
high data throughput in terms of floating point operations (flops).
For instance, the state-of-the-art NVIDIA Kepler K40c chip has a
peak performance of over 4 Tflops performance in comparison
with about 80–100 Gflops of Intel i7 series quad-core CPUs [3].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

http://dx.doi.org/10.1016/j.vlsi.2015.07.005
0167-9260/& 2015 Elsevier B.V. All rights reserved.

☆This work is supported in part by NSF grant under No. CCF-1017090, in part by
NSF Grant under No. OISE-1130402.

n Corresponding author.
E-mail address: stan@ee.ucr.edu (S.X.-D. Tan).

INTEGRATION, the VLSI journal 52 (2016) 10–22

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2015.07.005
http://dx.doi.org/10.1016/j.vlsi.2015.07.005
http://dx.doi.org/10.1016/j.vlsi.2015.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.07.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.07.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.07.005&domain=pdf
mailto:stan@ee.ucr.edu
http://dx.doi.org/10.1016/j.vlsi.2015.07.005

Currently, GPUs or GPU-clusters can easily deliver tera-scale
computing, which was only available on super-computers in the
past, for solving many large scientific and engineering problems.

The NVIDIA CUBLAS library [27] provides good dense linear
algebra support on GPU, but the sparse linear algebra support is still
limited. Although there are some recent efforts in this direction
[34,31], the sparse LU solvers on GPU is considered to be difficult due
to the complicated data dependency. On the other hand, iterative
solvers, which mainly depend on simple operations such as matrix–
vector multiplication and inner product of vectors, are more amicable
for parallelization, especially on GPU platforms. There are some
newly published papers, such as [14,10,37,40,39], which confirm
the practicality and effectiveness of iterative solvers in solving large
linear dynamic networks like power grid networks.

Recently, there are also some research works for GPU-based
iterative solver for sparse systems [13,38,8,41,4,5,12,20]. In [38],
GMRES solver has been accelerated on GPU by simply parallelizing
the computing of polynomial preconditioners. In [8], Jacobi-
preconditioned conjugate gradient algorithm is parallelized based
block compressed row storage format. But this solver only works
on single GPU and symmetric matrices. Work in [20] proposed a
parallel GMRES based on existing GPU-enabled BLAS library [27].
Also a few existing works have been proposed to explore the
hybrid accelerators such as GPUs and Xeon Phi.

In this paper, an efficient parallel dynamic linear solver with
application on transient analysis of large power grid networks of VLSI
systems is proposed. We aim at developing a general GPU-
accelerated dynamic linear solver, which not only can be applied to
analyze power grid networks with different structures and proper-
ties, but also can be used to solve more general problems with
asymmetric matrices. Examples include the power grid networks or
thermal circuits with compact models, which may consist of con-
trolled sources, constructed from model order reduction, subspace
identification and other methods [22,21]. Another example is the co-
simulation of the power grids and voltage regulators. As a result, the
new method, called GPU-GMRES, is based on the preconditioned
Generalized Minimum RESidual (GMRES) iterative solver, and is
implemented on heterogeneous CPU–GPU platforms with multiple
GPUs. The proposed GPU-GMRES solver adopts a very general and
robust incomplete LU based preconditioner with tunable fill-ins. We
show that by properly selecting the right amount of fill-ins in the
incomplete LU factors, a good trade-off between GPU efficiency and
convergence rate can be made to achieve the best overall perfor-
mance of the solver. Such tunable feature can make this algorithm
very adaptive and flexible for different problems.

In addition, since SpMV multiplication is a key and the most
time-consuming operation in a preconditioned GMRES solver, we
also propose a new fast parallel SpMV algorithm on GPU plat-
forms. The new algorithm, called segSpMV, reduces the memory
access by partitioning the rows, whose nonzero patterns are
irregular in general, into a number of fixed-length segments. As
a result, the segSpMV method can enjoy the fully coalesced
memory access and outperform existing GPU-enabled SpMV
methods. To further improve the scalability and efficiency,
segSpMV method is further extended to multi-GPU platforms,
which leads to more scalable and faster multi-GPU GMRES solver.
Furthermore, since many operations in the preconditioned GMRES
solver such as SpMV and sparse triangular solving are bandwidth
limited operations, it is important to reduce the data communica-
tion traffics. As a result, we properly partition the major comput-
ing tasks in the GMRES solver to minimize the data traffic between
CPU and GPU, which further boosts performance of the proposed
method.

Experimental results on the set of the published IBM bench-
mark circuits and mesh-structured power grid networks show that
the GPU-GMRES solver can deliver order of magnitudes speedup

over the director solver, UMFPACK [35]. The resulting multi-GPU-
GMRES can also deliver 3–12� speedup over the CPU implemen-
tation of the same GMRES method on transient analysis. We also
show that the matrix structures and property have a huge impact
on the efficiency of GMRES solvers. Note that some preliminary
results of this paper appeared in [19].

This paper is organized as follows. Section 2 reviews power grid
analysis problem and the GPU architecture. Section 3 describes the
proposed GPU-GMRES parallel algorithm and discussion of ILU
preconditioner. In Section 4, we present a new fast parallel SpMV
algorithm and its implementation on multi-GPU platforms, fol-
lowed by several numerical examples in section 5. Last, Section 6
concludes this paper.

2. Review of power gird simulation and GPU architecture

2.1. The problem of power grid simulation

As shown in Fig. 1, a power grid network can be modeled as RLC
(or RC) networks with known time-variant current sources, which can
be obtained by gate-level logic simulations of the circuits. A typical
power grid model has a tremendous size of over million nodes, and up
to hundreds of thousands of input current sources. There are some
nodes with known voltages in the grid, and are modeled as nodes
connected with DC voltage sources. For C4 power grids, the known
voltage nodes can be internal nodes inside the power grid.

The node voltages can be obtained by solving the differential
equation which is formulated by modified nodal analysis (MNA),

GxðtÞþC
dxðtÞ
dt

¼ BUðtÞ; ð1Þ

where UðtÞ is the given current source vector, GARn�n is the
conductance matrix, CARn�n is the matrix resulting from charge
storage elements, BARn�m is the input selector matrix, xðtÞARn is
the vector of time-varying node voltages and branch currents of
inductors and voltage sources, and UðtÞARm is the vector of
independent power sources. In general, the matrices G and C can
be asymmetric. As a result, the conjugate gradient (CG) method
may not be applied to the given problem. So we adopt the more
general GMRES solver in this work to solve this problem.

With the backward Euler method, the transient behavior of the
power grid can be solved step by step from a given initial
condition xð0Þ using

Gþ1
h
C

� �
xðtþhÞ ¼ 1

h
CxðtÞþBUðtþhÞ; ð2Þ

where h is the time step length. If a fixed time step h is chosen,
then the left-hand side matrix, Gþð1=hÞC, will remain the same

Fig. 1. An RLC model of power grid network.

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–22 11

along all time steps. Hence, when applying LU solver on this case,
LU factorization only needs to be done once to obtain the LU
factors of Gþð1=hÞC, and they can be reused for all the triangular
solves in the following time steps.

2.2. Review of GPU architecture and CUDA programming

In this subsection, we review the GPU architecture and CUDA
programming. CUDA, short for Compute Unified Device Architec-
ture, is the parallel programming model for NVIDIA's general-
purpose GPUs. The architecture of a typical CUDA-capable GPU is
consisted of an array of highly threaded streaming multiprocessors
(SM) and comes with up to a huge amount of DRAM, referred to as
global memory. Take the Tesla C2070 GPU for example. It contains
14 SMs, each of which has 32 streaming processors (SPs, or CUDA
cores called by NVIDIA), 4 special function units (SFU), and its own
shared memory/L1 cache. The structure of a streaming multi-
processor is shown in Fig. 2.

As the programming model of GPU, CUDA extends C into CUDA C
and supports such tasks as threads calling and memory allocation,
which makes programmers able to explore most of the capabilities of
GPU parallelism. In CUDA programming model, illustrated in Fig. 3,
threads are organized into blocks; blocks of threads are organized as
grids. CUDA also assumes that both the host (CPU) and the device
(GPU) maintain their own separate memory spaces, which are
referred to as host memory and device memory, respectively. For
every block of threads, a shared memory is accessible to all threads in
that same block. The global memory is accessible to all threads in all
blocks. Developers can write programs running millions of threads
with thousands of blocks in parallel. This massive parallelism forms
the reason that programs with GPU acceleration can be much faster
than their CPU counterparts. CUDA C provides its extended keywords
and built-in variables, such as blockIdx.{x,y,z} and threadIdx.{x,y.z}, to
assign unique ID to all blocks and threads in the whole grid partition.

