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• “So far we have analyzed less than 6% of the data that the experiment will eventually collect.
Although these first results are telling us that there is an intriguing difference with the Standard
Model, we will learn much more in the next couple of years.” – Chris Polly, Fermilab scientist,
co-spokesperson for the Fermilab muon g − 2 experiment.

2004

Apr 7, 2021
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q = p′ − p, ν
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Dirac equation implies:
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(Euclidean space time)

• The quantity a is called the anomalous magnetic moments.

• Its value comes from quantum correction.
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Muon g − 2 Theory Initiative White paper posted 10 June 2020.
132 authors from worldwide theory + experiment community. [Phys. Rept. 887 (2020) 1-166]

• Two methods: dispersive + data ↔ lattice QCD

From Aida El-Khadra’s theory talk during the Fermilab g − 2 result announcement.



HLbL: Analytical approach Muon g − 2 White paper 2020 5 / 27

• Heroic efforts by
Johan Bijnens, Gilberto Colangelo, Antoine Gérardin, Nils Hermansson-Truedsson, Martin Hoferichter,
Bai-Long Hoid, Bastian Kubis, Stefan Leupold, Pere Masjuan, Kirill Melnikov, Harvey B. Meyer,
Andreas Nyffeler, Massimiliano Procura, Antonio Rodríguez-Sánchez, Pablo Sanchez-Puertas,
Sebastian P. Schneider, Peter Stoffer, Arkady Vainshtein, etc
Published in a series of works, which are summarized in the community muon g − 2 white paper.

q = p′ − p, ν

p p′
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Contribution PdRV(09) [471] N/JN(09) [472, 573] J(17) [27] Our estimate

π0, η, η�-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
π,K-loops/boxes −19(19) −19(13) −20(5) −16.4(2)

S -wave ππ rescattering −7(7) −7(2) −5.98(1.20) −8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars − − − �
− 1(3)tensors − − 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance − 21(3) 20(4) 15(10)

c-loop 2.3 − 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 15: Comparison of two frequently used compilations for HLbL in units of 10−11 from 2009 and a recent update with our estimate. Legend:
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N/JN = Nyffeler / Jegerlehner, Nyffeler; J = Jegerlehner.

in Table 15.42 While the central values are all quite close to each other (the largest discrepancy is with the Glasgow
consensus, which, however, includes a large part of the short-distance contribution in the pseudoscalar poles) and all
compatible within errors, the largest improvement is in the uncertainty, which has been reduced by a factor 6 to 3.

The lower part of the table contains the remaining contributions, which still suffer from significant uncertainties,
further separated into the contribution from light quarks as well as the c-loop. For these a comparison among different
evaluations is more difficult, because model dependence is still affecting all contributions (with the exception of the
short-distance contribution evaluated here). It is in this second part of the table that future progress will have to
happen.

We have described above how we obtained our final error estimate. Just for comparison, in PdRV [471] all errors
have been added in quadrature, in N/JN [472, 573] all errors have been added linearly, and in J [27] the errors have been
added in quadrature and then multiplied by a factor 2 to account for possible model uncertainties so far unaccounted
for.

We also briefly comment on the numbers in the recent review by Danilkin, Redmer, and Vanderhaeghen [626]. The
main difference is their estimate of the pseudoscalar-pole contribution, 84(4) × 10−11, lower than our value by about
2.5σ, which is incompatible with what we know about this contribution as explained in Sec. 4.4. The smaller value for
the PS-poles is compensated by the quark-loop contribution, 20(4) × 10−11, which is a bit larger than our estimate of
the short-distance contribution, leading to a central value, 87(13) × 10−11, very close to ours. The errors in Ref. [626]
are added linearly, but in particular the uncertainties for the axial-vectors and the short-distance contribution are much
smaller than ours, which is the main reason for their rather small total uncertainty.

The comparison discussed here clearly shows that there has been significant progress since the time of the Glasgow
consensus. The development of a more systematic approach to the calculation of the HLbL contribution has led to
improved estimates of several of the underlying contributions. The shifts in the central values are relatively moderate,
never larger than two sigmas with respect to older estimates, but the overall shift is quite significant and in the negative
direction, thus increasing the discrepancy with the measured value. Even more important than the shift in the central
value is our ability to make better uncertainty estimates. In some cases these have been drastically reduced with
respect to the time of the Glasgow consensus, but in some others a better theoretical understanding of the formalism
has led to a more cautious attitude. The upshot is that even taking a conservative approach we could bring the total
uncertainty down to about 20% of the central value and the prospects for an even further reduction in the coming
years, towards the 10% goal, are very good as will be sketched in the next subsection.

