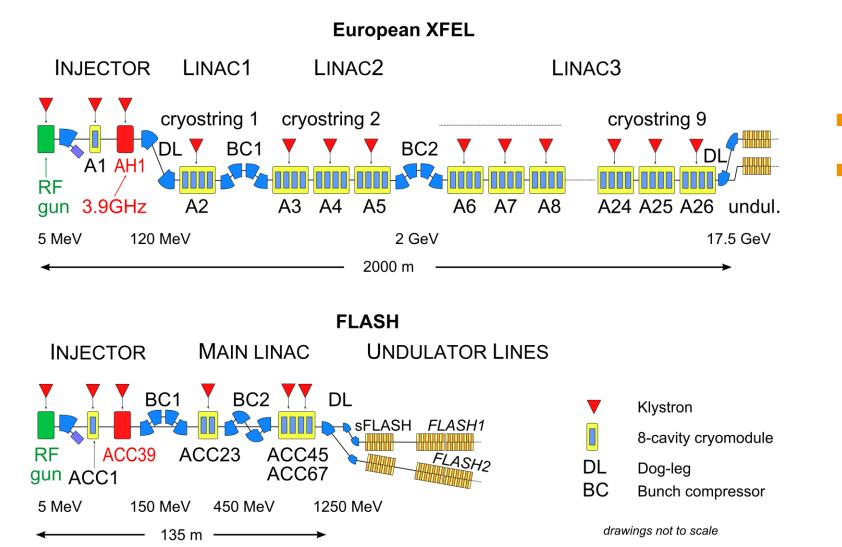
Experience with MTCA.4 LLRF Systems at DESY

FEL and Synchrotrons

Dr. Julien Branlard, on behalf of the LLRF team Hamburg, 25.08.2021

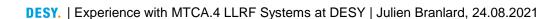
TALK OVERVIEW

MTCA.4 LLRF systems


FLASH and XFEL

- Accelerator overview
- MTCA.4 for LLRF operation
- High-channel count + vector sum operation
- MTCA crate occupation
- RF availability statistics
- LLRF on-call statistics

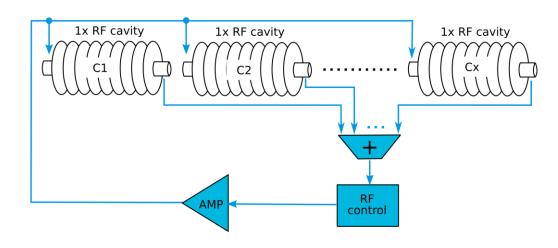
PETRA IV upgrade


- Accelerator overview
- Single cavity regulation
- MTCA crate occupation
- Supervision concept
- Interlock Concept

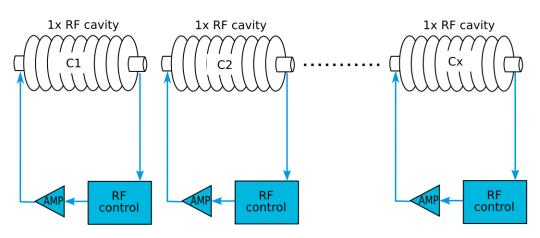
High-channel count, vector-sum control

FLASH operated with MTCA.4 since 2013

XFEL operated with MTCA.4 **since 2017**


High-channel count, vector-sum control

- FLASH
 - 7 RF stations
 - 8-16 cavities per RF control loop
 - Probe, forward, reflected + HPRF signals
 - 50+ signals per RF station

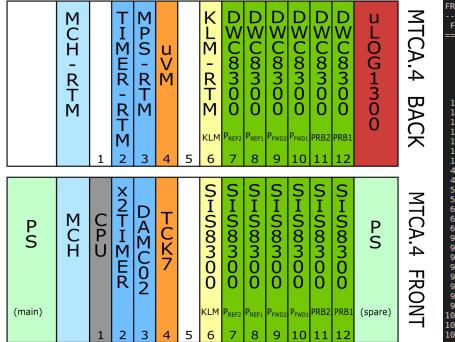

• XFEL

- 25x RF stations
- 32 cavities per RF control loop
- Probe, forward, reflected + HPRF signals
- 100+ signals per RF station

Vector-sum control : used at FLASH and XFEL

Single-cavity regulation: to be used at **PETRA** (\rightarrow last slides)

MTCA.4 LLRF components* in the tunnels


	XFEL	FLASH		
ADCs	~ 350	16		
DWCs	~ 350	14		
CPUs	~ 55	4		
MCHs	~ 55	4		
TIMER	~ 55	4		
DAMC02	~ 30	2		
TCK7	~ 55	3		
PM	~ 100	4		
others	~ 20	6		
TOTAL	~ 1070	57		