Therefore, programmers can easily map the data partition to the
parallel threads, and instruct the specific thread to compute its own
responsible data elements. Fig. 3 shows an example of 2-dim blocks
and 2-dim threads in a grid, the block ID and thread ID are indicated
by their row and column positions.

Although GPU provides massive parallelism and raw computing
power, programming on GPUs, however, still remains a challenging
problem. The reason is that many modern GPUs exhibit complex
memory organization with multiple low latency on-chip memories
in addition to the off-chip memory. The access latencies and the
optimal access patterns of each of the memories vary significantly,
posing a significant challenge to develop techniques that optimally
utilize the various memories to tolerate the latency and improve the
memory thoughtful. VLSI simulations task typically are memory-
intensive operations as they need to analyze and transform huge
amount of design data. Many operations such as SpMVmultiplication
[6], which is the critical kernel for most analysis and simulation tasks
for VLSI chip designs, have low computing over communication
ratios. This will pose difficulty to map the operations into GPUs
because GPUs' performance is mainly limited by the memory
bandwidth. For multi-GPUs and GPU-cluster, this becomes a even
more challenging problem.

3. Parallel GMRES solver on the GPU–CPU platform

3.1. ILU-based GMRES solver

In general, our problem is how to solve a linear system

Ax¼ b; ð3Þ
In our application, the coefficient matrix is A¼Gþð1=hÞC, and the
right-hand side vector is b¼ ð1=hÞC � xi�1þUi. The index of tran-
sient point is denoted by the subscript i, i.e., xi ¼ xðtiÞ ¼ xði � hÞ. The
linear equation like Eq. (3) can be solved by applying the LU
factorization (direct) method or iterative methods. However, the
implementations of LU-factorization solver are considered to be
difficult on GPU due to many inherent data dependency and
irregular memory access. On the other hand, the iterative solvers,
are more amenable for GPU computing as only SpMV multi-
plication and triangular matrix solving (in our implementation)
operations are required, which are both GPU-friendly.

Fig. 2. Diagram of a streaming multiprocessor in NVIDIA Tesla C2070. (SP is short
for streaming processor, L/S for load/store unit, and SFU for Special Function Unit.)

Fig. 3. The programming model of CUDA.

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–2212

We investigate the GPU-accelerated GMRES iterative solver to
solve the proposed power grid analysis problem. Considering the
following system equivalent to Ax¼ b:

CLACRy¼ CLb; y¼ C�1
R x; ð4Þ

where CL and CRARn�n are non-singular. The CL and CR are
referred as left preconditioner and right preconditioner, respec-
tively. The intuitive idea of preconditioning is to choose the
matrices CL and CR so that CLACR can approximate the identity
matrix. This can be done by squeezing eigenvalues of CLACR close
to unity. In Eq. (4), we express this preconditioning process in the
form of matrix multiplication. However, there can be other
operations involved in practice. For instance, in our proposed
solver, the two matrices CL and CR are actually the applications of
lower and upper triangular solvers using the factors derived from
incomplete LU factorization.

The combined efforts of the left factor and right factor in this
splitting style preconditioning contribute to a more efficient GMRES,
which is much better than using a single side precondition factor.
Existing works have shown that such kind of simple preconditioners,
e.g., diagonal (or Jacobi) preconditioner and approximate inverse
preconditioner (AINV), do not have ideal preconditioning quality and
they may even fail on some cases [33]. Moreover, very attractive
preconditioners are defined in terms of an incomplete LU (ILU)
factorization of A. That is, we use the simplified version (or say, the
cheaper variant) of LU method to compute ~L and ~U, where ~L and ~U
are sparse triangular matrices achieving the approximation A� ~L � ~U.
Incomplete LU factorization is generally based on a modified
Gaussian elimination, where the number of fill-in elements during
factorization is strictly controlled below a preset limit. With row and
column permutations, the generalized ILU can be used in most cases
for preconditioning. With the application of permutation matrices,
the preconditioned matrix system in Eq. (4) is

CLACR ¼ ð ~L �1
PÞAðQ ~U

�1Þ ð5Þ
where ~L and ~U are ILU factors, and P and Q are permutation
matrices. The construction of the two ILU factors shall satisfy the
approximation

PAQ � ~L ~U;

which is equivalently to say that ~L
�1

PAQ ~U
�1

is an approximation to
identity matrix I.

There is a critical trade-off between this approximation and the
fill-in ratio of the ILU factors. A closer approximation needs more
efforts in factorization and results in high fill-in ratio of LU factors.
Therefore, it will incur a high computation cost during the precondi-
tioning process, i.e., calculating Eq. (5). On the contrary, ILU factors
with low fill-in ratio are cheap to be factorized, and they also require
less effort in the triangular solves, but it could take more iterations in
GMRES since the spectral property of the preconditioned system
deteriorates. We will study this trade-off relationship in our experi-
ment section.

The GMRES method is an iterative method for solving large-
scale systems of linear equations (Ax¼ b), where A is sparse in our
case. Algorithm 1 shows the standard Krylov-subspace based
GMRES method with preconditioner [33], which uses projection
method to form the mth order Krylov-subspace [32,33], e.g.,

Km ¼ spanðr0;MAr0; ðMAÞ2r0;…; ðMAÞm�1r0Þ; ð6Þ
where r0 ¼ b�Ax0 and M is the preconditioner. Note that for the
sake of simplicity, we represent the ILU preconditioning process as
an operation M here, and from now on, all the occurrence of MA
should denote the operation in Eq. (5), which contains two sparse
triangular solves and one SpMV multiplication. After orthogonali-
zation and normalization, the orthonormal basis of this subspace
is Vm. To generate the Krylov subspace in GMRES, Arnoldi iteration

is employed to form Vm. Each Arnoldi iteration generates a new
basis vector and is appended to the previous Krylov subspace basis
Kj to obtain the augmented subspace Kjþ1. Arnoldi iteration also
creates an upper Hessenberg matrix ~Hm used to check the solution
at the current iteration. As a result,the approximated solution x
becomes the linear combination of xm ¼ x0þVmym,where ym is
calculated in Line 12 of Algorithm 1.

Algorithm 1. GMRES with left and right preconditioning.

Require: AARn�n, bARn, x0ARn (initial guess),m (restart)
Ensure: xARn: AxCb
1: r0 ¼ b�Ax0

2: ~r0 ¼ CLr0, β¼ ~r0
�� ��

2, v1 ¼ ~r0=β
3: for j¼ 1;2;…;m do [Arnoldi iteration on GPU]
4: w¼ CLACRvj {Eq. (5) using segSpMV and CUSPARSE csrsv}
5: for i¼ 1;2;…; j do fusing CUBLAS functionsg
6: hi;j ¼wT

i vj

7: w¼w�hi;jvi

8: end for
9: hjþ1;j ¼ wk k2, vjþ1 ¼w=hjþ1;j

10: end for
11: Vm ¼ ½v1;…; vm�, ~Hm ¼ fhi;jg1r ir jþ1; 1r jrm

12: ym ¼ argminy Jβe1� ~HmyJ2
13: xm ¼ x0þCRVmym
14: if not converge then
15: x0 ¼ xm, go to Line 1
16: end if

The least squares problem is usually solved by computing the QR
factorization of the Hessenberg matrix. In fact, the Hessenberg matrix
can be maintained in factorized form by successively updating the
factors. This procedure, which can be efficiently implemented by
Givens rotations, is numerically reliable. However, the Gram–Schmidt
orthogonalization inherent in Arnoldi method may be a source of
numerical errors. Instead, we may use the modified Gram–Schmidt
processes, or better, apply Householder transformations. The latter
alternative is also well suited for parallel implementation.

3.2. Parallelization on GPU–CPU platforms

To parallelize the GMRES solver, we need to identify several
computation intensive steps in Algorithm 1. There exist many
GPU-friendly operations in GMRES, such as vector addition (axpy),
2-norm of vectors (nrm2), and SpMV multiplication (segSpMV).
With preconditioning process, the triangular solves (csrsv) using
ILU factors are also the beneficiaries of parallel computing, since
many rows in ILU factors are independent and the solving of these
rows can be done in parallel [26]. Based on the examples we focus
on, we have noticed that SpMV multiplication and triangular
solving take up to 70% of the overall runtime to build the Krylov
subspace shown in Eq. (6). Those routines are GPU-friendly (but
they are bandwidth limited operations) and efforts have been
made already to parallelize these routines in generic parallel
algorithms for sparse matrix computations library CUSPARSE [29].