42To make a meaningful comparison, since the largest contribution among the scalars is due to the σ/ f0(500), which is treated as a ππ rescattering
effect here, we have considered the contribution of the scalars of earlier evaluations in the line labeled “S -wave ππ rescattering.” This is indeed
justified for the scalar contribution −6.8(2.0) × 10−11 in the ENJL model from Ref. [484], as confirmed in Ref. [666]. The σ/ f0(500) is also
responsible for 50–80% of the value −6.0(1.2) × 10−11 from Ref. [27], depending on the mixing.

138

• Values in the table is in unit of 10−11.

• The total HLbL contribution is on the order of 10× 10−10.

• “Short-distance constraints in hadronic-light-by-light for the muon g − 2”
Talk by: Johan Bijnens

• Make use of experimental inputs on many processes: γ(∗)γ∗ → π0, η, η′, ππ.
New experiments results (Jlab, KLOE, BESIII, etc).
Talk by: Ilya Larin, Igal Jaegle, Elena P. D. Rio

q = p′ − p, ν
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Figure credit: Stephen R. Sharpe.
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• First lattice result for the hadronic light-by-light scattering contribution to the muon g − 2 with all
errors systematically controlled.

• Lattice calculation directly at the physical pion mass and no Chiral extrapolation is needed.



HLbL: diagrams 10 / 27

q = p′ − p, ν

p p′
xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ→

• Gluons and sea quark loops (not directly connected to photons) are included automatically
to all orders!

• There are additional four different permutations of photons not shown.

• The photons can be connected to different quark loops. These are referred to as the
disconnected diagrams. They will be discussed later.

• First results are obtained by T. Blum et al. 2015 (PRL 114, 012001).
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

• Two point sources at x, y :
randomly sample x and y .

• Importance sampling:
focus on small |x − y |.

• Complete sampling for |x − y | ≤ 5a
upto discrete symmetry.

aµ
mµ
ūs ′ (⃗0)

Σ

2
us (⃗0) =

∑
r=x−y

∑
z

∑
xop

1

2
(x⃗op − x⃗ref)× ūs ′ (⃗0)iF⃗C (⃗0; x, y , z, xop)us (⃗0)

µ⃗ =
∑
x⃗op

1

2
(x⃗op − x⃗ref)× J⃗(x⃗op)

Reorder summation
|x − y | ≤ min(|y − z |, |x − z |)

• Muon is plane wave, xref = (x + y)/2.

• Sum over time component for xop.

• Only sum over r = x − y .

T. Blum et al 2016. (PRD 93, 1, 014503)
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Muon leptonic light by light 26/50

• We test our setup by computingmuon leptonic light by light contribution to muon g−2.

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

0

10

20

30

40

50

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

a
µ
×

1
0
1
0

1/(mµL)
2

analytic
a = 0

mµa = 0.1000
mµa = 0.1333
mµa = 0.1500
mµa = 0.2000

F2(a, L)=F2

(
1− c1

(mµL)2
+

c1
′

(mµL)4

)
(1− c2 a

2+ c2
′ a4) → F2= 46.6(2)× 10−10 (19)

• Pure QED computation. Muon leptonic light by light contribution to muon g − 2.
Phys.Rev. D93 (2016) 1, 014503. arXiv:1510.07100.

• Analytic results: 0.371× (α/π)3= 46.5× 10−10.

• O(1/L2) finite volume effect, because the photons are emitted from a conserved loop.
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• One diagram (the biggest diagram below) do not vanish even in the SU(3) limit.

• We extend the method and computed this leading disconnected diagram as well.

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κy, σ x, ρ

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnkz′, κ′
y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

• Permutations of the three internal photons are not shown.

• Gluons exchange between and within the quark loops are not drawn.

• We need to make sure that the loops are connected by gluons by “vacuum” subtraction.
So the diagrams are 1-particle irreducible.
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Disconnected formula 29/50

xsrc xsnkx′, ρ′ y′, σ′ z′, κ′

xop, ν

x, ρ y, σ z, κ

• Point x is used as the reference point for the moment method.

• We can use two point source photons at x and y, which are chosen randomly. The points
xop and z are summed over exactly on lattice.

• Only point source quark propagators are needed. We computeM point source propagators
and all M2 combinations of them are used to perform the stochastic sum over r=x− y.

T. Blum et al 2017. (PRL 118, 2, 022005)
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48I 64I

• Domain wall fermion action (preserves Chiral symmetry, no O(a) lattice artifacts).

• Iwasaki gauge action.

• Mπ = 135 MeV *, L = 5.5 fm box, 1/a48I = 1.73 GeV, 1/a64I = 2.359 GeV.
PRD 93, 074505 (2016) RBC-UKQCD

*: Valence pion mass. Slightly different from the 139 MeV unitary pion mass used in the ensemble generation.

