

粒子物理实验硅像素探测器研究现状与发展趋势

张亮

第二十届全国科学计算与信息化会议,西宁,2023.7.9-14

□ 背景介绍

□ 混合式像素探测器

□ 单片式像素探测器

- ✤ 双阱CIS工艺
- ◆ 四阱CIS工艺
- ✤ 高压CMOS工艺

✤ SOI工艺

□ 总结与展望

背景介绍

□ 硅探测器

- ✤ 高能物理实验粒子径迹探测
- ✤ 粒子探测器重要参数: SNR
 - ✓ 大信号→低电离能→低带隙
 - ✓ 低噪声→较少本征载流子→高带隙
 - ✓ 理想材料: Eg≈6 eV
 - 金刚石,成本昂贵
- ◆ 硅探测器成本低、性能优异、技术成熟

□ 类型

- ◆ 硅微条
- ◆ 硅像素
 - ✓ 混合式像素探测器 (1980s)
 - ✓ 单片式像素探测器 (2000)

硅像素结构

口背景介绍

□ 混合式像素探测器

□ 单片式像素探测器

- ✤ 双阱CIS工艺
- ✤ 四阱CIS工艺
- ✤ 高压CMOS工艺

✤ SOI工艺

□总结

混合式像素探测器 (Hybrid Pixel Detector, HPD)

- ◆ 灵敏度高
- ◈ 噪声低
- ◆ 抗辐照能力强
- ✤ 易于优化Sensor和ASIC芯片
 - ✓ ASIC不受工艺限制

□ 缺点

- ◆ 功耗大
- ◆ 厚度大
 - ✓ 物质量高
- ✤ Sensor和ASIC独立, 倒装焊
 - ✓ 成本高
 - ✓ 空间分辨率低

Chip	Process	Pixel array	Pixel size	Main Institute	Target	Comment
FE-14	130 nm	80 × 336	$50 \times 250 \mu m^2$	CERN	rad. hard	ATLAS Inner Tracker
PILATUS3	250 nm	60 × 97	$172 \times 172 \ \mu m^2$	PSI	photo counting	X-ray
TimePix4	65 nm	512 × 448	$55 \times 55 \mu m^2$	CERN	energy and time resolution	-
MediPix4	130 nm	320 × 320 160 × 160	$75 \times 75 \mu m^2$ $150 \times 150 \mu m^2$	CERN	high granularity	X-ray
HEPS-BPIX4	130 nm	20 × 32	55 × 55 μm^2	IHEP	HEPS	HEPS

混合式像素探测器

FE-I4 (CERN)

- □ 大型强子对撞机LHC ATLAS实验内 径迹探测器
- □ 像素内集成CSA, 甄别器, DAC (阈 值调节), SRAM
- □本地缓存,四个像素共享数字逻辑

FE-14				
Process	130 <i>nm</i>			
Pixel size	250 × 50 μm^2			
Array size	336 × 80			
Chip size	$20.2 \times 18.8 \ mm^2$			
Power	$180 \ mW/cm^2$			
Active area	89%			
TID	200 Mrad			

Diagram of 4-pixel region

Schematic view of the FE-I4 architecture

PILATUS (PSI)

□第一个商业化的X射线成像硅像素探测器
□抗辐照版图设计:环形栅晶体管,保护环
□像素内集成CSA,甄别器,阈值调节DAC
□ToT (time-over-threshold)

PILATUS3

Process	UMC 250 <i>nm</i>
Pixel size	$172 \times 172 \mu m^2$
Array size	60 × 97
Chip size	$10.5 \times 17.5 mm^2$
Power	$80 \ mW$ (static) $90 \ mW/MHz$ (dynamic)
photon rate	$>3 \times 10^8$ photons/s/mm ²
Energy range	3-21keV
Frame rate(max)	500 Hz

2023/7/12

Timepix-4 (CERN)

- □粒子径迹探测, X射线成像
- ❑ 200 ps 时间戳
- □像素内集成CSA, 甄别器, 阈值调节DAC
- □ ToA (time-of-arrival), ToT (time-over-threshold)
- □ 4边可拼接