GPU programming for many engineering problems are typically
limited by the data transfer bandwidth as GPU favors computation-
ally intensive algorithms [16]. This is especially true for operations
such as SpMVmultiplication and sparse triangular solving, which are
bandwidth limited. For instance, SpMV has O(n) communication and
O(n) computing, so it has 1 to 1 computing and communication ratio
(n is number of non-zero elements in the sparse matrices). Hence, it
is important to reduce the data communication traffic for the
proposed GPU-GMRES solver.

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–22 13

As a result, how to wisely partition the data between CPU
memory (host side) and GPU memory (device side) to minimize
data traffic is crucial for GPU computing. In the sequel, we make
some detailed analysis first for GMRES in Algorithm 1. Although
GMRES tends to converge quickly for most circuit examples, i.e.,
the iteration number m⪡n, the space needed to store the subspace
Vm with a size of n-by-m, i.e., m column vectors with n-length, is
still big. Therefore, transferring the memory of the subspace
vectors between CPU memory and GPU memory is not an efficient
choice. In addition, every newly generated matrix–vector product
needs to be orthogonalized with respect to all its previous basis
vectors in the Arnoldi processes. To utilize the data intensive
capability of GPU, we keep all the vectors of vm in GPU global
memory. In this case, GPU is allowed to handle those operations,
such as inner-product of basis vectors (dot) and vector subtraction
(axpy), in parallel.

On the other hand, it is better to keep the Hessenberg matrix ~H,
where intermediate results of the orthogonalization are stored, at
the CPU host side, because of the following reasons. First, its size is
ðmþ1Þ-by-m at most, rather small if compared with circuit
matrices and Krylov basis vectors. Besides, it is also necessary to
triangularize ~H and check the residual in each iteration so the
GMRES can return the approximate solution as soon as the
residual is below a preset tolerance. Hence, in light of the
sequential nature of the triangularization, the small size of
Hessenberg matrix, and the frequent inspection of values by the
host, it is preferable to allocate ~H in host memory. As shown in
Algorithm 1, the memory copy from device to host is called each
time when Arnoldi iteration generates a new vector and the
orthogonalization produces a new vector h, which is the ðjþ1Þth
column of ~H, and is transferred to the CPU, where a least square
minimization (a series of Givens rotations, in fact) is performed to
see if the desired tolerance of residual has been met. Our
observation shows that the data transfer and subsequent CPU
based computation takes up less than 0.1% of the total run time.

Fig. 4 illustrates the computation flow, the partitions of the
major computing steps and the memory accesses between CPU
and GPU during the operations we mentioned above.

3.3. GPU-friendly implementation of preconditioners

One important aspect of the iterative solver is the precondi-
tioner. Preconditioners increase the rate of convergence and thus
reduce the number of iterations. A well chosen preconditioner will
potentially make GMRES much faster than the one without
precondi- tioner. In this section, we discuss the preconditioner
for GPU GMRES.

We know from the preceding discussion that in ILU precondi-
tioning process of Eq. (5), the two major participants are ~L and ~U,
who are sparse triangular matrices and approximate the L and U
factors of A, respectively. At the beginning of each Arnoldi iteration
in Line 4 in Algorithm 1, this preconditioning procedure is needed
to modify the property of a newly spanned Krylov subspace vector.
For GMRES without preconditioner, Line 4 only consists a matrix–
vector multiplication Avj. In the new preconditioned GMRES
solver, applying the ILU preconditioner requires two more opera-
tions: the solving of two sparse triangular systems (forward and
backward substitutions).

For the two triangular ILU factors, we have two conflicting
requirements. On one hand, the two triangular factors in ILU are
supposed to approximate the complete LU factors as much as
possible to increase the convergence rate. The more fill-in ele-
ments there are in ~L and ~U, the more similarities there are
between the preconditioned system in Eq. (5) and the identity
matrix I. Consider an extreme example in the other end. An ILU is
called ILU0 if no fill-in elements are tolerated, and existing

researches have shown that ILU0's applicability on many cases is
very limited due to its poor performance in accelerating conver-
gence of iterative solvers. On the other hand, when parallelizing
the triangular solving of L and U matrices in GPUs, the efficiency of
the GPU solver requires less data dependency (less dependency
among rows) [26]. As a result, less fill-ins benefit GPU triangular
solvers [18].

As a result, in this work, we adopt the strategy of ILU with fill-
in ratio control. The ILUþþ package we employ in our solver
allows users to provide a threshold parameter and fill-in elements
smaller than this threshold will be dropped off. This parameter
gives us the freedom to adjust and tune our ILU preconditioner,
and delivers the optimal performance of the resulting GPU GMRES
solver. But selection of the best threshold is still done by experi-
ments and the best value is problem-specific in our work.

Once the circuit MNA matrix A is available, ILU is run to
construct and set up the preconditioner. Then we transfer the
matrices to GPU global memory. Before calling NVIDIA CUSPARSE's
triangular solve function in calculating Eq. (5), there is one
prerequisite step to analyze the structure of ILU factors ~L and ~U.
According to CUSPARSE document, this step, which is called
csrsv_analysis, makes an exploration of the matrix sparsity
and the dependency between different rows (independent rows of
triangular solve can be computed in parallel), so that information
is collected and saved for future use in csrsv_solve. In a word,
the analysis step is run only once for the whole simulation. The
triangular solves in all GMRES iterations and all transient steps of
circuit simulation can reuse this analysis information, and each
time only csrsv_solve is called. More details will also be
described in the experimental section.

4. Parallel SpMV algorithm on the GPU–CPU platform

As we can see, in the preconditioned GRMES solver, one key
computing step is the SpMV multiplication. In this section, we
present the new GPU-accelerated parallel SpMV multiplication
method, segSpmV.

Fig. 4. The proposed GPU-accelerated parallel preconditioned GMRES solver. We
also show the partitioning of the major computing tasks between CPU and
GPU here.

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–2214

4.1. Review of existing GPU-enabled SpMV algorithms

There are many sparse matrices formats such as DIA, ELL, CSR,
HYB, PKT, COO with applications ranging from highly structured
matrices (DIA, ELL) to unstructured matrices (HYB, COO) [7]. Among
them, the compressed sparse row (CSR) can be used for both
structured and unstructured sparse matrices and has wide applica-
tion for sparse matrix computations. The CSR format is a popular,
general-purpose sparse matrix representation. CSR explicitly stores
column indices and nonzero values in arrays col_idx and data. A third
array of row pointers, row_ptr, takes the CSR representation as
shown in Fig. 5 for a 5�5 sparse matrix. For an M �M matrix, the
row_ptr with length Mþ1, stores the offset into data for the start
point of each row, with the convention that row_ptr½M� ¼Nnz , where
Nnz is the number of nonzeros in the matrix.

The SpMV computation consists of two phases: the first product
phase, which performs the element–element production between
the matrix and the vector, the second summation phase adds the
results for each row to get the final result. Several relevant SpMV
algorithms on GPU platforms can be summarized as follows:

4.1.1. The row-based B&G method
Bell and Garland [7] first propose a straightforward implemen-

tation, in which each row will take care of all the computing
(multiplication and summation) by a single thread as shown in
Fig. 6. The algorithm only requires one kernel launch (one kernel
launch means one CPU-to-GPU invocation). The main drawback of
this approach is that each thread will read many sequential data
from a data vector in the CSR format from the global memory of
GPUs, which leads to slow non-coalesced memory access.

4.1.2. The warp-based B&G method
The row-based B&G method is further improved by the warp-

based B&G method [7] in which one warp is assigned to each row
of a matrix. After the multiplication phase, the warp reduction is
performed to compute the summation result. The algorithm is
illustrated in Fig. 7. Compared to the row-based B&G method, its
memory access can be coalesced because 32 continuous threads in
the same warp could work together to load the non-zero elements
in one row. This method, however, may suffer from low perfor-
mance when the number of nonzeros in each row is smaller than
32, which can be the case for many finite difference and finite
element based methods.

4.1.3. The P&S method
Deng et al. later proposed an improved SpMV method, called

P&S method, for many electronic design automation (EDA) related
problems [12]. The approach will not directly operate on the CSR
data structure. Instead, it creates a new vector, called expanded
vector, of the same size of the data first as shown in Fig. 8. The
expanded vector consists of the elements from the multiplication
vector ½b1;…; b3�. And each element in the vector, expended_vector
[i], corresponds to one element in data, which is data[i], and both
of them will be multiplied in the production phase.