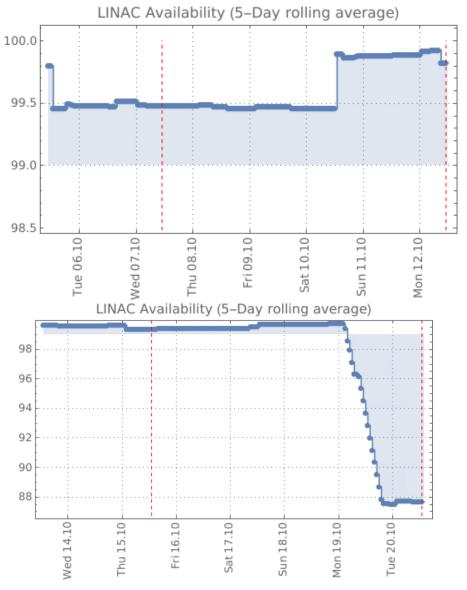
- Only components installed in tunnels are listed
- Other components are useful as witness outside of radiation prone environments

* more in other subsystems (technical interlock, special diagnostics, etc...)

MTCA.4 LLRF components* in the tunnels

Standard crate occupation

FRU	Device	State	Name
 Θ	мсн	M4	NMCH-CM
3	mcmc1	M4	NAT-MCH-MCMC
5	AMC1	M4	CCT AM 902/411
6	AMC2	M4	X2TIMER
7	AMC3	M4	DAMC2V3
8	AMC4	M4	DAMC-TCK7
10	AMC6	M4	SIS8300L
11	AMC7	M4	SIS8300L2 AMC
12	AMC8	M4	SIS8300L2 AMC
13	AMC9	M4	SIS8300L2 AMC
14	AMC10	M4	SIS8300L2 AMC
15	AMC11	M4	SIS8300L2 AMC
16	AMC12	M4	SIS8300L2 AMC
40	CU1	M4	Schroff uTCA CL
41	CU2	M4	Schroff uTCA CL
51	PM2	M4	PM-AC1000
53	PM4	M4	PM-AC1000
60	Clock1	M4	MCH-Clock
61	HubModl	M4	MCH-PCIe
64	MCH1-RTM	M4	MCH-RTM-ComEx
91	AMC2-RTM	M4	X2TIMERRTM
92	AMC3-RTM	M4	DAMC2RTM
93	AMC4-RTM		DAMC-TCK7 RTM
95	AMC6-RTM		SIS8300LRTM
96	AMC7-RTM		SIS8300L2 RTM
97	AMC8-RTM		SIS8300L2 RTM
98	AMC9-RTM	M4	SIS8300L2 RTM
99	AMC10-RTM	I M4	SIS8300L2 RTM
100	AMC11-RTM	I M4	SIS8300L2 RTM
101	AMC12-RTM	I M4	SIS8300L2 RTM
104	eRTM15	M4	DRTM-LOG1300


