XFEL and FLASH

Machine Protection System – MPS

µTCA-based

2nd MTCA/ATCA Workshop for Research and Industry 25-Aug-2021 – DESY Contribution

Outline

- 1. Architecture design goals, purpose, concepts
- 2. Chosen µTCA-boards
- 3. Monitored and controlled systems
- 4. Signal processing response actions
- 5. Graphical user interface

Design Goals of MPS – 1./2

- Designed for pulsed FEL-type accelerators
- Bunch train oriented machines
- Scalable in number of monitored inputs and controlled outputs
- Configurable alarm-response actions
- Distributed over the accelerator board installations and logic
- Core function independent from network and operating systems

µTCA.4 based

Design and implementation have started in 2010 Extensions and adaptions are ongoing

XFEL Architecture – Communication Topology

- > In XFEL: Currently **152** MPS-boards distributed over **3.5km**
- > Dedicated **fiber optics** network with point-to-point communication
- > **Cascaded** communication topology with transfer direction from end to start of accelerator

FLASH Architecture – Communication Topology

> In FLASH: Currently **14** MPS-boards over **350m**

Purpose

MPS shall protect the accelerator equipment from damage caused by unexpected high impact of electron bunches

- e.g. induced radioactivity of beamline parts due to e-beam misalignment
- e.g. overload of a beam dump due to an inappropriate beam mode
- e.g. loss of beam line vacuum due to a damage of vacuum valves, diagnostic screens, wire scanners, collimators etc.

MPS detects such a situation through a multitude of alarm, error, interlock and status signals provided by some (diagnostic) systems

e.g. beam loss monitors, transmission interlock systems, magnet power supplies, ...

MPS reponds appropriately by stopping or limiting the e-beam

e.g. closing Pockels-cell of the injector laser, …

Chosen Hardware – MTCA.4-compliant Boards

- XILINX Virtex-5 FPGA
- MMC support
- onboard flash-memory
- 1 Gbit SDRAM
- optional dosimetry FMC-card

- DAMC2 has been developed at DESY's group FE
 - Besides MPS, other groups have developed firmware for their projects, e.g. BLM-controller

Interface RTM has been developed at DESY groups FLA and FE

- Besides MPS, it also used by other systems, e.g. laser pulse controller
- Radiation dosimetry monitoring FMC-card has been developed at DESY's MDI

Requirements Fulfilled by the Chosen Hardware

Maintainability & scalability

- Each MPS-board runs same firmware
- Each crate runs same MPS front-end server
- But they are differently configured from board to board
- All alarm inputs, response actions and outputs can be configured through DOOCS/JDDD panels, even during machine run time

- 45 digital inputs (RS422)
- 7 digital outputs (RS422)
- 3 input lines from backplane
- 2 output lines to backplane
- 3 digital inputs from FMC-card
- I²C-bus to FMC-card
- PCIe-bus to all FPGA-registers
- 4 double-fibred bi-directional optical links (SFPs)
- IPMI and JTAG for firmware updates
- Boards and RTMs are hot-swappable

I/O – MPS' Monitored Systems

- In XFEL: 25 types of systems provide ~2000 alarm and status signals to MPS
- In FLASH: 10 types of systems provide ~280 alarm and status signals to MPS
- Complexity of alarm providing systems can vary between very high and simple
- > Alarm response actions can be configured signal-individually in MPS

I/O – MPS' Controlled Systems

For quick, asynchronous responses

- within 80ns...10µs time range
- for alarms that require responses within the currently running bunch train
- MPS can control laser pulse controller, dump kicker and LLRF directly
- MPS transmits responding inhibit signals via twisted-pair copper (RS422) or via µTCA backplane
 - e.g. "Cut off the rest of the current bunch train for beam line SASE2"
- For "slower", bunch train-synchronous responses

Timing Master

- within 100ms time range
- for beam limitations valid by next upcoming bunch train
- MPS master controls the timing system master
- MPS sends limiting information via backplane

e.g. "Reduce to 30 electron bunches per bunch-train for common accelerator section!"
e.g. "Reduce to 2 electron bunches per bunch-train within injector section!"

