THE MICROTCA FAST CONTROL BOARD FOR GENERIC CONTROL AND DATA ACQUISITION APPLICATIONS

Jie Zhang, Cong He (IHEP)

The 2nd MTCA/ATCA Workshop for Research and Industry Aug. 24th, 2021

WHAT ABOUT FPGAS FOR HIGH ENERGY PHYSICS (HEP) & HIGH ENERGY PHOTON SOURCE (HEPS)?

Workloads for FPGA:

- Front-end Electronics Control
 - Fast Control
 - Slow Control
- Clock Synchronization
- Monitoring
- Data Acquisition
 - Signal processing, filtering

Trends:

- Machine Learning (Deep Learning)
- Data Analytics

Source: Deeper, Faster Learning with FPGA Co-Processors

MOTIVATION

- The data volume of HEP/HEPS experiments need to reduce, PB/year to ?
- Finding new physics requires massive increase of processing power, much more flexible algorithms in software and much faster interconnects

MICROTCA.4 GROUPING

- Divided into three groups, in each group:
 - 3 AMCs with RTM
 - FPGA boards
 - 1 CPU board
 - 4-core Xeon Processor E3-1505M (3GHz)
 - ConCurrent Technologies AM G64/472-51

5

Vadatech AMC725

ANC AND RTN BOARDS RTM

u4FC&P hardware

AMC board

- FPGA (Kintex Ultrascale+)
- DDR4 SODIMM connector x2
- AMC backplane & RTM
 - Internal communication
- FMC Mezzanine Card (FMC) connector x2
 - ADC cards
 - FPGA cards
 - SPF+/QSFP cards
- Rear Transfer Module board
 - Fast data storage
 - FPGA (Kintex-7)
 - External communication through FMCs

AMC

BACKPLANE TOPOLOGY

N.A.T NATIVE-R9-WR Crate

Port 0: 1GbE

- Port 1: Redundant 1GbE
- Port 2~3: Internal links
- Port 4~7: PCIe x4
- Port 8~11: Redundant PCIe x4
- Port 12~15: Internal links
- Port 17~20: Triggers, Clocks or Interlocks
- TCLKA, TCLKB: System clocks
- TCLKC, TCLKD: Redundant system clocks
- TCLKD: PCIe reference clock

MICROTCA.4 CRATE WITH MCH, CPU AND FPGA BOARDS

Back View

Front View

UTCA FPGA COMPUTING SPECIFICATION

uFC v2

- Xilinx Kintex-7 28nm 7K325T
 - 0.32 Million System Logic
 - 840 DSP
- PCIe2.0 x4
- 8GB DDR3 800MHz SDRAM ECC
- 8*10G High-Speed Serial Links

u4FCV

- Xilinx Virtex-7 28nm 7VX690T
 - 0.69 Million System Logic
 - 3600 DSP
- 3*PCIe3.0 x4
- 2*8GB DDR3 800MHz SDRAM ECC
- 16*10G High-Speed Serial Links

u4FC&P v1

- Kintex Ultrascale+ 16nm KU11P
 - 0.65 Million System Logic
 - 2928 DSP
- 4*PCIe4.0 x4 + PCIe4.0 x8
- 16GB DDR4 1200MHz SDRAM ECC
- 2*100G High-Speed Serial Links

Name	Instance Specs					
	Status	FPGA	Memory	NVMe	PCIe BW	Network
uFC v2	Ready	7K325T	8GB	-	2 GB/s	10GbE
u4FCV	Planned	7VX690T	8GB * 2	-	4 GB/s	40/100GbE
uFC&P v1	Ready	KU11P	16 G B * 2	4*1TB	8 GB/s	40/100GbE

APPLICATIONS - PHYSICS EXPERIMENTS

- Taishan Anti-neutrino Observatory (TAO), a satellite experiment of JUNO (Jiangmen Underground Neutrino Observatory)
 - Taishan Nuclear Power Plant, 30 35 m from one of the 4.6 GW reactor cores
- Measure reactor neutrino spectrum
 - Ton scale Gd-doped Liquid Scintillator (Gd-LS)
 - Full coverage of SiPM (Silicon photomultiplier)
 - Operate at -50 °C (reduce SiPM dark noise)
 - Water tanks and plastic scintillator for muon veto and shielding
- Under construction
 - Online in end of 2022
- CDR was released in 2020 (arXiv:2005.08745)

