Back-n 多用途时间投影室

MTPC实验研究团队 报告人: 吕游 2023年7月10日

中国散裂中子源 China Spallation Neutron Source

◆ MTPC实验装置

◆ 性能模拟研究

◆ 实验研究

反角白光中子束线

Back-n不同准直器模式下的中子流强@100 kW

Shutter (mm)	Coll#1 (mm)	Coll#2 (mm)	ES#1 spot (mm)	ES#1 flux (n/cm ² /s)	ES#2 spot (mm)	ES#2 flux (n/cm ² /s)
Φ3	Φ15	Ф40	Φ15	1.27E5	Φ20	4.58E4
Φ12	Φ15	Φ40	Ф20	2.20E6	Φ30	7.81E5
Φ50	Φ50	Φ58	Φ50	4.33E7	Φ60	1.36E7
78×62	76×76	90×90	75×50	5.98E7	90×90	2.18E7

2023-7-10

MTPC实验装置

- ◆ MTPC: 一台主要针对轻带电粒子测量的多用途TPC (Multi-purpose TPC)
- 径迹测量、能量测量、粒子鉴别
- 大立体角覆盖、能量探测阈值低
- 粒子甄别与复杂反应道甄别

MTPC读出探测器

阳极读出区域为六边形pad密堆结构,共1519个pad

Micromegas作为探测器的雪崩放大结构

- 场笼均压环采用PCB制作,间隔5mm,设计分压 电阻焊接PCB,用于均压环之间连接
- 腔体承受气压范围0~5bar, 主体为钛合金结构, 入射窗为100um钛合金窗

◆主要参数:

- 共1536通道(TPC使用1521通道)
- 波形采样频率: 40MHz
- 触发采样窗宽度: 1024采样点
- ADC位数: 12bit

气路系统

- 可设定气压值,通过针阀和流量计自动稳压
- 混气仪可根据流量控制配比不同组分的工作气体
- 探测器气体流量通过针阀进行调节
- 控制机柜接入白光束线控制系统,可远程进行压力调节

2023-7-10

数据获取系统

◆ 数据处理软件:负责承载与数据流相关的工作(接收、组装、存储和处理)
◆ 在线交互软件:向上提供用户服务(执行、反馈),向下与数据流子系统信息传递

0. 2 - 🔐 🖷 http://0.136.02000/in-co-met	T + C + E a-crost	= 0 0 A 0 e #
MITCORE Manimum Colorington Manimum Willington		Turners"
Recent	Annual control	
and a second	FEED Input Name	14.1853/5
(Constant)	PEDIC Provid Name	13 74(9/5
TAXABLE IN CONTRACTOR OF CONTRACTOR	Builder Rate	174-4048/5
	Charper Rates	171.4318/5
	teningen	
reportTine primet		
2013 4ap 09 10 10 47 Pres max Th.D		
3633 Feb (0.10.48 Hear mas (MEDALIZED		
2023 Feb 09 10 10 10 10 Final case CONNECTED		
2522 Feb 07 1011128 Free opic CONTOURD		
2825 Peo 09 10 11 121 Steel rule: #UNH016		
-		Seve
-		
C C - B € str/milations.ense	10.0.0 ÷ 10.0.000	= 0 0 * 0 * 1
Mire and manimum defections then have Weiter		
	1	3

软件模拟框架

● 模拟程序框架包含所有的物理和电荷过程

Δ

- ✓ 气体参数
- ✓ 中子能谱
- ✓ 事例产生器
- ✓ 电离过程
- ✓ 电子漂移
- ✓ 电子雪崩
- ✓ 电荷扩散
- ✓ 电子学模型
- ✓ 阴极和mesh波形
- ✓ Hit与Trigger

数据分析框架

数据分析流程与数据结构

X射线源测试

◆ 实验设置

- 工作气体: Ar/CO2(93/7), Ar/CH4(90/10)
- 漂移区气隙:5mm
- 放射源: ⁵⁵Fe @5.5keV X-ray

◆ 实验结果

- 能量分辨率: 31% @5.9keV
- 增益均匀性:~13%
- 放大气隙厚度及均匀性: 95 μm@2.8%(RMS/Mean)