Cooperation Concept

- > A operator sets the demanded bunch distribution in the timing system master via graphical bunch pattern builder (top left)
- > MPS slaves assess alarm and status signals from providing (diagnostic) systems and sends to MPS master (green lines)
- MPS master sends the combined limits to timing system master (top middle)
- > Timing system master combines operators wishes and MPS limits and broadcasts the resulting bunch pattern table (blue)
- > Timing receivers/transmitters inform diagnostic systems and trigger others accordingly, e.g. laser pulse controller
- MPS is also able to bypass the timing system temporarily and control laser pulse controller and dump kicker directly (red)

Beam Destination vs. Operation Mode

A operator has to select beam destinations for the bunch trains

- one for the whole bunch train, e.g. gun dump, injector dump, bunch compressor 1 dump
- or multiple for several parts of the bunch train, e.g. SASE1/3, SASE2, TLD

MPS detects the current operation modes

- thru the status of the corresponding dump dipole magnet. The power supplies provide that info according to their operating current
- and thru the open/close status of the corresponding vacuum valves. The vacuum PLC provides that

If beam destinations and operation modes do not correspond to each other

- timing system does not trigger injector laser pulse controllers for certain destinations anymore
- and laser pulse controllers do not accept triggers from timing system for certain destinations anymore

Each alarm response can be configured signal-individually

Possible response types:

- inter bunch train stop e.g. through Pockels-cell inhibit or dump kicker activation
- section unavailablilty e.g. injector laser shutter close
- reduce numer of bunches per train i.e. limit through timing system bunch counter
- change operation mode e.g. change into "injector dump mode"
- masking/gating certain other input lines e.g. if all undulators are open, ignore few BLMs
- Response can depend on:
 - type of system, which reports the alarm e.g. dipole magnets vs. BLMs
 - meaning of the alarm line e.g. OTR screen moving or screen reached its position
 - Iocation of alarm source e.g. before or within SASE sections

Example:

Section:	Injector		Acc				SASE	SASE
	G1	11	L1	L2	L3	TLD	SA1/3	SA2
OTR screen moving:	P-cell inhibit	P-cell inhibit	P-cell inhibit	P-cell inhibit	P-cell inhibit	P-cell inhibit	Dump kicker	Dump kicker
valid pos reached:	Max 2 bunches	Max 2 bunches	Max 2 bunches					

FLASH Control Room – GUI

An operator may see current:

- operation modes, section availabilities and max allowed number of bunches per bunch train per section
- > alarm states of the different (diagnostic) systems and their contribution to the beam limitation
- states of alarm maskings according to bunch modes