After the generation of expanded vector, the remaining opera-
tions are two vector multiplication and partial summation over
rows. However, the method requires two sequential kernel
launches, one for element-wise multiplication (or production)
for the two vectors, which can enjoy fast coalesced memory
access. Another one is for carrying out partial summation for each
row after the vector multiplication as shown in Fig. 9. The second
phase, however, cannot avoid irregular memory access because of
varying length of rows. Also only one thread per row is assigned to
perform the addition. To mitigate the problem, the authors
proposed to load the immediate production results into the shared
memory via the coalesced memory access. The threads only read
from shared memory for the addition operations. But due to the
limited resources of shared memory in each streaming multi-
processor (SM) in GPUs, the much slow global memory access will
still be needed in case of missing data in the shared memory.

4.2. New parallel SpMV algorithm

Now we present a new parallel SpMV algorithm on the GPU–CPU
platform, called segSpMV method. As we can see, the P&S method
mitigates the irregular memory access for the multiplication phase by

Fig. 5. The CSR format of a sparse matrix.

Fig. 6. The illustration of the row-based B&G algorithm.

Fig. 7. The illustration of the warp-based B&G algorithm.

Fig. 8. The vector expansion concept in the P&S method.

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–22 15

using expanded vector. However, in the summation phase, it still
suffers the irregular memory access issue as the length of rows is
irregular. Using shared memory can partially mitigate this problem.
However, given the fact that the shared memory is limited, the
number of nonzeros per row cannot be too large. To see this, let us
assume that we need 48 KB data for each block. If we can only have
16 KB shared memory (for instance in Tesla T10 GPU). The hit rate
(probability of required data in the shared memory) would be only
about 33%.

In addition, the P&S method uses only one thread per row for the
summation after loading the data into the shared memory. As a result,
the row with less non-zero elements would get the summation result
faster compared to the row with more non-zero elements. Therefore,
the memory access cannot be full coalesced and the performance of
P&S method is limited by imbalanced workload. Furthermore, it
requires two sequential kernel launches. In the second launch for the
summation, one has to load intermediate production result vector
and the row_ptr vector from global memory.

The segSpMV method can overcome the aforementioned pro-
blems in the existing P&S method. The new algorithm is also based
on the expanded vector concept for the multiplication phase. But
different from the P&S method, the new algorithm can mitigate
the irregular memory access problem in the summation phase,
and thus lead to more simple implementation and yet better
performance. The main idea is to partition the rows into a number
of fixed-length regular segments before the operation. The length
of the segment typically is selected to be just bigger than the
average number of nonzero elements per row in the given matrix
and they also should be the power of 2 for easy reduction
operation. For instance, if the average number of nonzero ele-
ments is 14, then segment length 24 ¼ 16 is selected. For rows with
more nonzeros than the average number, multiple segments will
be needed.

After the segment length is determined, each row is partitioned
into a number of regular segments. If a segment is not fully filled by
the elements from the given row, 0 is padded to the rest of the empty
positions in the segment, as shown in Fig. 10. In this figure, one 0 is
padded at the end of segment2. We perform this segment-based
expansion for both original vector and the expanded vector of the
matrix. After this step, the two segment-expanded vectors are sent to
GPU global memory for multiplication and addition phases with just
one kernel launch as shown in Fig. 10. Note that it takes OðNnzÞ to do
the zero padding. In the product phase, each thread first will read two
elements from the two segment-expanded vectors, respectively via
the coalesced memory access from the GPU global memory. Then
each thread multiplies this pair of elements. But it stores the product
result immediately into the shared memory instead. In this case, all
the intermediate product results from all threads are stored in shared
memory, which is ready for the second phase of addition operation
right away.

In the summation phase, the new algorithm does not need to
check the boundaries of each row any more, which causes the
irregular memory access, as it can simply add all the results for
each regular segment instead. Because the segment size is fixed,
the summation can be very easily done by one thread or by
multiple threads via reduction. Also the addition operation will
take almost same time for all the threads. We add the synchronizeðÞ
to ensure all the partial results from each segment finish first
before they are written back into shared memory using the
coalesced memory access. Finally, segSpMV adds up the immediate
results of segments corresponding to the same row to get the final
results in the CPU side, which can be done very efficiently.

We note that the new method will never run out of shared
memory, which is the major advantage of the proposed method
over the existing approach. The reason is that the amount of
memory needed is 4 times of number of threads in each block, as
the size of each intermediate element is 4 Byte. So given 1 K
maximum thread allowed in each block in K20c and K40c GPUs,

Fig. 9. The illustration of the P&S algorithm.

Fig. 10. The proposed segment-SpMV method or segSpMV method.

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–2216

the maximum memory is just 4 KB, which is far less than the
48 KB shared memory in each SM. This is also the case for other
GPUs as well. As a result, we do not need to write the product
results back to global memory and then read them back again,
which leads to one more kernel launch. In the addition phase, each
thread sums products in one segment and each block is respon-
sible for the same number of segments. The number of non-zero
elements in each row may be different, but all segments are with
the same length. Compared to the P&S method, we do not need to
check if a data is cached in shared memory and do not need to
worry about the low hit rate when the number of non-zero
elements per row is large as we make full use of the shared
memory and has equivalent 100% hit rate in this sense.

5. Numerical results and discussion

All the aforementioned methods are implemented in C pro-
gramming language. The GPU part of the proposed new method is
incorporated into the main program with CUDA C programming
interface.

To put our new simulator's performance into a right perspec-
tive, we compare multi-GPU GMRES with CPU GMRES and a
standard LU-based method based on UMFPACK [35]. We remark
that we do not compare our multi-GPU GMRES solver with other
iterative solvers as most of existing iterative solvers are highly
tuned to specific problems, and are not general enough for general
linear systems. On the other hand, the proposed multi-GPU
GMRES solver is a general solver for any linear dynamic systems,
which include but do not limit to the examples of power grid
circuits and thermal circuits for both symmetric and non-
symmetric matrices. In addition, it does not assume or exploit
any structures of the given systems. As a result, it will be more fair
to compare our tool with the general LU-based simulator.

These programs are tested on a Linux server with an Intel
2.4 GHz Xeon Quad-Core CPU chip. The host (CPU) side has a total
of 60 GBytes memory available. Meanwhile, the server has three
GPU cards (devices) as mentioned earlier and are repeated here:
one Tesla K40c containing 2880 cores with 12 GBytes global
memory, one Tesla K20c containing 2688 cores with 6 GBytes
global memory and one Tesla C2075 containing 448 cores with up
to 5 GBytes global memory. But we only use the Tesla K40c and
K20c in the new multi-GPU GMRES solver.

5.1. segSpMV performance comparison on public matrices

To perform the comparisons, several mentioned algorithms
have been implemented or obtained from the published sources as
listed below:

� segSpMV, the proposed method.
� P&S, the P&S method.
� B&G-s, the B&G method using single thread per row [1].
� B&G-w, the B&G method using one warp per row [1].
� cu, the NVIDIA CUSPARSE library SpMV function.

We perform the comparison on the set of matrices from University
of Florida Sparse Matrix Collection [11] as shown in Table 1 in which
nzsize means number of nonzeros and nzperrow is the average
number of nonzeros per row. seg_length is the segment length used
for the proposed methods. All the matrices are ranked with increasing
number of nzsize from top to bottom and those matrices represent
various matrix structures from wide applications.

Table 2 first shows the performance comparison on the matrices
in Table 1 on the latest Tesla K40c GPU for the five algorithms. It can
be seen that the proposed segSpMV method beats all the other
algorithms on ALL the matrices with various structures. The average
speedups over B&G-s, B&G-w and P&S methods are 9.09� ,
7.27� and 3.88� , respectively. Speedup in some cases such as
webbase-1M can be order of magnitude faster over three other
algorithms. In addition, we also provide the comparison results
between the proposed segSpMV method and NVIDIA CUSPARSE
library function. The speedup ranges from 1.17� to 2.01� , with
average 1.58� . Although the speedup highly depends on the bench-
mark matrices, we see the 41� speedup on all the cases.

5.2. Multi-GPU segSpMV implementation and performance
comparison

To further utilize the multiple GPU resources and make the
proposed segSpMV method more scalable for handling much
larger problems, we further extended segSpMV algorithm into
the multi-GPU platforms.

Specifically, the segSpMV method can be easily divided into
several tasks. First, we partition the two expanded vectors into
several segment groups, and each group is managed by a CPU
thread. The number of groups can be determined by the number of
GPU devices on the server. Second, each CPU thread passes the
corresponding segments to one GPU device, and GPU just finishes
the computation of multiplication and addition phases with one
kernel launch. Since the sparse matrix and vector are already
expanded into several segments with a fixed length, the task
partition and distribution become very simple. Furthermore, the
segSpMV method is very multi-GPU friendly as there is no inter-
GPU communication. Each GPU can still enjoy the full coalesced
memory access and shared memory utilization.