Timepix-4				
Process	65 <i>nm</i> -10 metal			
Pixel size	55 × 55 μm^2			
Array size	512 × 448			
Chip size	$28.22 \times 24.7 mm^2$			
Power	$600 \ mW/cm^2$			
Active area	$6.94 \ cm^2$			
Time resolution	195.3125 ps			
output rate	163.84 Gbps			

Layout of the Timepix-4

Timepix-4 mounted on a PCB

Functional description of the Timepix-4 architecture

混合式像素探测器

Medipix-4 (CERN)

- □ X射线成像, 医学成像
- □多种像素尺寸
- □ 单像素模式和电荷累计模式
- □ 4边可拼接
- □ 全局读出模式

Medipix-4				
Process	130 <i>nm</i>			
Pixel size	75 × 75 μm^2 150 × 150 μm^2			
Array size	320 × 320 160 × 160			
Chip size	$24 \times 24 mm^2$			
Power	$500 \ mW/cm^2$			
Active area	99.37%			
Energy resolution	2.2 keV FWHM			
Output rate	4.8 Gbps			

Layout of the Medipix4

Floorplan of the Medipix4

医学成像应用

2023/7/12

混合式像素探测器

HEPS-BPIX (IHEP)

- □ 面向高能同步辐射光源自主研制
- □关键技术均实现国产化,包括传感器,ASIC芯片,DAQ,机械...
- □已列入高能光源HEPS工程序列
- □ 像素内集成CSA, 放大器, 甄别器, 阈值调节DAC, 计数器和控制逻辑
- □国内首个应用于工程的硅像素探测器,性能达到国际先进水平

HEPS-BPIX				
Process	130 <i>nm</i>			
Pixel size	$150 imes 150 \ \mu m^2$ $55 imes 55 \ \mu m^2$ BPIX4			
Array size	208 × 288			
Energy range	8-20keV			
Frame rate	1KHz			

Block diagram of the HEPS-BPIX pixel cell

工程批晶圆

2023/7/12

口背景介绍

□混合式像素探测器

□ 单片式像素探测器

- ✤ 双阱CIS工艺
- ✤ 四阱CIS工艺
- ✤ 高压CMOS工艺

✤ SOI工艺

□总结

单片式像素探测器(Monolithic Active Pixel Sensor, MAPS)

□ 最初想法: Sensor和ASIC集成在同一块衬底上

- ◆ 电荷在外延层(Epitaxial layer)产生,低掺杂,厚度10~15 µm
- ◆ 电荷通过热扩散被N-well/P-epi二极管收集
- □ 优点
 - ◆ 高空间分辨
 - ✓ 像素尺寸小, ~ 10 µm×10 µm
 - ◆ 低物质量
 - ✓ 可减薄至50 µm
 - ✓ 功耗低
 - ◆ 高计数率
 - ◆ 较好的抗辐照能力
 - ✤ 采用商业化CMOS工艺
 - ✓ 集成度高、成本低、室温下工作、研发周期短

单片式像素探测器 (state-of-the-art)

