MicroTCA for photon science experiments

Martin Tolkiehn

Deutsches Elektronen-Synchrotron

Ein Forschungszentrum der Helmholtz-Gemeinschaft

August 24, 2021

Martin Tolkiehn | MicroTCA for photon science experiments| August 24, 2021 | Page 1

- Introduction PETRA.IV
- Possible applications of MTCA.4
 - Data acquisition for energy dispersive detectors
 - Motion control

Beamline P24

- Chemical crystallography beamline, PETRA extension
- 2 Experimental stations at 84m and 90m
- Optical elements at $55 \pm 5m$

P24 under construction (in early 2017)

Martin Tolkiehn | MicroTCA for photon science experiments| August 24, 2021 | Page 4

PETRA IV

Upgrade of PETRA III to a diffraction limited storage ring:

PETRA IV

a) single electron

single-electron emission cone (X-ray energy dependent)

c) PETRA IV electron bunch

divergence and size of electron bunches comparable to single-electron emission cone

Martin Tolkiehn | MicroTCA for photon science experiments| August 24, 2021| Page 6

PETRA IV

Design lattice:

Hybrid 7 Bend Achromat (H7BA)

adopted from ESRF-EBS

On-Axis Injection using fast kickers

Optimised insertion devices in long straight sections

Main Parameters:

Design Parameters	high brightness	timing
Energy [GeV]	6	
Circumference [m]	2304	
Emittance (hor./vert.) [pm rad]	< 20 / 4	< 50 / 10
Total current [mA]	200	80
Number of Bunches	1600 = 80 x 20	80
Bunch population [10 ¹⁰]	0.6	4.8
Bunch separation [ns]	4 + gaps (20)	96

C. G. Schroer, et al., JSR 25, 1277 (2018).

PETRA IV - The Ultimate 3D X-ray Microscope

Imaging of disordered samples with molecular resolution:

Images: O. Seeck, C. Schroer

Petra IV will need:

- Real time data processing, data reduction
- Fast feedback systems, e.g. for beam stabilization
- Fast, efficient data acquisition
- ► On-the-fly scanning ⇒ modern motion control with fast synchronization

Martin Tolkiehn | MicroTCA for photon science experiments| August 24, 2021| Page 8

Upgrade of control and data acquisition electronics

PETRA III VME and NIM

Beam position monitor,

Martin Tolkiehn | MicroTCA for photon science experiments Augus

Struck SIS8300 with Gamma Firmware

122eV FWHM at 5.4keV, shaping time 560ns

Developed in collaboration with DESY-MSK, Jan Timm

Improvements of Gamma firmware

PhD thesis of Sarmad Adeel:

- Faster filtering algorithms, shaping times <300ns, FWHM <155eV</p>
- Support of SIS8300-KU with new MSK firmware framework (in progress...)

Motion control: Four circle diffractometer at P24

- Everything is motorized!
- Synchronous motion
- ► Scan speed 10°/s
- Synchronization of Detectors with µs precision

Motion control: Current PETRA III solution

VME based motion controller (OMS MAXv):

- Phytron ZMX motor drivers in home made crates
- 2 OMS cards per ZMX crate (16 motors) needed
- Synchronization and on-the-fly scans limited

The PETRA IV solution based on MTCA.4

- 16 axes per card
- Synchronization of many cards
- Triggering via MLVDS
- Compatible with ZMX
- Support of modern drivers via EtherCAT, Sercos...
- Compatible with existing software
- Prototype will be ready soon!

Conclusion

Old VME electronics can be replaced by MTCA:

- Different types of ADCs are available
- Photon counting
- Motor controller is in development
- ▶ Much more: Camera interface, GPIO, DACs, Piezo controller, beam stabilization...

Thanks:

- J. Timm, S. Adeel, M. Kamiński
- M. Fenner, N. Radakovic, S. Chystiakov, R. Wedel
- H. Schlarb
- DESY-ITT (Funding)