XFEL Control Room – GUI

Injector		Acc						TLD	SASE1/3		SASE2	
Housekeepings		Housekeepings	TIL A3	🔷 TIS 479	Klystron-I A12	KLM A19	🔷 TIS 1459	F Preset limit TLD	Housekeepings	🔶 BLM 2934-2948	Housekeepings	Masked
🜔 Preset limit Inj	Mirror 24	🜔 Preset limit Acc	KLM A3	O BLM 472	Modulator-I A12	Klystron-I A19	BLM 1459-1542	TIS 2122.TLD	Preset limit SA1	BLM 2952-2956	Preset limit SA2	🔷 TIS 2682
🚺 Op mode G1D	F-cup 24	() OTR 99-118	Klystron-I A3	TIL A6	Mag 782-818	Modulator-I A19	(E) WS 1523	OTR 1995.TLD	BLM 2072-2098	BHM 3098.T4D	() OTR 2038	♦ TIS 2744
💽 Beam perm Inj	Screen 24	TIS 116	Modulator-I A3	KLM A6	TIL A13	Mag 1124-1160	(F) OTR 1523	🔆 TIS 1995.TLD	Mag 2072-2247	🔶 BLM 3095-3098	TIS 2038	OBLM 2647-2859
🖲 Bunch pattern svr	F-cups 25	🔶 BLM 70-118	Mag 249-285	Klystron-I A6	KLM A13	TIL A20	(E) WS 1597	O BLM 2047.TLD	Few masked	BLM 3072-3105	BLM 2042-2083	Mag 2756-3007
TIL Gun	TIL A1	Mag 134-170	TIL A4	Modulator-I A6	Klystron-I A13	KLM A20	() OTR 1597-1635	Mag 1983	Mag 2079	TIS 3065.T4D	Mag 2030	🔷 TIS 2977
Klystron-I Gun	TIL AH1	🕞 Op mode B1D	KLM A4	C Mag 488-524	Modulator-I A13	Klystron-I A20	(F) WS 1635	Mag 2095-2113	BLM 2117-2132	Valve 30010F	Mag 2077-2227	TIS 3040.T5D
Modulator-I Gun	Cryo ok Inj	💟 Mag 63-96.B0	Klystron-I A4	TIL A7	Mag 830-866	Modulator-I A20	TIS 1658	Mag 1996-2096	🕞 DumpDiag TLD	PhotScreen 3098	Mag 2041-2124	OBLM 2922-296
TIS 25	Klystron-I A1	Mag 179-233.B1	Modulator-I A4	KLM A7	TIL A14	Mag 1171-1208	BLM 1615-1698	Mag 1980-2087	BLM 2177-2230	🔆 TIS 3098.T4D	Mag 2025-2052	BLM 3052-308
♦ BLM 23-25	Modulator-I A1	(B) Mag 229-32.B1D	Mag 297-333	Klystron-I A7	KLM A14	TIL A21	(E) Col 1690-1726	BHM 2122.TLD	(F) OTR 2169-2212	🕞 DumpDi XSDU2	OBLM 2125-2154	🔷 TIS 31 49.T5D
	💽 SSK Inj	Linac Cryo Ok	Mag 345-381	Modulator-I A7	Klystron-I A14	KLM A21	(F) OTR 1689-1725	OBLM 2105-2130	🔷 TIS 2228	(F) OTR 3077-3097	(F) OTR 2117	🔶 ВНМ 3181.Т5D
	Valves up to I1D	(F) Col 98	TIL A5	Mag 536-572	Modulator-I A1 4	Klystron-I A21	TIS 1765	🕞 TLD DumpDiag	🕞 TuneDmp SA1	Mag 2946-3089	🕞 DumpDiag TLD	🔶 BLM 3149-318
	(F) Op mode I1D	TIL A2	KLM A5	TIL A8	Mag 878-914	Modulator-I A21	OBLM 1710-1782	(F) OTR 2121.TLD	BLM 2241-2284		(E) WS 2164	🕞 DumpDi XSDU
	Mag 46-61	KLM A2	Klystron-I A5	KLM A8	TIL A15	Mag 1222-1259	OBLM 1794-1827		🔶 BLM 2260-2333	Valve {1 2}1030F	Mag 3052-3159	🔶 BLM 3190
	Soleno 23	Klystron-I A2	Modulator-I A5	Klystron-I A8	KLM A15	TIL A22	(F) OTR 1797-1833		OBLM 2339-2382		TIS 2190	🔷 TIS 3181.T5D
	(1) Mag 62-64.I1D	Modulator-I A2	(F) Op mode B2D	Modulator-I A8	Klystron-I A15	KLM A22	(E) Col 1798-1834		OBLM 2388-2424	Vacuum SA1	(E) WS 2775-2779	(E) OTR 3160-318