α源测试

◆ 实验设置

- 工作气体: Ar/CO2(93/7)
- 漂移区气隙:70mm
- 放射源:四组分α源(4775、5157、5499、5805 keV)

◆ 实验结果

- 漂移速度: 15.5163 mm/µs
- 能量分辨: 2%-3% @四组分α源

宇宙线测试

◆ 实验设置

- 工作气体: Ar/CO2(93/7) @70mm气隙
- TPC侧面放置方形塑闪探测器(SiPM 读出)
- 挑选塑闪信号与TPC径迹符合的事例选出宇宙线事例
- 塑闪信号作为电子漂移的时间起点

实验结果

• 漂移区电场均匀性,等待分析

2023-7-10

中子核反应标准截面测量

- 中子标准截面对应的核反应中,有6个反应为轻带电粒子出射反应
- 在10MeV以下能区,适合使用TPC进行测量
- 可提高测量的精度和更为全面的核反应信息
- 标准截面数据是核数据研究的基础,自主开展成体系的标准截面实验测量及数据评价,在基础研究和应用方面 有重要意义

TABLE I. Cross section standards and reference data, release 2017.

	Neutron cross section standards
Reaction	Standards incident neutron energy range
H(n,n)	1 keV to 20 MeV
3 He(n,p)	0.0253 eV to $50 keV$
6 Li(n,t)	0.0253 eV to $1 MeV$
${}^{10}B(n,\alpha)$	0.0253 eV to $1 MeV$
$^{10}B(n,\alpha_1\gamma)$	0.0253 eV to $1 MeV$
C(n,n)	10 eV to $1.8 MeV$
$Au(n,\gamma)$	0.0253 eV, 0.2 to 2.5 MeV, 30 keV MACS
$^{235}U(n,f)$	0.0253 eV, 7.8-11 eV, 0.15 MeV to 200 MeV
$^{238}U(n,f)$	2 MeV to $200 MeV$

反应	研究情况	技术难度
⁶ Li(n,t)	已开展实验 (2023.2)	***
¹⁰ B(n,a)	实验构想	***
H(n,n)	基金课题	****
C(n,n)	/	****
³ He(n,t)	/	****

白光中子束斑分析

- 3维Hough变换进行径迹查找,3维主值分析得到径迹参数
- 重建之后得到径迹方向、能量、长度,通过将径迹参数外推至z值最大点,得到顶点xy坐标
- 根据径迹能量和长度,可进行粒子鉴别

◆搭建并完成了探测器系统

- ◆构建了模拟分析程序框架
- ◆X射线、α源、宇宙线对探测 器的性能进行了测试研究
- ◆开展了中子核反应截面的测量

- 探测器系统 (80%)
 - 阳极读出板
 - 电场笼、气室腔体
 - 气路系统
 - 读出电子学
 - 数据获取
- 实验方法体系 (60%)
 - 数据分析方法
 - 波形分析
 - 径迹重建
 - 探测器测试方法
 - x射线
 - α源
 - 宇宙线

- 模拟分析程序框架(70%)
 - 模拟程序框架
 - 模拟程序物理模型
 - 分析程序框架
 - 数据分析流程

- 物理实验体系 (10%)
 - 中子核反应标准截面
 - 6Li(n,t)
 - 1H(n,n)1H
 - 核物理相关重要截面
 - 16O(n,a)、19F(n,a)
 - 12C(n,3a)
 - 国家重大需求相关截面

轻带电粒子探测器阵列

- ◆ CSNS反角白光中子源主要研究方向之一
- 两体反应
 - ⁶Li、¹⁰B的(n,α)反应
 - ¹²C、¹⁶O的(n,p)、(n,d)、(n,t)、(n,α)反应
- 三体反应:
 - ¹²C的(n,3α)反应
- ◆ LPDA: 轻带电粒子探测器阵列
- 8个ΔE-ΔE-E探测单元,每个单元由MWPC、Si和Csl组成
- 覆盖立体角小 (0.2%)
- 粒子探测能量阈值高,约为0.5MeV (Proton)
- 主要针对(n,p/d/t)(n,α)等轻带电粒子反应的测量
- ◆ LPDA的限制:小截面、低能产物和多产物反应的测量有较 大难度

轻带电粒子探测器阵列示意图