GdLS \rightarrow Acrylic vessel \rightarrow SiPM/support \rightarrow Cryogenic vessel (SS + insulation) \rightarrow 1.2 m water or HDPE shielding \rightarrow Muon veto

ELECTRONIC READOUT FOR TAO

- Total 8028 channels
- ADC is on FEC, used to digitize analog signals from FEB
- FPGA & Power boards in MicroTCA.4 crate
 - Q/T information is extracted with FPGA (waveform analysis)
 - Trigger & DAQ
 - White Rabbit (WR) for system clock synchronization

11

APPLICATIONS - SYNCHROTRON SOURCE EXPERIMENTS

High Energy Photon Source (HEPS)

- Under construction at Huairou District, Beijing
 - Start the user operation in 2026
- Key-Parameters

Parameters	Nominal			
Beam energy	6.0 GeV			
Emittance	better than 0.06nm×rad			
Beam	Higher than 1×1022 phs/s/mm2/mrad2/0.1%BW			
Spatial resolution	10 nm			
Energy resolution	1 meV			
Photon energy	Up to 300keV			

- More than 90 beamlines and end-stations
- Ref: <u>http://english.ihep.cas.cn/heps/index.html</u>

Shanghai HIgh repetitioN rate xfel and Extreme light facility (SHINE)

- Under construction at Zhangjiang, Shanghai
 - Start the user operation in 2026
- Key-Parameters

Parameters	Nominal		
Beam energy	8.0 GeV		
Bunch charge	100 pC		
Max rep-rate	1 MHz		
Beam power	0.8 MW		
Photon energy	0.4 – 25 keV		
Pulse length	20 – 50 fs		

- 3 beamlines and 10 end-stations
- Ref: <u>https://indico.desy.de/event/21806/</u>

ELECTRONIC READOUT FOR X-RAY DETECTION

ELECTRONIC READOUT FOR X-RAY DETECTION

SUMMARY

- MicroTCA architecture
 - Suitable for small and medium-sized experiments
- uFC series boards
 - FPGA-based MicroTCA compatible AMC board
 - For generic system control and data acquisition in HEP/HEPS experiments
 - HPC FMC sockets
 - Provide additional clock signals, user-specific I/O and high-speed transceivers that can be used to extend the connectivity as well as the I/O bandwidth
 - Successfully demonstrated the feasibility of the uFC in HEP/HEPS experiments
- Outlook
 - High-level tools for software development productivity
 - Vivado HLS, OpenCL, etc.
 - Applications in HEP/HEPS
 - Need the cooperation with PHY/SIM/DAQ/Online-tracking groups
 - Long-term experience with respect to reliability and availability

NOUNS

• **IP**, Intellectual Property

In electronic design a semiconductor intellectual property core, IP core, or IP block is a reusable unit of logic, cell, or integrated circuit (commonly called a "chip") layout design that is the intellectual property of one party.

 DMA, Direct memory access DMA is a feature of computer systems that allows certain hardware subsystems to access main system memory (random-access memory), independent of the central processing unit (CPU).

• XDMA, DMA from Xilinx

- RTL, register-transfer level In digital circuit design, RTL is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those signals.
- **NVMe SSD**, Non-Volatile Memory Express Solid State Drives
- **Iperf**, is a network testing utility helpful for determining network performance.

FPGA SHELL OPTIONS

Xilinx SDAccel Based Shell

- Scenario: Rapid development, block computing
 - User logic: OpenCL C, HLS C and RTL supported
 - Suited for quick evaluation/porting of existing customer code
- Shell feature:
 - Xilinx scatter-gather XDMA optimized for big block data transfer
 - Serial message notification
 - Offload acceleration

KEY BENEFITS TO FPGA COMPUTING

- Balances programmability and high performance for key workloads
- Utilizing FPGA technology as a utility, resulting in faster access to the newest technology

COMPARISON BETWEEN DAMC-FMC25, FC7 AND UFC V1

- With the popularization and development of MicroTCA, various FPGA-based AMCs with dual-FMC have been used in HEP experiments (e.g. LHC, E-XFEL, J-PARC)
- DAMC-FMC25 is one which developed by DESY, transformed into commercial product by CAENels.
- FC7, Built upon the success of existing hardware developments the Gigabit Link Interface Board (GLIB), is a new generation AMC for generic DAQ and control applications in CMS.