Chip	Process	Pixel array	Pixel size	Main Institute	Target	Comment
MIMOSA28	350 nm OPTO	928 × 960	$20.7 imes 20.7 \ \mu m^2$	IPHC	rad. hard	STAR
WCPS	350 nm OPTO	644 × 3600	$30 imes 120/160/200 \mu m^2$	SDU/IHEP/HIT	low material budget	Stitching
ALPIDE	TJ 180 nm	512 × 1024	$28 imes 28 \ \mu m^2$	CERN	high granularity	ALICE ITS
MIMOSIS	TJ 180 nm	504 × 1024	$30.24 imes 26.88\ \mu m^2$	IPHC	rad. hard high granularity	CBM Micro-Vertex
MALTA	TJ 180 nm	224 × 512	$36.4 imes 36.4 \ \mu m^2$	CERN	high granularity	HL-LHC
TJ-Monopix2	TJ 18 0nm	512 × 512	$33.04\times 33.04\mu m^2$	CERN/Bonn	rad. hard	HL-LHC
TaichuPix	TJ 180 nm	512 × 1024	$25 imes 25\mu m^2$	IHEP/IFAE/CCNU/SDU/N WPU/NJU	High granularity, rad. hard, fast readout	CEPC
MIC4	TJ 180 nm	128 × 64	$25 \times 25 \ \mu m^2$	CCNU	Fast readout	CEPC
JadePix3	TJ 180 nm	192 × 512	$16 imes 26\mu m^2$ $16 imes 23.11\mu m^2$	IHEP/CCNU/SDU	position resolution and low power	CEPC
Nupix-A1	130 nm	128 × 64	$30 imes 30 \ \mu m^2$	IMP SLIMP	heavy-ion experiments	HIRFL & HIAF
ATLASpix3	AMS/TSI 180 nm	372 × 132	$150 imes 50\ \mu m^2$	KIT/CPPM	rad. hard	ATLAS
RD50-MPW3	150 nm HVCOMS	64 × 64	$62 imes 62 \ \mu m^2$	RD50	rad. hard high granularity	HL-LHC FCC
MuPix10	TSI 180 nm	250 × 256	$80 imes 80\ \mu m^2$	University of Heidelberg	rad. hard	Mu3e
LF-Monopix2	LF 150 nm	340 × 56	$50 imes 150\mu m^2$	Bonn	rad. hard	HL-LHC
MightyPix1	TSI 180 nm	320 × 29	$165 imes 55\ \mu m^2$	University of Liverpool	rad. hard	LHCb upgrade
SOFIST	SOI 200 nm	128 × 128	$36 imes 36 \ \mu m^2$	KEK	high granularity, fast readout	ILC
CPV-4	SOI 180 nm	128 × 128	21.04 $ imes$ 17.24 μm^2	IHEP	high granularity	CEPC

2023/7/12

单片式像素探测器 (state-of-the-art)

Chip	Process	Pixel array	Pixel size	Main Institute	Target	Comment	
MIMOSA28	350 nm OPTO	928 × 960	$20.7 imes20.7\ \mu m^2$	IPHC	rad. hard	STAR	ᇖᄤᅮᆂ
WCPS	350 nm OPTO	644 × 3600	$30 \times 120/160/200 \mu m^2$	SDU/IHEP/HIT	low material budget	Stitching	$Mm \perp 2$
ALPIDE	TJ 180 nm	512 × 1024	$28 imes 28 \mu m^2$	CERN	high granularity	ALICE ITS	
MIMOSIS	TJ 180 nm	504 × 1024	$30.24 imes 26.88 \ \mu m^2$	IPHC	rad. hard high granularity	CBM Micro-Vertex	
MALTA	TJ 180 nm	224 × 512	$36.4 imes 36.4\ \mu m^2$	CERN	high granularity	HL-LHC	
TJ-Monopix2	TJ 18 0nm	512 × 512	$33.04 imes 33.04\ \mu m^2$	CERN/Bonn	rad. hard	HL-LHC	
TaichuPix	TJ 180 nm	512 × 1024	$25 imes 25 \ \mu m^2$	IHEP/IFAE/CCNU/SDU/N WPU/NJU	High granularity, rad. hard, fast readout	CEPC	四阱工艺
MIC4	TJ 180 nm	128 × 64	$25 imes 25 \ \mu m^2$	CCNU	Fast readout	CEPC	
JadePix3	TJ 180 nm	192 × 512	$16 imes 26\mu m^2$ $16 imes 23.11\mu m^2$	IHEP/CCNU/SDU	position resolution and low power	CEPC	
Nupix-A1	130 nm	128 × 64	$30 imes 30\ \mu m^2$	IMP SLIMP	heavy-ion experiments	HIRFL & HIAF	
ATLASpix3	AMS/TSI 180 nm	372 × 132	$150 imes 50\ \mu m^2$	KIT/CPPM	rad. hard	ATLAS	
RD50-MPW3	150 nm HVCOMS	64 × 64	$62 imes 62 \ \mu m^2$	RD50	rad. hard high granularity	HL-LHC FCC	
MuPix10	TSI 180 nm	250 × 256	$80 imes 80\ \mu m^2$	University of Heidelberg	rad. hard	Mu3e	高压工艺
LF-Monopix2	LF 150 nm	340 × 56	$50 imes$ 150 μm^2	Bonn	rad. hard	HL-LHC	
MightyPix1	TSI 180 nm	320 × 29	$165 imes 55\mu m^2$	University of Liverpool	rad. hard	LHCb upgrade	
SOFIST	SOI 200 nm	128 × 128	$36 \times 36 \ \mu m^2$	КЕК	high granularity, fast readout	ILC	SOI工 艾
CPV-4	SOI 180 nm	128 × 128	$21.04 imes 17.24 \ \mu m^2$	IHEP	high granularity	CEPC	

