

中国科学院理论物理研究所 Institute of Theoretical Physics, Chinese Academy of Sciences

Possible Bound States of $J/\psi J/\psi$ from dispersion relation

Xiang-Kun Dong

Nov. 16, 2021

- X.K. Dong, V. Baru, F.K. Guo, C. Hanhart, and A. Nefediev, <u>Phys.Rev.Lett. 126 (2021) 13, 132001</u>
- X.K. Dong, V. Baru, F.K. Guo, C. Hanhart, A. Nefediev and B.S. Zou, Sci. Bull. 66 (2021) 24, 2462-2470

- Coupled-channel interpretation of LHCb data
- > Interactions between $J/\psi J/\psi$ from dispersive relation:

soft gluon exchange \rightarrow two pion exchange + ...

> Possible bound states of $J/\psi J/\psi$

X(6900) in LHCb measurement

Figure 3: Invariant mass spectra of weighted di- J/ψ candidates with $p_{\rm T}^{{\rm di}-J/\psi} > 5.2 \,{\rm GeV}/c$ and overlaid projections of the $p_{\rm T}^{{\rm di}-J/\psi}$ -threshold fit using (a) the NRSPS plus DPS model, (b) model I, and (c) model II.

LHCb, Sci.Bull.65,1983(2020)

X(6900) compact tetraquark?
 Predictions dated back to 1970s
 Y. Iwasaki, Prog.Theor.Phys. 1975;54:492
 K.-T. Chao, Z.Phys.C7, 317(1981),
 A.M. Badalian et al., PRD25,2370(1982), ...
 Many theoretical investigations

...

X(6900) in LHCb measurement

Discussions of general threshold behaviors, see X.-K. Dong, F.-K. Guo and B.-S. Zou PRL126, 152001(2021) HILL HARD AND LAND

- Fully charmed tetraquark state?
 - 6.9 GeV too high for ground state
 - The gap 700 MeV too large for ground and 1st excited states
 - No lighter states (easier) observed
 - Threshold effects. Near threshold,
 - **Breit-Wigner** fits mislead rather than educate
 - Breit-Wigner parameters (*M* and Γ) hide nature of states
 - Threshold effects sometimes play critical role
- Coupled-channel approach, Minimal models with
 X.-K. Dong et al, PRL126,132001(2021)
 - most relevant channels (2 models)
 - minimal necessary orders in interactions

Two channel model

 $J/\psi J/\psi \ \& \ \psi(2S) J/\psi$

$$V_{2ch}(E) = \begin{pmatrix} a_1 + b_1 k_1^2 & c \\ c & a_2 + b_2 k_2^2 \end{pmatrix}$$

 $J/\psi J/\psi, \ \psi(2S)J/\psi \ \& \ \psi(3770)J/\psi$

$$V_{3ch}(E) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

 $\begin{array}{c} \Box & \eta_c \text{ and } h_c \text{ spin-0, HQSS} \\ \Box & \chi_{cJ} \rightarrow \psi \text{ by } \omega \text{ exchange} \end{array} \end{array}$

Lippmann-Schwinger equation

$$T(E) = V(E) \cdot [1 - G(E)V(E)]^{-1}$$

Production amplitude in $J/\psi J/\psi$ channel (channel 1)

$$\mathcal{M}_{1} = \alpha e^{-\beta E^{2}} \left[b + G_{1}(E) T_{11}(E) + \sum_{i=2,3} r_{i} G_{i}(E) T_{i1}(E) \right]$$

Hints of a $J/\psi J/\psi$ molecule

X.-K. Dong et al, PRL126,132001(2021)

9.0

70

60

40

30

20

7.25

 $\sqrt{|\text{Res}_i|}$

 \geq

	2-ch. fit	3-ch. fit 1	3-ch. fit 2
$a_0(\mathrm{fm})$	$\leq -0.49\mathrm{or} \geq 0.48$	$-0.61\substack{+0.29\\-0.32}$	$\leq -0.60 \mathrm{or} \geq 0.99$
$r_0({ m fm})$	$-2.18^{+0.66}_{-0.81}$	$-0.06\substack{+0.03\\-0.04}$	$-0.09\substack{+0.08\\-0.05}$
\bar{X}_A	$0.39^{+0.58}_{-0.12}$	$0.91\substack{+0.04 \\ -0.07}$	$0.95\substack{+0.04 \\ -0.06}$

X(6900) is uncertain X(6200) is robust

- Compositeness of X(6200) $\bar{X}_A = (1+2|r_0/a_0|)^{-1/2}$ $\bar{X}_A = 1$ for molecule and 0 for compact state I. Matusche et al, EPJA57(2021)3,101
- \geq Large molecular component in X(6200) in 3-channel fit.