T. Blum et al 2020. (PRL 124, 13, 132002)
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48I 64I

24D 32D 48D 32Dfine

• For 24D, 32D, 48D, 32Dfine,
Mπ ≈ 140 MeV T. Blum et al 2020. (PRL 124, 13, 132002)
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aµ
mµ
ūs ′ (⃗0)

Σ

2
us (⃗0) =

∑
r=x−y

∑
z

∑
xop

1

2
(x⃗op − x⃗ref)× ūs ′ (⃗0)iF⃗C (⃗0; x, y , z, xop)us (⃗0)

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5

a
µ
×
10

1
0

r (fm)

48I con
64I con
24D con
32D con
48D con

32Dfine con

Partial sum is plotted above. Full sum is the right most data point.

T. Blum et al 2020. (PRL 124, 13, 132002)
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aµ
mµ
ūs ′ (⃗0)

Σ

2
us (⃗0) =

∑
r=x−y

∑
z

∑
xop

1

2
(x⃗op − x⃗ref)× ūs ′ (⃗0)iF⃗C (⃗0; x, y , z, xop)us (⃗0)

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

a
µ
×
10

1
0

r (fm)

48I discon
64I discon
24D discon
32D discon

32Dfine discon

Partial sum is plotted above. Full sum is the right most data point.

T. Blum et al 2019. (PRL 124, 13, 132002)
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aµ(L, a
I, aD) = aµ

(
1− b2
(mµL)2

− c I
1(a

I GeV)2 − cD
1 (a

D GeV)2 + cD
2 (a

D GeV)4
)

0
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0 0.05 0.1 0.15 0.2

a
µ
×
1
01

0

1/(mµL)
2

48I
64I
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32Dfine
24D-32D-48D

48I-64I
inf & cont
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0 0.05 0.1 0.15 0.2

a
µ
×
1
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0

1/(mµL)
2

48I
64I
24D
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32Dfine
24D-32D
48I-64I

inf & cont

0

2

4
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8

10
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0 0.05 0.1 0.15 0.2

a
µ
×
10

1
0

1/(mµL)
2

48I
64I
24D
32D

32Dfine
24D-32D
48I-64I

inf & cont

(conn) (discon)

(tot)

T. Blum et al 2020. (PRL 124, 13, 132002)
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con discon tot

aµ 24.16(2.30) -16.45(2.13) 7.87(3.06)
sys hybrid O(a2) 0.20(0.45) 0 0.20(0.45)
sys O(1/L3) 2.34(0.41) 1.72(0.32) 0.83(0.56)
sys O(a4) 0.88(0.31) 0.71(0.28) 0.95(0.92)

sys O(a2 log(a2)) 0.23(0.08) 0.25(0.09) 0.02(0.11)
sys O(a2/L) 4.43(1.38) 3.49(1.37) 1.08(1.57)

sys strange con 0.30 0 0.30
sys sub-discon 0 0.50 0.50

sys all 5.11(1.32) 3.99(1.29) 1.77(1.13)

• Same method is used for esimating the systematic error of individual and total contribution.

• Systematic error has some cancellation between the connected and disconnected diagrams.

T. Blum et al 2020. (PRL 124, 13, 132002)
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• Mainz pioneered in using the infinite volume QED method in HLbL. The QED weighting function
can be saved to disk and reuse.

• Use 4D rotational symmetry of the Euclidean space-time when combining the hadronic 4-point
function with the QED weighting function.

• The other aspect of the method is similar to the one used in the RBC/UKQCD calculation. It is
developed to a very large degree independently.

• Use the subtraction method for the QED weighting funcion invented by RBC-UKQCD based on the
QED∞: T. Blum et al 2017. PRD 96, 3, 034515
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E.H. Chao et al 2021. (EPJC 81 7, 651)
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• Pion masses are heavier than physical value and Chiral extrapolation is used.

• For the connected and disconnected diagrams’ contributions individually:

• For the total contribution:

– Note: more stringent Chiral fitting form for the total contribution due to weaker pion
mass dependence for the total contribution.

• Long distance (separation of the two vertices locations) contribution obtained by fitting an
ansatz: f (|y |) = |y |3Ae−B|y |.
Results only weakly depend on the form of the ansatz.

E.H. Chao et al 2021. (EPJC 81 7, 651)
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E.H. Chao et al 2021. (EPJC 81 7, 651)
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• Systematic uncertainty of the continuum extrapolation

Root-mean-squared deviation (9.2× 10−11) is estimated to be the uncertainty.

• Systematic uncertainty from Chiral extrapolation:

With Am2π → Al log(m2π/GeV2), half difference (6.0× 10−11) is used as the estimate of
the uncertainty. E.H. Chao et al 2021. (EPJC 81 7, 651)
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• Mainz 2021 is the most recent
lattice result. It uses heavier
pion mass with infinite volume
QED kernel and extrapolate to
the physical pion mass.