	🔶 BLM 65-66	🔷 TIS 175	Mag 387-472.B2	Mag 584-620	Modulator-I A15	Klystron-I A22	🔷 TIS 1865		🔷 TIS 2462	F AIBS FXE	(F) OTR 2146-2174	(F) CRL HED
	🔶 BLM 55-63	🔶 BLM 176-192	😥 Mag 467-77.B2D	TIL A9	Mag 929-965	Modulator-I A22	OBLM 1834-1884		OBLM 2431-2461	F AIBS SPB	🕞 TuneDmp SA2	(F) CRL MID
	🔶 BLM 48-51	🕞 ВСМ 180	SSK B2	KLM A9	TIL A16	Mag 1270-1307	(F) WS 1899-1914		(F) CRL SA1	(F) AIBS SQS	OBLM 2203-2246	IBS HED
	🔷 TIS 60	🔷 TIS 203	Valves up to B2D	Klystron-I A9	KLM A16	TIL A23	(F) BCM 1934		PhotScreen 2615	5 🕞 AIBS SCS	Crystal 2250	AIBS MID
	(F) OTR 55-56	🔶 BLM 194-205	🔶 BLM 387-403	Modulator-I A9	Klystron-I A16	KLM A23	OBLM 1894-1959		Valve 10010F	EPS FXE	OBLM 2252-2295	
	(F) OTR 58-59	F OTR 180-205	BCM 391-416	Mag 635-671	Modulator-I A16	Klystron-I A23	(F) OTR 1899-1929			FastValve FXE	♦ MBU 2286	
	🕞 DumpDiag I1D	Mag 84-118.B0	🔷 TIS 387	TIL A10	Mag 977-1013	Modulator-I A23	(F) WS 1929		🔶 BLM 2582-2688		OBLM 2301-2344	
	🔶 BHM 66.I1D	Mag 176-224.B1	(F) Col 403	KLM A10	TIL A17	Mag 1318-1355	OBLM 1982-1997		(F) WS 2718	Masked	Crystal 2305	
	🔷 TIS 64.I1D	() Col 192	OBLM 405-428	Klystron-I A10	KLM A17	TIL A24	BLM 2005-2027		Mag 2468-2873	Few masked	OBLM 2350-2392	
	(F) OTR 64.I1D	SSK B1	🔷 TIS 415	Modulator-I A10	Klystron-I A17	KLM A24	🔷 TIS 2011		🕞 WS 2755-2779	Valve 3(1 3)030F	TIS 2424	
	(F) OTR 48-50	Valves up to B1D	(F) OTR 392-438	Mag 683-719	Modulaotr-I A17	Klystron-I A24	(F) OTR 1978-2023		(F) OTR 2718-2779		BLM 2398-2584	
	🔷 TIS 94	() OTR 118-224	OBLM 435-464	TIL A11	Mag 1025-1061	Modulator-I A24	🔷 BLM 2057			Vacuum SA3	CRL SA2	
		(F) BCM 205	OBLM471-77.B2D	KLM A11	TIL A18	Mag 1396-1405	SSK L3		🔷 TIS 2793	SA3 Pre-absorb	PhotScreen 2576	
		F OTR 236.B1D	F OTR 450-461	Klystron-I A11	KLM A18	TIL A25	Mag 1475-1907		BLM 2750-2831	Masked	FastValve XTD1	
		🔷 TIS 232-236	🔷 TIS 471	Modulator-I A11	Klystron-I A18	KLM A25	Mag 1660-2027		🕞 TuneDmp SA3	Masked	2 EPS SA2	
		🕞 DumpDiag B1D	(F) OTR 446	Mag 731-767	Modulator-I A18	Klystron-I A25	Mag 1629-1964		OBLM 2837-2880		Masked	
		OBLM231-38.B1D	F OTR 478-78.B2D	TIL A12	Mag 1076-1112	Modulator-I A25	Mag 1695-1982		OBLM 2886-2928		Vacuum SA2	
		O BLM 228-235	E DumpDiag B2D	KLM A12	TIL A19	Mag 1417-1453	Valves to L3 end		TIS 2967.T4D		Mag 2430-2712	

MPS must be bullet-proved

implementation of MPS is a continuous improvement process

- As simple as reasonably possible for usability and reliability
- As invisible as possible
- As stateless as possible internally for operation safety and consistency
- Alarms and responses shall be well-balanced for operation availability

Thank you for your attention Comments, questions, proposals are welcome