2023/7/12

口背景介绍

□混合式像素探测器

□ 单片式像素探测器

✤ 双阱CIS工艺

- ✤ 四阱CIS工艺
- ✤ 高压CMOS工艺

✤ SOI工艺

□总结

双阱CIS工艺(350 nm)

□高阻外延层

❑ Nwell和Pwell

- ◆由于电荷竞争,像素内不能使用PMOS晶体管
- ◆像素内不能使用数字逻辑
 - ✓ 不能使用数据驱动(data driven)等高速读出模式, 读出速度受限
 - ✔ 一般采用逐行扫描读出模式

□4层金属

- ◆版图布局受限, 电路面积较大
- □研发成本低

MIMOSA-28 (IPHC)

- □ 应用于相对论重离子对撞机STAR实验PXL
- □逐行扫描读出模式,像素内集成放大器、CDS
- □ 片上集成列级甄别、消零逻辑、DAC偏置、 I2C、PLL、LDO...
- □第一个应用于粒子物理实验的单片式像素探测器

MIMOSA-28				
Process	350 <i>nm</i> OPTO			
Pixel size	$20.7 \times 20.7 \ \mu m^2$			
Array size	928 × 960			
Chip size	$20.2 \times 22.7 \ mm^2$			
Power	$150 \ mW/cm^2$			
Active area	$19.9 \times 19.2 \ mm^2$			
Spatial resolution	10 μm			
Readout time	186.5 μ <i>s</i>			
Power Active area Spatial resolution Readout time	150 mW/cm ² 19.9 × 19.2 mm ² 10 μm 186.5 μs			

2023/7/12

MuPix10			
Process	350 <i>nm</i> OPTO		
Pixel size	$30 \times 120/160/200 \mu m^2$		
Array size	644 × 3600		
Integration time	129 µs		
Chip size	$11 \times 11 \ cm^2$		

Block diagram of the Stitching architecture

2023/7/12

Chip on a 8-inch wafer

口背景介绍

□混合式像素探测器

□ 单片式像素探测器

✤ 双阱CIS工艺

✤ 四阱CIS工艺

✤ 高压CMOS工艺

✤ SOI工艺

□总结

四阱CIS工艺 (TJ 180/65 nm; 华力55 nm)

□ Nwell, Pwell, deep-Nwell, deep-Pwell

- ◆像素内能使用PMOS晶体管,实现复杂CMOS电路
- ◆像素内能使用数字逻辑,实现数据驱动等高速读 出模式

□6层金属

◆面积较小,减小死区

□供电电压更小

◆功耗低

□栅氧化层更薄

◆提高抗辐照能力

ALPIDE (CERN)

- □ LHC ALICE实验升级(ITS2)
- □像素内集成模拟前端、AERD优先 编码逻辑、数字控制单元
- □ 模拟前端完成放大和甄别,静态 功耗40 nW
- □ 第一个采用全局读出模式的MAPS

ALPIDE				
TJ 180 <i>nm</i>				
$28 \times 28 \ \mu m^2$				
512 × 1024				
5 µm				
< 40 mW/cm^{2}				
> 2.7 Mrad				
100 MHz/cm ²				