Our multi-GPU server consists of one Tesla K40c, one Tesla
K20c, and one C2075 GPUs. The server also consists of two 8-Core
Xeon E5-2670 CPUs, DDR3-1600 64 GB memory. The Tesla K40c
and K20c GPU are built on the NVIDIA Kepler compute architec-
ture and have 2880 and 2688 CUDA parallel processing cores,
respectively. The K40c is capable of running 4.29 Tflops per second
of single precision processing performance while K20c has the
peak 3.95 Tflops single precision floating performance. C2075 is
based on previous Fermi architecture GPU with 448 cores and
1 Tflops peak single precision performance.

The resulting multi-GPU segSpMV method can gain further
speedup as shown in Fig. Fig. 11 in addition to the added
scalability. The performance comparison is based on the matrices
in Table 1 for single GPU (K40c), 2-GPUs (K40c and K20c) and 3-
GPUs (K40c, K20c and C2075). It can be seen that the performance
differences are very small when the matrix size is small. It is due to
the overhead of creating new CPU threads, starting GPU and
performing synchronization. However, the speedups in larger
cases are much better. For example, for the largest matrix pwtk,
the 2-GPU and 3-GPU implementations are 66% and 87% faster

Table 1
The matrices and their properties from UFL Sparse Matrix Collection.

Matrices Row nzsize nzperrow seg_length

scircuit 170,998 958,936 5.61 8
mac-econ-fwd500 2,06,500 12,73,389 6.17 8
cop20k-A 1,21,192 13,62,087 11.24 16
qcd5-4 49,152 19,16,928 39.00 32
cant 62,451 20,34,917 32.58 32
mc2depi 5,25,825 21,00,225 3.99 4
pdb1HYS 36,417 21,90,591 60.15 64
rma10 46,835 23,74,001 50.69 64
consph 83,334 30,46,907 36.56 32
webbase-1M 10,00,005 31,05,536 3.11 4
shipsec1 1,40,874 39,77,139 28.23 32
pwtk 2,17,918 59,26,171 27.19 32

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–22 17

than the single GPU implementation. We also notice that the
2-GPUs and 3-GPUs implementations have similar performance.
We also notice that the K40c and K20c are much more powerful
than the C2075. So the computing speed of 3-GPUs implementa-
tion is mainly determined by C2075, which limits the performance
improvement. But the results from Fig. 11 clearly demonstrates the
advantages and benefits of the proposed multi-GPU segSpMV over
the single GPU segSpMV method.

5.3. Accuracy comparison and discussion

We first test the accuracy and efficiency of our solver on the power
grid circuits from IBM benchmark suite [2]. There are 6 benchmark
circuits with sizes ranging from forty thousand to three million nodes
in the interconnection. The information of these benchmarks can be
retrieved from their website. We show the matrix sizes of their circuit
MNA models in Table 3. Also in the same table, the running time
spent in LU factorizations and LU solves of the backward Euler
equations are also listed. The equation solved here is stated in Eq.
(3). Since we use uniform discretization in the time domain, the time
step length h remains the same on all the steps. In addition, all of our
examples are linear circuits, and the matrices G and C do not change
either. As a result, the LU factorization only needs to be calculated
once on Gþð1=hÞC and its triangular L and U are reused for all the
transient steps. The time measurements in Column “LU fact.” are the
one time cost of LU factorization, and those in Column “LU solve” are
time spent on LU triangular solve on one time step, i.e., solving Ax¼ b
with reuse of LU factors.

The error tolerance of all of our GMRES solvers is set to 10�7. A
smaller tolerance guarantees higher accuracy, but also leads to
more iterations and longer solving time. During our extensive
experiments with the benchmarks, we have found a 10�6 toler-
ance is good and accurate for most cases. Nonetheless, we use
10�7 for all experiments as this will give us statistics according to
the same standard. We do not push our tool only for a demonstra-
tion of speed with the sacrifice of accuracy.

Fig. 12 shows the simulation results of a benchmark circuit ibmpg6t,
from IBM. It is a voltagewaveform at node n0_2679_17913.We plot the
waveforms of the direct LU method and multi-GPU GMRES with
preconditioner on the same figure, and the accuracy of GMRES result
is quite satisfactory since the two curves are closely overlapped. To
further show the accuracy, we plot the errors of the GMRES curve, i.e.,
the difference between GMRES result and LU result, in Fig. 13, which
shows about 1% maximum relative error. We have verified all the
examples, especially waveforms at the observation port nodes listed by

print command in IBM netlists, and all the waveforms from GPU
GMRES agree with the LU golden results.

5.4. Computing time comparison and discussion

Table 3 lists the running time measurements in the bench-
marks. Column 5 (C5) gives the threshold value used for control
the fill-ins in the ILU preconditioner. The column C6 lists pre-
conditioner setup time, C9 is for the multi-GPU GMRES solving
time without initial guess available, and C12 is for the multi-GPU
GMRES solving time on each transient point, when good initial
guess is available. The speedup of multi-GPU GMRES over LU on
DC solving is listed in C13. The speedup of multi-GPU GMRES over
LU on the whole simulation (1000 time steps) is listed in C14.

We first discuss the results on the IBM examples. Among the six
IBM circuits, multi-GPU GMRES brings reasonable speedup over LU
factorization. To make a fair competition with LU, the speedup on DC
solving, i.e., the first GMRES solves without any good initial guess
available, shall be calculated as ðC3þC4Þ=ðC6þC9Þ. The biggest
speedup for this initial DC solving is 97� , which happens in the case
of ibmpg3t. We notice that the speedup does not always go up with
the size of the circuit as shown in Table 3. We observe that these IBM
benchmarks vary not just in sizes, but also in the circuit structure and
thus the their matrix structures. But still the proposed parallel GMRES
solver show decent speedup over the direct method on these industrial
design examples. We also observe that the multi-GPU GMRES solver
will have about 4–5� speedup over their CPU version of GMRES solver

Table 2
The performance comparison over UFL matrices on K40c GPU.

1 2 3 4 5 6 7 8 9 10

Matrices name Algorithm Speedup

B&G-s (ms) B&G-w (ms) P&S (ms) cu (ms) seg (ms) B&G-s B&G-w P&S cu

scircuit 0.352 1.063 0.174 0.195 0.118 2.98 9.01 1.47 1.65
mac-econ-fwd500 0.435 1.757 0.242 0.254 0.153 2.84 11.48 1.58 1.66
cop20k-A 0.932 0.871 0.285 0.251 0.146 6.38 5.97 1.95 1.72
qcd5-4 1.903 0.762 0.523 0.263 0.188 10.12 4.05 2.78 1.40
cant 2.068 0.821 0.528 0.330 0.204 10.14 4.02 2.59 1.62
mc2depi 0.248 2.238 0.297 0.349 0.196 1.27 11.47 1.52 1.78
pdb1HYS 2.416 0.909 0.697 0.373 0.215 11.24 4.23 3.24 1.73
rma10 2.303 1.019 0.702 0.401 0.257 8.96 3.96 2.73 1.56
consph 3.087 1.218 0.791 0.401 0.303 10.19 4.02 2.61 1.32
webbase-1 M 14.502 10.843 11.439 1.066 0.531 27.31 20.42 21.54 2.01
shipsec1 3.198 1.704 0.882 0.512 0.378 8.46 4.51 2.33 1.35
pwtk 5.167 2.299 1.256 0.662 0.565 9.15 4.07 2.22 1.17
Average 9.09 7.27 3.88 1.58

Fig. 11. The performance comparison of multi-GPU segSpMV method.

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–2218

on those IBM benchmark circuits (not shown in the table), which
clearly shows the advantages and benefits of GPU based computing.

For transient analysis, we observe that when the LU factors are
available, it seems cheaper for LU triangular solve than iterative
methods to compute the solution. Since fixed time step is used in
our simulator and the triangular LU factor matrices do not change
as we mentioned in the previous sections, it is very understand-
able that GMRES does not superbly beat the triangular solve if the

examples are relatively small. However, as the average running
time listed in C12 of GMRES solve is smaller than C4 of LU solve,
the total reduction of cost will still be favored when there are a lot
of transient steps. If LU factorization has to be done many times, as
happens in transient simulation with changing time steps, GMRES
solver will be faster than the LU factorization.