COMPARISON TABLES FOR DAMC-FMC25, FC7 AND UFC	
---	--

		DAMC-FMC25	FC7	uFC
		XC5VFX70T/	XC7K420T	XC7K325T
FF	PGA	XC5VFX100T		
		2FFG1136 FFG1156		FFG900
Me	mory	256MB DDR2	0.5GB DDR3	Up to 8GB DDR3 SODIMM
FMC	IO	68	68	116
x2 MGT		2/4	12/8	4/4
	SFP+	-	-	2
Communication	AMC high-speed	Port 0, 1, 4~7, 12~15	Port 0~11	Port 0, 1, 4~7
	connectivity	Class D.1. for RTM	Without RTM	Without RTM
	LEMO/SMA	1	2	4
White Rabbit (WR)		-	-	Yes

WHAT IS XTCA?

The dimension of a xTCA crate is depending on:

- Numbers and sizes of slots
- Cooling concept
- Heat dissipation
- Request for redundancy

- Fully integrated into the ATCA IPMI management structure
- Hot Swap capability

ATCA Shelf

MTCA Shelf

Source: N.A.T.

COMMUNICATION EVALUATION

- FPGA connects NVMe SSD directly with file system
 - Without CPU or external memory.
 - It is the best solution for applications which require huge capacity and ultra high-speed.
 - NVMe-IP: FAT32 or exFAT
 - From Design Gateway Co., Ltd
 - Tested via Xilinx KCU105 evaluation board

NVMe SSD M.2	HP EX900	Samsung 970 EVO	Samsung 970 PRO
Writing Speed from datasheet	1300 MB/s	Up to 2300 MB/s	Up to 2300 MB/s
NVMe-IP Tested Average Writing Speed @ Block size: 128 KB	80~100 MB/s *	~800 Mb/s *	~2200 MB/s
Cost(512GB)	¥ 469	¥ 889	¥ 1349

* Very fast at the beginning

COMMUNICATION EVALUATION

• CPU 10 GbE network performance

	Model	Core	DDR	NIC
	AMC725	Intel Xeon E3-1125 @ 2.5GHz x8	8GB DDR	Intel 82599ES
	AM G64/472-51	Intel Xeon E3-1505M @ 3.0GHz x4	32GB DDR	Intel X710-BM2
 Test Setup 		iperf3-3.1.3 60 seconds	Intel Core i5-3 80 Ce	PC 3470 @ 3.2GHz x4 3B DDR entOS 7
	AMC72 Or AM G64/47 CentOS	5 Port 0 7 Port 1	Intel 82599 SFI/SFP+ Net	ES 10-Gigabit work Connection

COMMUNICATION EVALUATION

• CPU 10 GbE network performance

	Core	DDR	NIC	Hard disk	Cost
AMC725	Intel Xeon E3-1125 @ 2.5GHz x8	8GB DDR	Intel 82599ES	Dual 2.5 inch SATA SSD	¥ 32766
AM G64/472-51	Intel Xeon E3-1505M @ 3.0GHz x4	32GB DDR	Intel X710-BM2	Dual M.2 SSD	¥ 42813

Single Port

Dual Ports

	Iperf Server	Iperf Client			Iperf Server	Iperf Client
AMC725	9.43 Gbps	9.42 Gbps	AMC725	Port0	6.2 Gbps	5.70 Gbps
AM G64/472-51	9.42 Gbps	9.41 Gbps		Portl	6.2 Gbps	5.68 Gbps
		AM G64/472-51	Port0	5.58 Gbps	6.74 Gbps	
				Portl	5 49 Ghps	674 Ghns

Due to the limitation of PCIe x4, the two ports share the bandwidth.

APPLICATIONS - X-RAY DETECTOR

Fig. 7. uFC with Quad SFP/SFP+ transceiver FMC and Quad Molex Nano-Pitch I/OTM Interconnect FMC mounted.

X-ray image

Back-end hardware

Fig. 6. Block diagram of HEPS-BPIX detector. The assembled front-end modules plug and play into the uFC in daisy chain via Molex Nano-Pitch I/O^{TM} Interconnect Cable. The uFC connects to DAQ with four 10G Ethernet cables

FPGA firmware

Jie Zhang, et al. (2018). <u>"The MicroTCA fast control board for generic control and data acquisition applications in HEP experiments"</u>, IEEE Transactions on Nuclear Science (Volume: 66, Issue: 7, July 2019)

FEASIBILITY

- AMC+RTM boards
 - With different FMC boards

QSFP28 x2

QSFP28 x2