ER1 (Engineering run, CERN)

- □ 65 nm stitching technology
- MOSS": 14 x 259 mm, 6.72 Mpixel (22.5 x 22.5 and 18 x 18 μm2)
 - conservative design, different pitches
- MOST": 2.5 x 259 mm, 0.9 Mpixel (18 x 18 μm2)
 - more dense design

MOST		A DECISION OF THE OWNER OWNER OF THE OWNER OWNE
	and the second se	
=	THE R P. LEWIS CO., NAME AND ADDRESS OF	1
-	•	

MIMOSIS-1 (IPHC)

❑面向CBM-MVD

- □像素甄别电路基于ALPIDE结构
- □ 高阻外延层
- □像素内集成数据驱动和缓存

MIMOSIS-1	
Process	TJ 180 <i>nm</i>
Pixel size	$30.24 \times 26.88 \mu m^2$
Array size	504 × 1024
Chip size	$3.1 \times 1.7 \ cm^2$
Power	$50 mW/cm^2$
Active area	$4.2 \ cm^2$
Frame time	5 μ <i>s</i>

Layout of the MIMOSIS-1

Functional description of the pixel array

MALTA2 (CERN)

LHC ATLAS内径迹室
 优化前端电路设计
 有效降低了1/f 噪声
 更好的时间精度
 异步读出结构(速度更快)

Standard, not fully depleted (ALPIDE)

Not fully depleted at low reverse bias

MALTA2		
Process	Modified TJ 180 nm	
Pixel size	$36.4 \times 36.4 \mu m^2$	
Array size	224 × 512	4
Chip size	$20.2 \times 10.12 mm^2$	195
Power	$75 \ mW/cm^2$	
TID	100 Mrad	
charge collection efficiency	97.5%	

TJ-Monopix2 (CERN/Bonn)

- □面向HL-LHC ATLAS 径迹室外层
- □ 采用修改的CIS工艺
- □优化了前端模拟电路:更高增益,更低噪声□列端同步读出结构,类似FE-I4读出结构

TJ-Monopix2	
Process	Modified TJ 180 nm
Pixel size	$33.04 \times 33.04 \ \mu m^2$
Array size	512 × 512
Chip size	$20 \times 20 \ mm^2$
Noise	< 10 e-
Time stamp	7-bit
Power	$170 \ mW/cm^2$

Block diagram of the TJ-Monopix-2 chip

TaichuPix (IHEP/IFAE/CCNU/SDU/NWPU/NJU)

□ 环形正负电子对撞机(CEPC) 顶点探测器

□像素阵列采用列读出方式:数据驱动读出, 每列加入时间戳,读出时间50 ns

□ 2级FIFO结构

□ Trigger-less (3.84 Gbps) & Trigger mode

TaichuPix-1

TaichuPix-2

TaichuPix-3 Pixel size: $25 \ \mu m \times 25 \ \mu m$

	TaichuPix-1	TaichuPix-2	TaichuPix-3
Process	TJ 180 <i>nm</i> CIS	TJ 180 <i>nm</i> CIS	TJ 180 <i>nm</i> CIS
Pixel size	52 × 25 μm^2	$25 \times 25/24 \mu m^2$	$25 \times 25 \mu m^2$
Array size	64 × 192	64 × 192	512 × 1024
Chip size	$5 \times 5mm^2$	$5 \times 5mm^2$	$2.6 \times 1.6 cm^2$
Power	$130 \ mW/cm^2$	$50-140 \ mW/cm^2$	89 – 164 mW/cm ²
TID		> 3Mrad	
Spatial resolution		< 5 um	

MIC4 (CCNU/IHEP)

- ❑ CEPC顶点探测器
- □ 前端电路基于ALPIDE, 优化了数据驱动结构
 □ 测试ENC ~32 e-, 模拟功耗~0.11 µW/pixel
 □ 快速读出(~ 3 µs)