Now we discuss the results on some RLC mesh circuits, which
are the middle eight examples in Table 3 with “rlc” in circuit
names. Those power grid networks are generated based on RLC
mesh grid circuit model shown in Fig. 1. We observe that the
speedups of the proposed method over LU factorizations in both
DC and transient analysis are much larger (ranging from 5 to 3610)
and speedup goes up with the sizes of the circuits. This indicates
that the structures of the power grid networks have huge impacts
on the solving efficiency and their final computing speed. Simi-
larly, we observe that the multi-GPU GMRES solver will have about
3–12� speedup over their CPU version of GMRES solver on those
IBM benchmark circuits for transient analysis, although the
speedup is marginal for DC analysis. As a result, it seems that
IBM examples favor the LU based solver, while our mesh-
structured RLC networks favor the proposed GMRES solver.

To show the added scalability of the new parallel GMRES solver
on multi-GPU platforms, we also provide three very large RLC
mesh circuits, which are the rlc800, rlc1000 and rlc1200. They are
all million-sized circuits and cannot be handled in single GPU card
with limited global memory. But our multi-GPU GMRES solver is
able to handle such large circuits easily. We notice that the LU
factorization method is too slow for these large circuits. As a result,
we do not show the results and speedup comparison for the LU
solver. We observe that the multi-GPU GMRES solver will have
about 12–17� speedup over their CPU version of GMRES solver on
those large circuits for transient analysis, and the speedup for DC
analysis is also between 30 and 60%, which is better than the
speedup on small circuits.

5.5. Preconditioner study and discussion

Now, let us study the quality of an ILU preconditioner. The fill-
in ratio is a good indicator about the quality of incomplete LU

Table 3
Statistics of IBM power gird benchmarks and solver performance. Column 14 lists the speed up of GPU GMRES over LU method on all the 1000 time step points in a transient
simulation calculated as ðC3þ1000 � C4Þ=ðC6þC9þ1000 � C12Þ.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

LU GMRES sp. up DC sp. up

Circuit name Matrix size Fact. Solve ILU Precond. Solving on DC Solving on tran. step (ave.) ðC3þC4Þ=ðC6þC9Þ

(s) (s) thres. setup (s) # iter CPU (s) GPU (s) # iter CPU (s) GPU (s)

ibm1t 54,265 0.19 0.02 2.1 0.10 33 0.35 0.07 7 0.03 0.01 1.2 2.0
ibm2t 164,897 9.93 0.06 1.2 0.62 143 3.50 0.51 23 0.54 0.06 8.8 1.2
ibm3t 1,043,444 638.7 0.87 2.6 5.03 25 6.41 1.55 6 1.10 0.35 97 4.2
ibm4t 1,214,288 904.7 1.01 1.9 9.65 77 23.2 4.69 10 3.15 0.57 63 3.3
ibm5t 2,092,148 241.6 0.60 1.5 5.80 118 22.1 4.41 17 3.36 0.49 24 1.7
ibm6t 3,203,802 174.3 0.82 2.2 12.49 42 15.2 3.44 9 3.40 0.52 11 1.9
rlc80 32,064 6.97 0.01 1.8 0.12 29 0.12 0.28 4 0.01 0.003 17 5
rlc100 50,200 28.60 0.02 1.8 0.17 32 0.18 0.38 4 0.02 0.003 52 14
rlc120 72,384 102.2 0.05 1.9 0.26 32 0.28 0.44 4 0.02 0.008 146 18
rlc140 98,616 255.6 0.08 2.0 0.36 32 0.39 0.49 4 0.04 0.008 301 38
rlc160 128,896 726.3 0.15 2.0 0.48 34 0.51 0.52 4 0.06 0.008 726 97
rlc180 163,224 2033.6 0.28 2.0 0.68 34 0.65 0.63 4 0.10 0.008 1552 248
rlc200 201,600 4191.3 0.39 2.0 0.85 35 0.82 0.64 4 0.14 0.025 2813 173
rlc220 244,024 6750.9 0.54 2.1 1.09 35 1.01 0.78 4 0.19 0.017 3610 386
rlc800 3,235,200 – – 2.1 25.93 35 16.86 0.63 5 1.56 0.13 – –

rlc1000 5,056,000 – – 2.0 91.88 36 28.09 0.75 6 3.66 0.22 – –

rlc1200 7,281,600 – – 2.2 139.06 36 46.43 1.39 5 5.12 0.33 – –

Fig. 12. Transient waveforms of LU and GPU GMRES at port node
n0_5480720_1102640 in ibmpg6t. The black curve with dots is from LU direct
method. All other colored curves are results of GMRES with preconditioners set to
different ILU thresholds, i.e., from 0.1 to 3.0. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–22 19

preconditioner. It is calculated as the ratio of the number of fill-in
elements in incomplete LU factors ~L and ~U over the number of
non-zero elements in the original coefficient matrix A, i.e,

fill�in ratio¼ ½nnzð ~LÞþnnzð ~UÞ�n�=nnzðAÞ:

Notice that the diagonal of lower triangular factor nnzð ~LÞ is
unitary and need not be stored in practice. This also explains the
subtraction of matrix size n in the equation above. For the simplest
incomplete LU preconditioner ILU0, which computes the LU
factorization but drops any fill-in elements in ~L and ~U outside of
the nonzero pattern of A, the fill-in ratio is 1.0. This means the
number of non-zero elements in ILU0 factors are equal to that of
A's. To the best of our knowledge, NVIDIA has released a function
of ILU0 factorization in the most recent CUSPARSE 5.0 version [29].
However, it has no fill-ins and does not support row/column
permutation, and our experiments show that the two limitations
hurt its applicability to the circuit cases here. Instead, we use the
ILU package from [23], who allows different fill-in ratios by
modifying the dropping threshold. This threshold parameter

controls the dropping rule during incomplete LU factorization
and affects the behavior of ILU preconditioner. The detailed
description of the dropping rule can be found in [24]. Though
low fill-in ratio implies a simple structure in the two triangular
factors and a possibly faster computation in GPU's triangular solve,
it results in more iterations in GMRES solver and may not be
optimal in terms of overall computation time of GMRES. In
addition, the time spent on preconditioner construction also grows
up in order to compute more fill-in elements. Table 4 shows the
relationship among the threshold, fill-in ratio, the iteration num-
bers, and the total GMRES CPU time. It can be seen that the CPU
time reaches the minimum value when the threshold is 1.9. Fig. 14
depicts the aforementioned relationships. The data in this figure
are measured from 30 runs of the same circuit ibmpg4t, where
only the threshold is changed from 0.1 to 3.0 with 0.1 increment
(only half of the data are shown). The effects of this change on fill-
in ratio and GMRES time on each time step are shown by two
curves.

6. Conclusion

In this paper, we have proposed an efficient parallel solver GPU-
GMRES for large linear dynamic systems. The new solver is based
on the preconditioned GMRES solver implemented CPU–GPU
platforms. The proposed GPU-GMRES solver is based on the very
general and robust incomplete LU based preconditioner. We have
shown that by properly selecting the right amount of fill-ins in the
LU factors, a good trade-off between GPU efficiency and conver-
gence rate can be achieved for the overall best performance. In
addition, a new fast parallel SpMV multiplication algorithm is
proposed to further accelerate the GMRES solver. The new algo-
rithm, called segSpMV, can enjoy full coalesced memory access. To
further improve the scalability and efficiency, segSpMV method is
further extended to multi-GPU platforms. The resulting multi-GPU
segSpMV can deliver further performance enhancement for the
resulting multi-GPU-GMRES solver. Furthermore, we have properly
partitioned the major computing tasks in GMRES solver to mini-
mize the data traffic between CPU and GPU, which further boosts
performance of the proposed method. Experimental results on the
set of the published IBM benchmark circuits and mesh-structured
power grid networks have shown that the GPU-GMRES solver can
deliver order of magnitudes speedup over one direct LU solver. The
resulting multi-GPU-GMRES can also deliver 3–12� speedup over

Table 4
The performance comparison of ILU preconditioners with different fill-in ratios.
The same circuit matrix from IBM power gird benchmark ibmpg4t is used in all the
cases. GMRES convergence tolerance is set to 10�7.