Monitoring the RF availability at XFEL

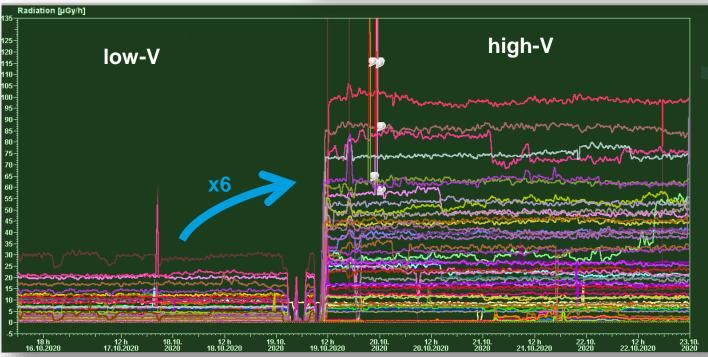
RF availability

- Typical > 95%
- Good week > 99%
- Bad week > 90%

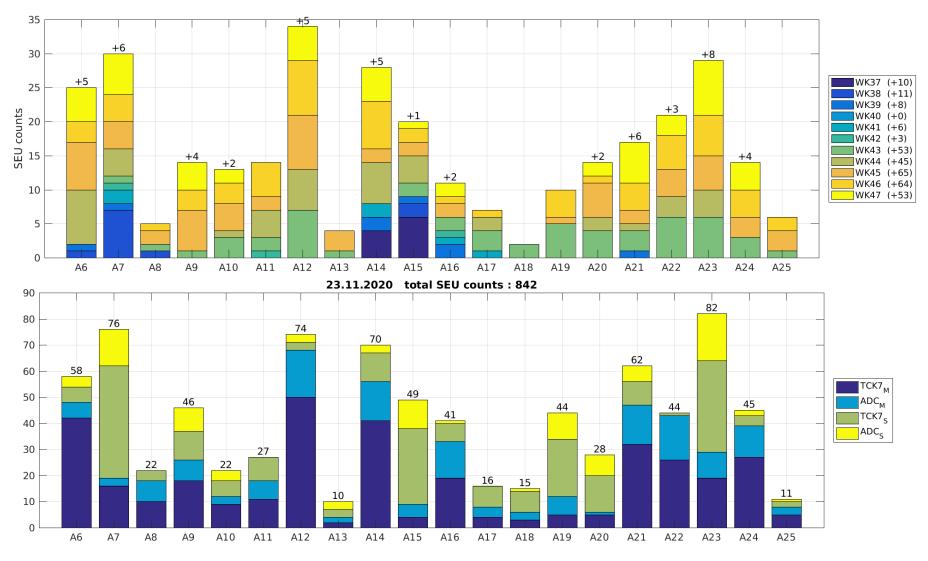
Dominant root causes

- RF (high/low power)
 - Many short trips (~minutes)
- Cryogenics
 - 1 major event (1.5 days)
- Operations
 - Not enough exception handling, conceptual automation mistakes, ...

High-Voltage (high-V) experiment at XFEL

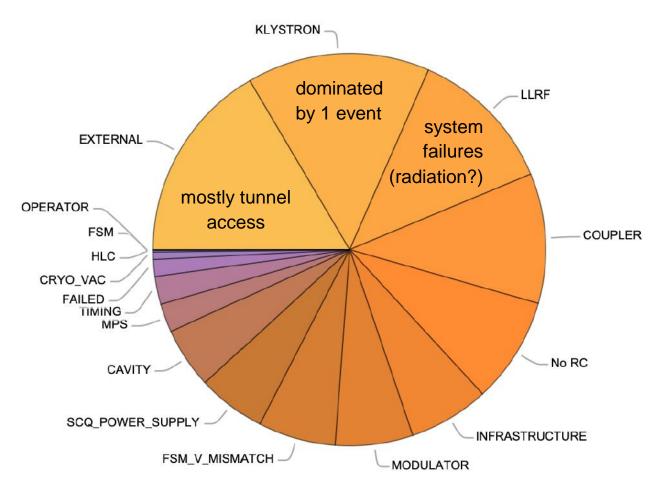

- 31.08 18.10.2020 → 7 weeks at low-V
- 19.10 22.11.2020 → 5 weeks at high-V

USB RadCons (inside racks)


• Monitor

- SEU
- LLRF system failures
- Cavity quenches
- Gradient limiters
- Radiation

High-Voltage (high-V) experiment at XFEL


Single Event Upsets

High-Voltage (high-V) experiment at XFEL

High-Voltage (high-V) Experiment

		Total	Low-V	High-V			
Availability	%	97.9	98.7	95.6			
Total operation time	days	125.2	90.4	34.8			
Number of events	hrs	300	124	176			
Total down time	hrs	64.7	27.9	36.9			
		Total	Low-V	High-V			
Trips	hrs	40.1	13.5	26.6			
Linac off (access)	hrs	18.3	10.7	7.6			
Ramp down	hrs	3.5	1.8	1.7			
Development	hrs	1.9	0.8	0.8			

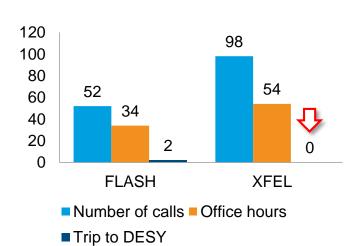
LLRF on-call statistics

Extracted from on-call ticket tracker (Redmine)

