

Scientific Merit: Polarizabilities in Nucleons

- Nucleon POLARIZABILITIES characterize the response of the nucleon to low-frequency light: Structure Functions
- ▶ e.g., the $β_M$ (magnetic polarizability) of a nucleon is an interplay between diamagnetic charged pion currents and paramagnetic Δ resonance
- > Polarizabilities have been parameterized in various frameworks¹:
 - ➤ Low-Energy Expansion (LEX)² ω < 70 MeV
 - Dispersion Relations (DR)³
 - ➤ Chiral Effective Field Theories (χ EFT)⁴ ($\omega < \Lambda_b \sim 650$ MeV)
 - ➤ Lattice QCD (L-QCD)⁵

¹ F. Hagelstein, R. Miskimen, V. Pascalutsa arXiv:1512.03765v3 [nucl-th] (2016)

² B. E. MacGibbon, et al., Phys. Rev. C 52 (1995) 2097–2109

³ B. Pasquini, D. Drechsel, M. Vanderhaeghen, Phys. Rev. C 76 (2007) 015203.

⁴H. W. Griesshammer, J. A. McGovern, and D. R. Phillips, Eur. Phys. J. A 52, 139 (2016), arXiv:1511.01952 [nucl-th].

 5 NPLQCD, GW group, Adelaide group, \ldots

⁶ R. P. Hildebrandt, Griesshammer, Hemmert, Pasquini, Eur, Phys. J, A 20, 293-315 (2004)

HE UNIVERSITY North Carolina Chapel Hill

Polarizabilities in the χ EFT framework

- Polarizabilities have been characterized in the framework of Elastic Compton scattering in χEFT as six low-energy parameters¹:
 - ★ Consider the case for Coherent scattering from a single nucleon (e.g., proton), in the region $\omega \leq m_{\pi}:$
 - ↔ LO: the Born terms (point-like nucleon with κ), plus the π^0 t-channel coupling, no NLO
 - ✤ N²LO: pion cloud (this is where polarizabilities enter)
 - N³LO: Δ and its pion cloud
 - ✤ N⁴LO: Corrections to pion-cloud effects
 - ✤ For the case of neutron, since there are no free neutron targets, light-nuclei are considered
 - ✤ (e.g. Deuteron and 3He) two-body currents
 - Nucleon polarizabilities as linear combinations (³He: $2\alpha_p + \alpha_n$, ²H: $\alpha_p + \alpha_n$)
 - 1. H. W. Griesshammer, J. A. McGovern, and D. R. Phillips, Eur. Phys. J. A54, 37 (2018), arXiv:1711.11546
 - 2. H. W. Griesshammer, J. A. McGovern, and D. R. Phillips, Eur. Phys. J. A 52, 139 (2016), arXiv:1511.01952 [nucl-th].
 - 3. H.W. Griesshammer, J.A. McGovern, D.R. Phillips, G. Feldman, Using Effective Field Theory to analyse low-energy Compton scattering data from protons and light nuclei, Progress in Particle and Nuclear Physics, doi:10.1016/j.ppnp.2012.04.003

The Current Status of nucleon polarizabilities

Deuteron World Data

Plots courtesy of Harald Grießhammer

¹ H. W. Griesshammer, J. A. McGovern, and D. R. Phillips, Eur. Phys. J. A54, 37 (2018), arXiv:1711.11546.
H. W. Griesshammer, J. A. McGovern, and D. R. Phillips, Eur. Phys. J. A 52, 139 (2016), arXiv:1511.01952 [nucl-th].

 χEFT extraction of polarizabilities based upon fit to the world data¹. Spin polarizabilities are not discussed in detail in this proposal. However, it must be noted that the EM polarizabilities are inputs to the extraction of spin polarizabilities