□ 小像素尺寸

MIC4	
Process	TJ 180 <i>nm</i>
Pixel size	$25 \times 25 \mu m^2$
Array size	128 × 64
Chip size	$3.2 \times 3.7 mm^2$
Power	$150 \ mW/cm^2$
Output rate	1.2Gbps

MIC4 structure

Layout of MIC4

JadePix3 (IHEP/CCNU/SDU)

❑ CEPC顶点探测器

□ 小像素尺寸、高空间分辨率、低功耗

□基于MIC4的低功耗前端电路

□ 逐行扫描读出方式

□ 定制设计DFF, 版图面积降低60%

JadePix4/MIC5: 快读	出、低功耗	
JadePix3		
Process	TJ 180 <i>nm</i> CIS	
Pixel size	$16 \times 26/23.11 \mu m^2$	
Array size	192 × 512	
Chip size	$6.1 \times 10.4 mm^2$	
Power	$87 mW/cm^2$	
Active area	$4.85 \times 8.19 \ mm^2$	
Spatial resol.	3µm	
Time resol.	98.3 <i>µs</i>	

	JadePix1	JadePix2	MIC4	JadePix3
Architecture	Roll. Shutter + Analog output	Roll. Shutter + In pixel discri.	Data-driven r.o. + In pixel discri.	Roll. shutter + end of col. priority encoder
Pitch (µm ²)	33 × 33 /16 × 16	22 × 22	25 × 25	16 × 26 16 × 23.11
Power con. (mW/cm ²)			150	~ 55*
Integration time (µs)*		40-50	~3	~100
Prototype size (mm ²)	3.9 × 7.9 (36 individual r.o)	3 × 3.3	3.1 × 4.6	10.4 × 6.1
Main goals	Sensor optimization	Small binary pixel	Small pixel + Fast readout+ nearly full functional	Smaller pixel + Low power + fully functional

2023/7/12

Nupix-A1 (IMP/CCNU)

面向电子离子对撞机探测器(EIC)
位置、时间和能量测量
像素内集成放大、甄别器
芯片集成高精度列级ADC、DAC偏置
高速数据传输

Nupix-A1		
Process	130 <i>nm</i>	
Pixel size	$30 \times 30 \mu m^2$	
Array size	64 × 128	
Speed	8 μs/row	
Power	$300 \ mW/cm^2$	
Output rate	5Gbps	

Layout of the Nupix-A1

口背景介绍

□混合式像素探测器

□ 单片式像素探测器

- ✤ 双阱CIS工艺
- ✤ 四阱CIS工艺
- ✤ 高压CMOS工艺

✤ SOI工艺

□总结

标准CIS工艺

□ 电荷收集采用热扩散方式,收集时间较长□ 抗辐照能力弱

高压CMOS工艺

□全耗尽,电荷收集采用漂移方式,收集时间短
□抗辐照能力强
□像素尺寸大,减小像素阵列,降低功耗
□具有CMOS工艺的优点

ATLASpix3 (KIT/CERN)

- □ 面向ATLAS Inner Tracker
- □ 像素阵列采用列读出结构
- □ 存储单元采用抗辐照设计

ATLASpix3	
Process	AMS/TSI 180 <i>nm</i>
Pixel size	$150 \times 50 \mu m^2$
Array size	132 × 372
Chip size	$2.02 \times 2.1 cm^2$
Power	$160 \ mW/cm^2$
Active area	90%

Block diagram of the readout periphery

RD50-MPW3

- □面向LHC、FCC相关实验
- □ 逐行扫描读出方式
- □ 采用双列读出架构
- □ 像素内电荷灵敏前置放大器,可调 阈值比较器、锁存器

Block diagram of in-pixel electronics

Two pixels in a double column

RD50-MPW3	
Process	150 <i>nm</i> HVCMOS
Pixel size	62 × 62 μm^2
Array size	64 × 64
Chip size	$5.1 \times 6.0 \ mm^2$
Power	23.4 μW /pixel 300 mW /Digital periphery

Layout of RD50-MPW3

MuPix10 (University of Heidelberg)

□面向缪子衰变实验(Mu3e)