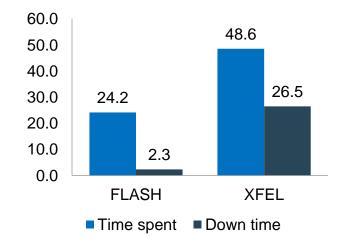
2020 stats not fully representative

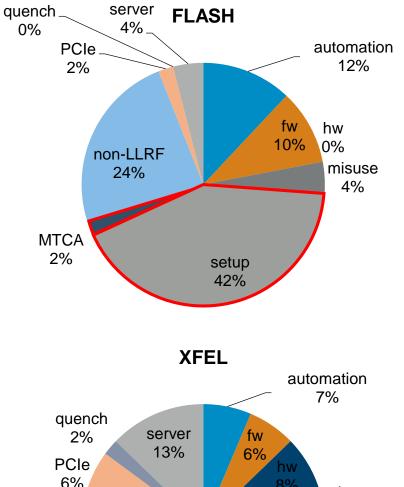
Covid-19

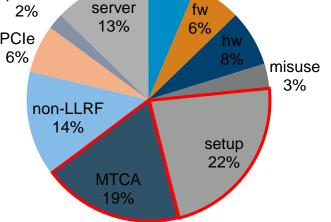
"Setup" is often the root cause

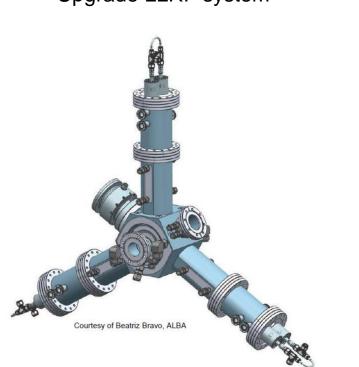

- more automation
- more exception handling

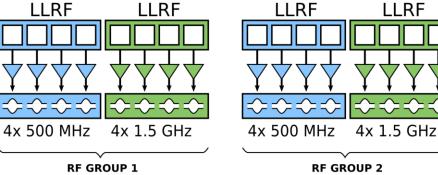
MTCA is more dominant at XFEL

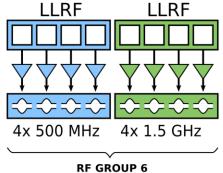

• due to installation in tunnel ?


0 trip to DESY for XFEL

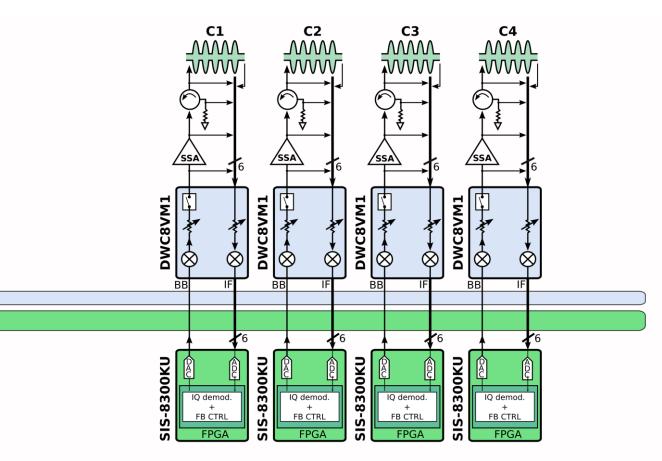

remote troubleshooting!