$lpha_{E1}$	Electric Dipole	(p) $10.65 \pm 3.2\%$ (stat) ± 0.2 (Baldin) ± 0.3 (theory)
		(n) $11.55 \pm 10.8\%$ (stat) $\pm 0.2\%$ (Baldin) ± 0.8 (theory)
ß	Magnetic Dipole	(p) $3.15 \mp 11.1\%$ (stat) ± 0.2 (Baldin) ± 0.3 (theory)
ρ_{M1}		(n) $3.65 \mp 34.2\%$ (stat) ± 0.2 (Baldin) ± 0.8 (theory)
	Spin Polarizabilities	
γ_{E-}	$\gamma_{E1E1} - \gamma_{E1M2}$	They have been calculated for proton and neutron in various theoretical frameworks, data only exists for proton spin polarizabilities [2]. See Ref [3] for a detailed overview of spin polarizabilities
γ_{M-}	$\gamma_{M1M1} - \gamma_{M1E2}$	
γ ₀	$-\gamma_{E1E1} - \gamma_{M1M1} - \gamma_{E1M2} - \gamma_{M1E2}$	
γ_{π}	$-\gamma_{E1E1} + \gamma_{M1M1} - \gamma_{E1M2} + \gamma_{M1E2}$	

¹ H. W. Griesshammer, J. A. McGovern, and D. R. Phillips, Eur. Phys. J. A54, 37 (2018), arXiv:1711.11546.

H. W. Griesshammer, J. A. McGovern, and D. R. Phillips, Eur. Phys. J. A 52, 139 (2016), arXiv:1511.01952 [nucl-th].

² P. P. Martel, et al., Phys. Rev. Lett. 114 (2015) 112501.

³ F. Hagelstein, R. Miskimen, V. Pascalutsa arXiv:1512.03765v3 [nucl-th] (2016)

Start of the Compton Program at HIGS (the last three years)

Experiment	Status - Outcome
Proton Compton Scattering with Linear and Circularly Polarized Beams (81 MeV)	Manuscript submitted to PRL, new Chiral EFT extraction of proton EM polarizabilities
Deuteron Compton scattering (65 and 85 MeV) – high statistics / low-energy resolution	Manuscript in preparation, adds 16 more data points to the deuteron Compton scattering database – calculations are underway to extract EM polarizability sensitivity to the total cross section
⁴ He Compton scattering at 81 MeV	Phys. Rev. C Published March 2020 – new Chiral EFT calculation to extract nucleon polarizabilities from 4He Compton scattering expected soon (HG- GWU)
² H Compton scattering at 65 and 85 MeV with high energy-resolution	DIANA and BUNI detectors commissioned. First data collected at 61 MeV
³ He Compton Scattering at 110 MeV Using Cryogenic Target	³ He target modified for 2K operations. Awaiting delivery of 3He from UVa

Compton Scattering – ⁴He

(រs/qu) ប្រ/op 160 • This work Lund, E_√=87 MeV 120 100 80 60 40 20 0 (ls/qu) Cp/op 140 Δ HlγS, E_γ=61 MeV ¥ 120 <u></u> Ā 100 4 Ā 80 60 40 20 040 60 80 100 120 140 160 20 θ_{lab} (deg)

⁴He CS

Deuteron Compton Scattering

Proof of Principle – ¹²C Compton scattering with high energy-resolution beam

TUNI

Compton Scattering – ²H, High Resolution

Inelastic contribution to the total cross section is approximately 23.9%

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Deuteron Compton Scattering – Scaling our earlier measurement to the newly found inelastic contribution

Polarized Compton Scattering – ¹H

Polarized Compton Scattering – ¹H

3He Compton Scattering at HIGS

Left: the cryotarget with fragile components (Kapton windows and cell) removed for vent test cooldowns. Right: The temperature rise after venting. Occurs on ~ 1 min time-scale. This determines the ³He gas recovery needs.

Preparation for 3He Compton scattering

THE UNIVERSITY of NORTH CAROLIN at CHAPEL HILL

Neutron Polarizabilities from 3He Compton Scattering

NC STATE

UNIVERSIT

1

- Perform a differential cross section measurement at 120 MeV or higher;
- > Measure 8 angles between 55° and 155° ;
- > For neutron $\alpha_n \beta_n$ known to ± 3 (canonical units);
- > Polarizabilities show $\pm 5\%$ variation at 120 MeV when $\alpha \beta$ is varied by ± 2 ;
- To be better than the collective neutron error bar, we have to measure the cross sections at 110 MeV with ±7% accuracy at the back angles²
- > If the UVU mirror development is successful, we maybe able to do $120 < \omega < 140$ MeV