• RBC-UKQCD 2019 is the first
lattice result. It uses physical
pion mass in the finite volume
QEDL scheme and extrapolate
to the infinite volume.

• WP 2020 result uses dispersive relations and data. It is the sum of the contributions from
different cuts and poles. High energy contributions are the major source of uncertainties.

• These three results have different systematics and agree well with each other. Uncorrelated
average gives: aHLbL

µ = 9.77(1.16)× 10−10.

• Hadronic light-by-light contribution cannot be the source of the muon g − 2 puzzle.
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Thank You!
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xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.5 1 1.5 2 2.5 3

a
µ
×

1
0
1
0

Rmax/fm

24D 3+1

• 24D: 243 × 64
L = 4.8 fm

• a−1 = 1.015 GeV
Mπ = 142 MeV
MK = 512 MeV

• Partial sum upto Rmax

Rmax = max(|x − y |, |x − z |, |y − z |)

• The tadpole part comes from C. Lehner et al. 2016 (PRL 116, 232002)

• Systematic error (subdiscon): 0.5× 10−10
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xsrc xsnkα, ρ η, κ β, σ

xop, ν

z, κ

x, ρ y, σ

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5 3 3.5 4

a
µ
×

1
0
1
0

Rmax/fm

24D

• 24D: 243 × 64
L = 4.8 fm

• a−1 = 1.015 GeV
Mπ = 142 MeV
MK = 512 MeV

• Partial sum upto Rmax

Rmax = max(|x − y |, |x − z |, |y − z |)

• Systematic error (strange con): 0.3× 10−10
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xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ

y, σ x, ρ

• The three internal vertex attached to the quark loop are equivalent
(all permutations are included).

• We can pick the closer two points as the point sources x , y .

∑
x,y ,z

→
∑
x,y ,z



3 if |x − y | < |x − z | and |x − y | < |y − z |

3/2 if |x − y | = |x − z | < |y − z |

3/2 if |x − y | = |y − z | < |x − z |

1 if |x − y | = |y − z | = |x − z |

0 others
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Split the acon
µ into two parts:

acon
µ = a

con,short
µ + acon,long

µ

• acon,short
µ = acon

µ (r ≤ 1fm):
most of the contribution, small statistical error.

• acon,long
µ = acon

µ (r > 1fm):
small contribution, large statistical error.

Perform continuum extrapolation for short and long parts separately.

• acon,short
µ : conventional a2 fitting.

• acon,long
µ : simply use 48I value.
Conservatively estimate the relative O(a2) error: it may be as large as for acon,short

µ from
48I.
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aµ(L, a
I, aD) = aµ

(
1−

b2
(mµL)2

−c I
1(a

I GeV)2 − cD
1 (a

D GeV)2 + cD
2 (a

D GeV)4
)

O(1/L3)
aµ(L, a

I, aD) = aµ

(
1−

b2
(mµL)2

+
b2

(mµL)3

−c I
1(a

I GeV)2 − cD
1 (a

D GeV)2 + cD
2 (a

D GeV)4
)

O(a2 log(a2))

aµ(L, a
I, aD) = aµ

(
1−

b2
(mµL)2

−
(
c I
1(a

I GeV)2 + cD
1 (a

D GeV)2 − cD
2 (a

D GeV)4
)

×
(
1−
αS
π
log
(
(a GeV)2

)))
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aµ(L, a
I, aD) = aµ

(
1−

b2
(mµL)2

−c I
1(a

I GeV)2 − cD
1 (a

D GeV)2 + cD
2 (a

D GeV)4
)

O(a4) (maximum of the following two)
aµ(L, a

I, aD) = aµ

(
1−

b2
(mµL)2

−c I
1(a

I GeV)2 − cD
1 (a

D GeV)2 + c2(a GeV)
4
)

aµ(L, a
I, aD) = aµ

(
1−

b2
(mµL)2

−c1(a GeV)2 + c I
2(a

I GeV)4 + cD
2 (a

D GeV)4
)
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aµ(L, a
I, aD) = aµ

(
1−

b2
(mµL)2

−c I
1(a

I GeV)2 − cD
1 (a

D GeV)2 + cD
2 (a

D GeV)4
)

O(a2/L) (maximum of the following two)

aµ(L, a
I, aD) = aµ

(
1−

b2
(mµL)2

−
(
c I
1(a

I GeV)2 + cD
1 (a

D GeV)2 − cD
2 (a

D GeV)4
)(
1−

1

mµL

))

aµ(L, a
I, aD) = aµ

(
1−

b2
(mµL)2

)
×
(
1− c I

1(a
I GeV)2 − cD

1 (a
D GeV)2 + cD

2 (a
D GeV)4

)
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