Threshold Precond setup
(s)

ILU fill-
in

Iter on
DC

Iter per tran
step

Total time
(s)

0.1 5.46 0.31 3447 913 12531.6
0.3 5.69 0.53 1469 440 6413.9
0.5 5.28 0.65 690 310 4773.2
0.7 5.93 0.92 480 115 1905.8
0.9 6.18 1.29 366 68 1358.9
1.1 6.67 1.70 237 32 812.6
1.3 6.92 1.99 210 26 821.8
1.5 7.28 2.35 126 19 720.5
1.7 7.74 2.77 109 16 664.3
1.9 9.65 4.06 77 10 645.6
2.1 12.38 5.42 47 7 727.5
2.3 16.05 6.81 39 6 753.3
2.5 20.83 8.18 30 5 804.8
2.7 27.57 9.78 37 5 941.3
2.9 37.30 11.61 37 4 1132.7
3.0 42.68 12.55 19 4 1233.4

Fig. 14. The impact of ILU threshold on fill-in ratio and GMRES solving time. The
blue curve in 3D space is GMRES solving time with respect to threshold and fill-in
ratio, and the red curve on the bottom plane reflects the changes of fill-in ratio
caused by different threshold values. All the measurements are from ibmpg4t. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 13. The error of GPU GMRES result compared to LU golden result. This curve is
calculated at node n0_5480720_1102640 of ibmpg6t, whose waveform is shown in
Fig. 12.

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–2220

the CPU implementation of the same GMRES method on transient
analysis.

References

[1] Cusp-library – generic parallel algoritgms for sparse matrix and graph
computations, 〈http://code.google.com/p/cusp-library〉.

[2] IBM power grid benchmarks, 〈http://dropzone.tamu.edu/pli/PGBench/〉.
[3] NVIDIA Tesla's Servers and Workstations, 〈http://www.nvidia.com/object/

tesla-servers.html〉.
[4] J.M. Bahi, R. Couturier, L.Z. Khodja, Parallel GMRES implementation for solving

sparse linear systems on GPU clusters, in: Proceedings of the 19th High
Performance Computing Symposia, Society for Computer Simulation Interna-
tional, ser. HPC ’11. San Diego, CA, USA, 2011, pp. 12–19. [Online]. Available:
〈http://dl.acm.org/citation.cfm?id=2048577.2048579〉.

[5] J. Bahi, R. Couturier, L. Khodja, Parallel sparse linear solver GMRES for GPU
clusters with compression of exchanged data, in: Euro-Par 2011: Parallel
Processing Workshops, Lecture Notes in Computer Science, M. Alexander,
P. D'Ambra, A. Belloum, G. Bosilca, M. Cannataro, M. Danelutto, B. DiMartino,
M. Gerndt, E. Jeannot, R. Namyst, J. Roman, S. Scott, J. Traff, G. Valle,
J. Weidendorfer (Eds), vol. 7155, Springer, Berlin, Heidelberg, 2012, pp. 471–
480. [Online]. Available: 〈http://dx.doi.org/10.1007/978-3-642-29737-3_52〉.

[6] M.M. Baskaran, R. Bordawekar, Optimizing sparse matrix–vector multiplica-
tion on GPUs, IBM Research Division, IBM Research Report RC24704, April
2009.

[7] N. Bell, M. Garland, Efficient sparse matrix–vector multiplication on CUDA,
NVIDIA Corporation, NVIDIA Technical Report NVR-2008-004, December
2008.

[8] L. Buatois, G. Caumon, B. Levy, Concurrent number cruncher: a GPU imple-
mentation of a general sparse linear solver, Int. J. Parallel Emerg. Distrib. Syst.
24 (3) (2009) 205–223.

[9] T. Chen, C.C. Chen, Efficient large-scale power grid analysis based on
preconditioned Krylov-subspace iterative method, in: Proceedings of Design
Automation Conference (DAC), 2001, pp. 559–562.

[10] K. Daloukas, N. Evmorfopoulos, G. Drasidis, M. Tsiampas, P. Tsompanopoulou,
G. Stamoulis, Fast transform-based preconditioners for large-scale power grid
analysis on massively parallel architectures, in: Proceedings of International
Conference on Computer Aided Design (ICCAD), November 2012, pp. 384–391.

[11] T.Davis, The University of Florida sparse matrix collection, 〈http://www.cise.
ufl.edu/research/sparse/〉.

[12] Y. Deng, B. Wang, S. Mu, Taming irregular EDA applications on GPUs, in: 2009
IEEE/ACM International Conference on Computer-Aided Design – Digest of
Technical Papers, ICCAD 2009, 2009, pp. 539–546.

[13] Z. Feng, P. Li, Multigrid on GPU: tackling power grid analysis on parallel SIMT
platforms, in: Proceedings of International Conference on Computer Aided
Design (ICCAD), 2008, pp. 647–654.

[14] Z. Feng, Z. Zeng, P. Li, Parallel on-chip power distribution network analysis on
multi-core–multi-GPU platforms, IEEE Trans. Very Larg. Scale Integr. (VLSI)
Syst. 19 (10) (2011) 1823–1836.

[15] International technology roadmap for semiconductors (ITRS), 2012 update,
2012, 〈http://public.itrs.net〉.

[16] D.B. Kirk, W.-M. Hwu, Programming Massively Parallel Processors: A Hands-on
Approach, second ed., Morgan Kaufmann Publishers Inc., San Francisco, CA,
2013.

[17] Y. Lee, Y. Cao, T. Chen, J. Wang, C. Chen, HiPRIME: Hierarchical and passivity
preserved interconnect macromodeling engine for RLKC power delivery, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 24 (6) (2005) 797–806.

[18] R. Li, Y. Saad, GPU-accelerated preconditioned iterative linear solvers,
J. Supercomput. 63 (2) (2010) 443–466 http://static.msi.umn.edu/rreports/
2010/112.pdf.

[19] X. Liu, H. Wang, S.X.-D. Tan, Parallel power grid analysis using preconditioned
gmres solvers on cpu–gpu platforms, in: Proceedings of International Con-
ference on Computer Aided Design (ICCAD), November 2013, pp. 561–568.

[20] X. Liu, K. Zhai, Z. Liu, K. He, S.X.-D. Tan, W. Yu, Parallel thermal analysis of 3D
integrated circuits with liquid cooling on CPU–GPU platforms, IEEE Trans. Very
Larg. Scale Integr. (VLSI) Syst. 3 (March) (2015) 575–579.

[21] Z. Liu, S. Swarup, S.X.-D. Tan, H. Chen, H.Wang, Compact lateral thermal
resistance model of TSVs for fast finite-difference based thermal analysis of 3D
stacked ICs, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33 (10) (Oct
2014).

[22] Z. Liu, S.X.-D. Tan, H. Wang, Y. Hua, A. Gupta, Compact thermal modeling for
packaged microprocessor design with practical power maps, Integr. VLSI
J. (47) (January (1)) 2014, [Online]. Available: 〈http://www.sciencedirect.
com/science/article/pii/S0167926013000412〉.

[23] J. Mayer, ILUþþ package, 〈www.iluplusplus.de/〉.
[24] A multilevel Crout ILU preconditioner with pivoting and row permutation,

Numer. Linear Algebra Appl. 14 (10) (2007) 771–789.
[25] S.R. Nassif, J.N. Kozhaya, Fast power grid simulation, in: Proceedings of Design

Automation Conference (DAC), 2000, pp. 156–161.
[26] M. Naumov, Parallel solution of sparse triangular linear systems in the

preconditioned iterative methods on the GPU, NVIDIA Technical Report
NVR-2011-001, NVIDIA Corp., June 2011.

[27] NVIDIA Corporation, CUBLAS library v5.0, 〈https://developer.nvidia.com/
cublas〉.

[28] NVIDIA Corporation, 〈http://www.nvidia.com〉, 2011.
[29] NVIDIA Corporation, CUSPARSE library v5.0, 〈http://developer.nvidia.com/

cuSPARSE〉, October 2012.
[30] H.F. Qian, S.R. Nassif, S.S. Sapatnekar, Random walks in a supply network, in:

Proceedings of Design Automation Conference (DAC), 2003, pp. 93–98.
[31] L. Ren, X. Chen, Y. Wang, C. Zhang, H. Yang, Sparse LU factorization for parallel

circuit simulation on GPU, in: Proceedings of Design Automation Conference
(DAC), 2012, pp. 1125–1130.

[32] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. (1986) 856–
869.

[33] Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing, 2000.
[34] A.M. Sridhar, A. Vincenzi, et al., 3D-ICE: Fast compact transient thermal

modeling for 3D-ICs with inter-tier liquid cooling, in: Proceedings of Interna-
tional Conference on Computer Aided Design (ICCAD). IEEE Press, San Jose, CA,
2010, pp. 463–470.