H. W. Griesshammer, J. A. McGovern, and D. R. Phillips, Eur. Phys. J. A54, 37 (2018), arXiv:1711.11546.
Harald Griesshammer, D R. Phillips, and J. McGovern, private communication

TUNL

2H Compton Scattering

- Perform a differential cross section measurement at 65 and 85 MeV;
- \geq Measure 6 angles between 55° and 155°;
- Six angles at two energy would add twelve (12) data points to the world data set for the extraction of polarizabilities from deuteron CS

4He Compton Scattering

- As part of commissioning the cryogenic target for ANY Compton scattering run, we always first take date with ⁴He filled target;
- This exercise will provide us ⁴He CS cross section data at 8 angles for 120 MeV run with ³He;
- The nucleon polarizability extractions using xEFT are expected soon¹

^{1.} Harald Griesshammer, private communication

TUNL Faculty	Ahmed, Crowe, Gao, Howell, Karwowski, Markoff, Wu
Graduate Students	Xiaqing Li (TUNL), J. Zhou, Danula Godagama (Uky), + 1 Ph.D students (TUNL) + 1 M.S. and 4 Undergraduate Students
Post- docs/Research Scientists	M. Sikora (TUNL & GWU), Kent Leung (Cryogenic Expert)
External Collaborators	Evie Downie, Jerry Feldman, Harald Grießhammer (GWU), Mike Kovash (Uky), Rob Pywell (USask), Mark Spraker (UNG), Blaine Norum, Don Crabb (UVa), Steve Whisant, Adriana Banu (JMU), Dave Hornidge (MAU)
Theory Support	Harald Grießhammer (GWU), D. R. Phillips (Ohio), and J. A. McGovern (Manchester)

Extra Slides

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

18

Nucleon Self-Energy Themes from the LRP 2015 $M_n - M_p = 1.29333217(42) \text{ MeV}$ Expressions of chiral dynamics in hadrons: Pion-cloud physics The EM self-energy of the nucleon A new era in the theory of hadron structure: Low-energy effective field can be related to the measured theories and Lattice QCD elastic/inelastic cross sections; Theory of nuclei: to explain, predict and use: ab-initio calculations Largest source of error is from β_n – (few-nucleon systems and light nuclei β_n (where error from the neutron Long-distance [...] effective theory, as well as emerging LQCD dominates) calculations, can provide benchmark predictions for so-called polarizabilities that parameterize the deformation of hadrons due to electromagnetic fields, spin fields, or even internal color fields. **Proton Radius Puzzle** Insight into the binding in nuclear force due to photon Ο coupling to charged pion-exchange currents; SCIENCE Ref.⁶, CODATA 2014 Ref. 7, µH spectroscopy Ref.⁶, e-p scattering Ref.¹, µH spectroscopy Ref.⁶, H spectroscopy Ref.³, H spectroscopy 1. Miller, G. A. Proton polarizability contribution: muonic hydrogen Lamb shift and elastic scattering. Ref.⁴, H spectroscopy Phys. Lett. B 718, 1078-1082 (2013). Ref. 5, e-p scattering 2. Xiong, W., Gasparian, A., Gao, H. et al. A small proton charge radius from an electron-proton This work, e-p scattering scattering experiment. Nature 575, 147-150 (2019) 3. R. Pohl, et al., Nature 466 (2010) 213-216 E. Borie, Lamb Shift in Muonic Hydrogen, arXiv:Physics/04100513v3 4. 0.78 0.80 0.88 0.90 0.92 0.82 0.84 0.86 5. J. C. Bernauer, R. Pohl, Sci. Am. 310 (2014) 18-25. Proton charge radius, $r_{\rm p}$ (fm) Cottingham : Ann Phys (NY) 25, 424 (1963), AW-L, CEC, GAM, PRL, 108, 232301 (2012) 7. $r^{p} = 0.84184(36:exp)(56:theory)fm$ 8. J. Gasser, M. Hoferichter, H. Leutwyler, A. Rusetsky, Cottingham formula and nucleon polarisabilities, Eur. Phys. J. C (2015) 75:375 Proton polarizability comes as an input to the theoretical treatment 9. J. A. McGovern, Eur. Phys. J. A (2012) 48: 120, H.WG, JAM, and D. R. Phillips, arXiv:1511.01952) NC STATE 19 1 UNIVERSITY at CHAPEL HILL