□ 像素内集成CSA, 甄别器□ ToT技术

MuPix10		
Process	180nm HVCMOS	
Pixel size	$80 \times 80 \ \mu m^2$	
Array size	256 × 250	
Chip size	$20.66 \times 23.14 \ mm^2$	
Power	$190 \ mW/cm^2$	
Active area	$20.48 \times 20 \ mm^2$	
output rate	1.6 Gbps*4	

Block diagram of the MuPix10 architecture

MuPix10 mounted on a PCB

LF-Monopix2

□ 面向ATLAS实验

□ 大面积(~cm2), 大收集电极(相比TJ-Monopix2)

□ 像素阵列采用列读出结构

□像素内集成CSA, 甄别器, 阈值调节DAC, 数字逻辑, 存储单元

□ >2k Ohm 高阻衬底

LF-Monopix2		
Process	LF 150nm	
Pixel size	$150 \times 50 \mu m^2$	
Array size	340 × 56	
Chip size	$10 \times 20mm^2$	
Power	30 μW /pixel	
CMOS or LVDS serial output	40 MHz/160MHz	

Layout of LF-Monopix2

Layout of a pixel

Block diagram of the MightyPix1

口背景介绍

□混合式像素探测器

□ 单片式像素探测器

- ✤ 双阱CIS工艺
- ✤ 四阱CIS工艺
- ✤ 高压CMOS工艺

✤ SOI工艺

□总结

SOI工艺

- □ Silicon-on-Insulator technology
- Utilize 0.2 μm FD-SOI CMOS process by Lapis Semiconductor Co. Ltd.
- □单片式,能使用较小像素尺寸
- □极低的漏电流:低噪声、低功耗
- □全耗尽 (high basing voltage)
- □抗单粒子效应强
- \square Sensor thickness: 50 500 μm
- □ Sensor Resistivity: > 1 k Ω ·cm
- ❑易于3D集成

SOFIST3 (KEK)

□ 面向ILC顶点探测器

□像素内集成CSA、甄别器、移位寄存器、 模拟存储单元、时间戳

□ 8-bit 列级ADC实现位置分辨

SOFIST3		
Process	SOI 200 <i>nm</i>	
Pixel size	$30 imes 30\ \mu m^2$	
Array size	128 × 128	
Chip size	$6 \times 6 mm^2$	
Time resolution	1.92 μs	

COL BUF

Column Address Decoder

Ramp generate circuit

Block diagram of the circuits

Layout of SOFIST3

COL ADC

SOFIST4	
Process	SOI 200 <i>nm</i>
Pixel size	$20 imes 20\ \mu m^2$
Array size	104 × 104
Chip size	$4.5 \times 4.5 \ mm^2$
Bump connection yield	99.9%

CPV4 (IHEP)

- □ 面向CEPC 顶点探测器
- □基于ALPIDE芯片的模拟前端设计和读出构架
- □比较器输出前沿定分辨精度~1µs
- □ 下层模拟像素: 粒子击中信息转换为数字信号
 □ 上层数字像素: 击中触发器 + 控制寄存器
 □ 数据驱动读出结构, 异步优先级编码 AERD

CPV-4	
Process	200 <i>nm</i>
Pixel size	$21.04 \times 17.24 \mu m^2$
Array size	128 × 128
Chip size	$4.5 \times 4.5 mm^2$
Time resolution	~1 μs or ~3 μs
Bias voltage	-200V

□在粒子物理实验中,硅像素探测器展现出的优异性能使其成为重要探测技术。

- □随着高能物理实验升级,对硅像素探测器提出了更高要求,高空间分辨、高速、抗辐照、低物质量....
- □国外开展硅像素探测器的研究较早,大型粒子物理实验需求驱动,技术较成熟,已有应用于 大型实验的芯片。
- □近十年来,国内已开展多种硅像素探测器的开发,掌握了研制关键技术,为应用于国内大型 实验奠定基础。
- □ 硅像素探测器将呈现快速发展趋势,其不仅能用于粒子物理实验,而且能广泛应用于天体物 理、X射线和中子成像、核物理等领域。