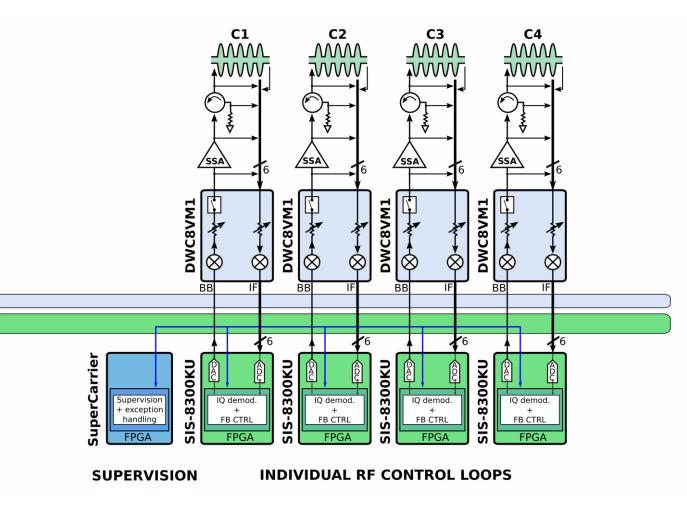

REDMINE



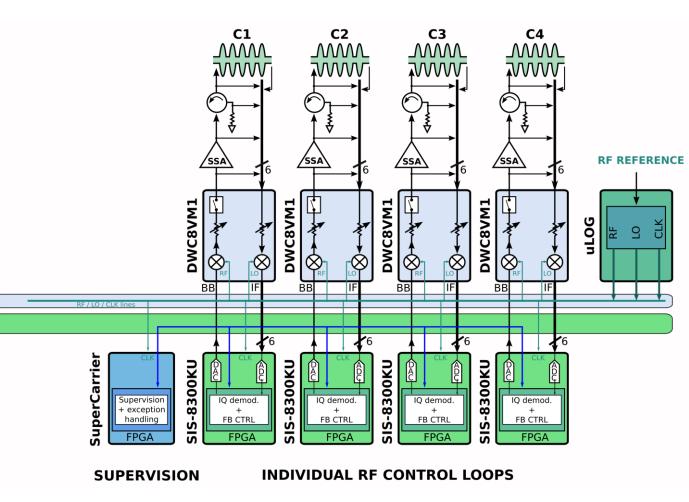


- PETRA III → PETRA IV upgrade
 - 24 new cavities optimized for HOM damping
 - Develop a concept to react to a system failure
 - Upgrade LLRF system

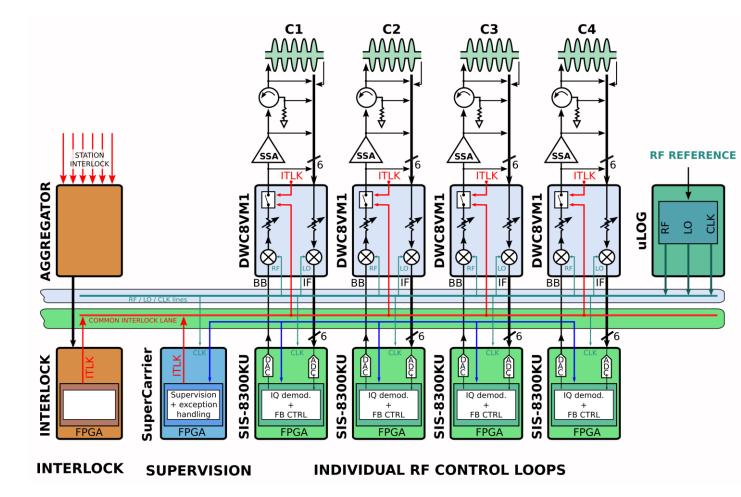




- 4x individual RF control loops
 - Single cavity regulation
 - Up- and down-conversion at analog front-end
 - High processing power on digitizer boards
- 1x supervisor module
 - Fast exception handling
 - Common cryomodule control
- 1x uLOG to provide
 - LO for down conversion
 - **RF** for reference and up-conversion
 - **CLK** for digital boards
- 1x interlock aggregator
 - Common (RF station-wise) interlock
 - Individual (cavity-wise) interlocks



INDIVIDUAL RF CONTROL LOOPS


- 4x individual RF control loops
 - Single cavity regulation
 - Up- and down-conversion at analog front-end
 - High processing power on digitizer boards
- 1x supervisor module
 - Fast exception handling
 - Common cryomodule control
- 1x uLOG to provide
 - LO for down conversion
 - **RF** for reference and up-conversion
 - **CLK** for digital boards
- 1x interlock aggregator
 - Common (RF station-wise) interlock
 - Individual (cavity-wise) interlocks

- 4x individual RF control loops
 - Single cavity regulation
 - Up- and down-conversion at analog front-end
 - High processing power on digitizer boards
- 1x supervisor module
 - Fast exception handling
 - Common cryomodule control
- 1x uLOG to provide
 - LO for down conversion
 - **RF** for reference and up-conversion
 - **CLK** for digital boards
- 1x interlock aggregator
 - Common (RF station-wise) interlock
 - Individual (cavity-wise) interlocks

- 4x individual RF control loops
 - Single cavity regulation
 - Up- and down-conversion at analog front-end
 - High processing power on digitizer boards
- 1x supervisor module
 - Fast exception handling
 - Common cryomodule control
- 1x uLOG to provide
 - LO for down conversion
 - **RF** for reference and up-conversion
 - CLK for digital boards
- 1x interlock aggregator
 - Common (RF station-wise) interlock
 - Individual (cavity-wise) interlocks

SUMMARY

- MTCA.4 for LLRF systems deployed at large facilities since 2017
- Benefits include remote management and reliability
- FLASH / XFEL configuration : emphasis is on large channel count and vector sum operation
- PETRA IV configuration : emphasis is on single cavity regulation with supervisory control
- MTCA.4 development outlook for LLRF includes
 - next generation Controller Boards
 - next generation **uLOG**
 - next generation ADCs

Thank you for your attention!

Contact

www.desy.de

DESY. Deutsches Elektronen-Synchrotron Julien Branlard MSK julien.branlard@desy.de +49 (0) 40 8998 15199