[35] UMFPACK, 〈http://www.cise.ufl.edu/research/sparse/umfpack/〉.
[36] J.M. Wang, T.V. Nguyen, Extended Krylov subspace method for reduced order

analysis of linear circuit with multiple sources, in: Proceedings of Design
Automation Conference (DAC), 2000, pp. 247–252.

[37] J. Wang, Deterministic random walk preconditioning for power grid analysis,
in: Proceedings of International Conference on Computer Aided Design
(ICCAD), November 2012, pp. 392–398.

[38] M. Wang, H. Klie, et al., Solving sparse linear systems on NVIDIA Tesla GPUs,
in: Proceedings of the 9th International Conference on Computational Science,
2009, pp. 864–873.

[39] S.-H. Weng, Q. Chen, N. Wong, C.-K. Cheng, Circuit simulation via matrix
exponential method for stiffness handling and parallel processing, in: Pro-
ceedings of International Conference on Computer Aided Design (ICCAD),
November 2012, pp. 407–414.

[40] T. Yu, Z. Xiao, M.D.F. Wong, Efficient parallel power grid analysis via additive
Schwarz method, in Proceedings of International Conference on Computer
Aided Design (ICCAD), 2012, pp. 399–406.

[41] L. Ziane Khodja, R. Couturier, A. Giersch, J.M. Bahi, Parallel sparse linear solver
with GMRES method using minimization techniques of communications for
gpu clusters, J. Supercomput. 69 (July (1)) (2014) 200–224. http://dx.doi.org/
10.1007/s11227-014-1143-8.

Kai He received the B.S. and M.S. degrees from Nanjing
University, Nanjing, China, in 2009 and 2012. He is
currently pursuing the Ph.D. degree from the Depart-
ment of Electrical and Computer Engineering, Univer-
sity of California, Riverside, CA, USA. His current
research interests include parallel computing, circuit
simulation and hardware security.

Sheldon X.-D. Tan(S’96-M’99-SM’06) received his B.S.
and M.S. degrees in electrical engineering from Fudan
University, Shanghai, China in 1992 and 1995, respec-
tively and the Ph.D. degree in electrical and computer
engineering from the University of Iowa, Iowa City, in
1999. He is a Professor in the Department of Electrical
Engineering, University of California, Riverside, CA.
He is the Associate Director of Compute Engineering
Program (CEN) at Bourn College of Engineering at UC
Riverside since 2009. He also is a cooperative faculty
member in the Department of Computer Science and
Engineering at UCR. He is also a Guest Professor of
Shanghai Jiao Tong University and a Guest Professor

of University of Electronic Science and Technology of China.
Dr. Tan co-authored four books: Symbolic Analysis and Reduction of VLSI

Circuits published by Springer/Kluwer in 2005, Advanced Model Order Reduc-
tion Techniques for VLSI Designs by Cambridge University Press published in
2007; Statistical Performance Analysis and Modeling Techniques for Nanometer
VLSI Design by Springer Publishing in 2012 and Advanced Symbolic Analysis for
VLSI Systems – Methods and Applications, Springer in 2014. He received
Outstanding Oversea Investigator Award from the National Natural Science
Foundation of China (NSFC) in 2008. He received NSF CAREER Award in 2004.
He received NSF CAREER Award in 2004. Dr. Tan received the Best Paper Award
from 2007 IEEE International Conference on Computer Design (ICCD'07), the
Best Paper Award from 1999 IEEE/ACM Design Automation Conference. He also
receives three Best Paper Award Nomination from IEEE/ACM Design Automation
Conferences in 2005, 2009 and 2014 and one Best Paper Award nomination from
ASPDAC in 2015. He now is serving as an Associate Editor for three journals: IEEE

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–22 21

http://code.google.com/p/cusp-library
http://dropzone.tamu.edu/pli/PGBench/
http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/object/tesla-servers.html
http://dl.acm.org/citation.cfm?id=2048577.2048579
http://dx.doi.org/10.1007/978-3-642-29737-3_52
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref8
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref8
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref8
http://www.cise.ufl.edu/research/sparse/
http://www.cise.ufl.edu/research/sparse/
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref14
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref14
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref14
http://public.itrs.net
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref17
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref17
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref17
http://static.msi.umn.edu/rreports/2010/112.pdf
http://static.msi.umn.edu/rreports/2010/112.pdf
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref20
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref20
http://refhub.elsevier.com/S0167-9260(15)00084-X/sbref20
http://www.sciencedirect.com/science/article/pii/S0167926013000412
http://www.sciencedirect.com/science/article/pii/S0167926013000412
http://www.iluplusplus.de/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
http://www.nvidia.com
http://developer.nvidia.com/cuSPARSE
http://developer.nvidia.com/cuSPARSE
http://www.cise.ufl.edu/research/sparse/umfpack/
http://dx.doi.org/10.1007/s11227-014-1143-8
http://dx.doi.org/10.1007/s11227-014-1143-8
http://dx.doi.org/10.1007/s11227-014-1143-8
http://dx.doi.org/10.1007/s11227-014-1143-8

Transaction on VLSI Systems (TVLSI), ACM Transaction on Design Automation of
Electronic Systems (TODAE), Integration, The VLSI Journal.

Hengyang Zhao received the BS degree in computer
science in 2011 and the MS degree in instrument and
meter engineering in 2013, both from the Shanghai Jiao
Tong University, P. R. China. He is currently studying as
a Ph.D. student in department of electrical and com-
puter engineering in University of Riverside, California.
His current research interests are machine-learning
based behavior modeling, fast and scale-able matrix
calculations in computer-aided circuit design. His past
research area includes swallowable video capsule
design, image compression and FPGA-based embedded
system design.

Xue-Xin Liu received his bachelor and master degrees
from Fudan University, Shanghai, in 2005 and 2008
respectively, and Ph.D. degree from University of Cali-
fornia, Riverside, in 2013. He is now with Synopsys, Inc.
as senior software engineer. His research interests
include device modeling, circuit simulation, and paral-
lel computing.

Hai Wang received his B.S. degree from Huazhong
University of Science and Technology, China in 2007,
and his M.S. and Ph.D. degree from University of
California, Riverside, USA in 2008 and 2012, respec-
tively. After that, he has been an associate professor at
University of Electronic Science and Technology of
China. His research interests mainly lie in electrical/
thermal verification and optimization of VLSI circuits
and systems. He has published around 30 peer-
reviewed international conference papers and journal
articles in related research field. He serves as technical
program committee member of several international
conferences including DATE, ASP-DAC and ISQED, and

also serves as reviewer of many journals including IEEE TC, IEEE TCAD, IEEE TCAS II
and ACM TODEAS.

Guoyong Shi (S'99-M'02-SM'11) received the Bache-
lor's degree in applied mathematics from Fudan Uni-
versity, Shanghai, China, the Master of Science degree
in electronics and information science from Kyoto
Institute of Technology, Kyoto, Japan, and the Ph.D.
degree in electrical engineering from Washington State
University, Pullman, in 1987, 1997, and 2002, respec-
tively.

He is currently a Professor with the Department of
Micro/Nano-Electronics, School of Electronic, Informa-
tion, and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai, China. Before joining the univer-
sity, he worked as a post-doctor from 2002 to 2005 in

the Department of Electrical Engineering, University of Washington, Seattle. He is
the author or co-author of more than 60 research papers in the areas of systems,
control, and integrated circuits. He is the co-author of the book “Advanced
Symbolic Analysis for VLSI Systems – Methods and Applications” published by
Springer in 2014. His current research interest is in the design automation of
mixed-signal integrated circuits and systems and embedded systems. Dr. Shi was a
co-recipient of the Donald O. Pederson Best Paper Award from the IEEE Circuits and
Systems Society in 2007.

K. He et al. / INTEGRATION, the VLSI journal 52 (2016) 10–2222

	Parallel GMRES solver for fast analysis of large linear dynamic systems on GPU platforms
	Introduction
	Review of power gird simulation and GPU architecture
	The problem of power grid simulation
	Review of GPU architecture and CUDA programming

	Parallel GMRES solver on the GPU–CPU platform
	ILU-based GMRES solver
	Parallelization on GPU–CPU platforms
	GPU-friendly implementation of preconditioners

	Parallel SpMV algorithm on the GPU–CPU platform
	Review of existing GPU-enabled SpMV algorithms
	The row-based B&G method
	The warp-based B&G method
	The P&S method

	New parallel SpMV algorithm

	Numerical results and discussion
	segSpMV performance comparison on public matrices
	Multi-GPU segSpMV implementation and performance comparison
	Accuracy comparison and discussion
	Computing time comparison and discussion
	Preconditioner study and discussion

	Conclusion
	References