Nov. 16, 2021

Hints of a $J/\psi J/\psi$ molecule

Support of existence of X(6200) from independent analysis

> Z.-R. Liang et al, Phys.Rev.D 104 (2021) 3, 034034

Further Tests

X.-K. Dong et al, PRL126,132001(2021)

✓ Data in the $\psi(2S)J/\psi$ channel ⇒ distinguish between the models

- ✓ Data in the $\eta_c \eta_c$ channel ⇒ verify predictive power of the models
- ✓ Data on Υ production \Rightarrow check in complementary sector
- ✓ Lattice simulation of double- J/ψ (η_c) scattering ⇒ independent test

Binding mechanism??? \Rightarrow (dis)prove X(6200) nature!!!

- Van der Waals interaction between color dipoles
 H. Fujii and D. Kharzeev, Phys.Rev.D 60, 114039 (1999).
- Long-range potential from two pion exchange between 2 S-wave bottomonia

N. Brambilla et al, Phys.Rev.D 93, 054002 (2016)

Evidence of an $\Omega_{ccc}\Omega_{ccc}$ bound state from HAL QCD method

Yan Lyu et al, Phys.Rev.Lett. 127 (2021) 7, 072003

At long-range, soft gluon exchange \rightarrow two pion exchange + heavier...

OPE highly suppressed by isospin

Two pion/kaon exchange potential

Two pion/kaon exchange potential

> Difference between c_i^{11} and c_i^{12}

$$\xi \equiv \frac{\alpha_{J/\psi J/\psi}}{\alpha_{\psi(2S)J/\psi}} \approx 1 \sim 3$$

estimated by

• overlap of quark model wavefunctions

 $\alpha_{AB} \propto \int \mathrm{d}^3 r \; \psi_A^*(\vec{r}) e^{-i\vec{q_c}\cdot\vec{r}/2} \psi_B(\vec{r}) \equiv I_{AB}(q_c)$

• S-Wave $J/\psi\pi$ scattering length

$$a_0 = \frac{(c_1^{(11)} + c_2^{(11)})m_\pi^2}{2\pi F_\pi^2 (M_{J/\psi} + m_\pi)} \approx 0.0036 \ \xi \ \text{fm}$$

 $|a_0^{\rm lat}|\sim 0.01~{\rm fm}$

Lattice QCD

Potentials from dispersive relation

 \blacktriangleright Dispersive relation $\mathcal{M}_{\pi}(t)$

$$= \frac{J/\psi}{J/\psi} = \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \mathrm{d}t' \frac{\mathrm{Im}\mathcal{M}_{\pi}(t')}{t'-t-i\epsilon}$$

Two pion (kaon) exchange potential $\mathcal{M}_{J/\psi J/\psi}(t) = \mathcal{M}_{\pi}(t) + \mathcal{M}_{K}(t)$ $V_{\mathrm{exch}}(q, \Lambda) = \frac{-1}{4\pi M_{J/\psi}^{2}}$ $\times \int_{4m_{\pi}^{2}}^{\infty} \mathrm{d}\mu^{2} \frac{\mathrm{Im}\mathcal{M}_{J/\psi J/\psi}(\mu^{2})}{\mu^{2} + q^{2}} e^{-\frac{q^{2} + \mu^{2}}{\Lambda^{2}}}$ Form factor to regularize the UV divergence in both q and μ and keep the long-range potential unchanged.

$J/\psi J/\psi$ molecular state

Lippmann Schwinger equation

▶ Renormalization with a contact term $V_{CT}(q, \Lambda) = C \ e^{-\frac{q^2}{\Lambda^2}}$

 $V_{\rm tot}(q,\Lambda) = V_{\rm CT}(q,\Lambda) + V_{\rm exch}(q,\Lambda)$

 $T(E; k', k) = V_{\text{tot}}^{S}(k', k, \Lambda)$ -2 $+\int \frac{\mathrm{d}^3 l}{(2\pi)^3} \frac{V_{\mathrm{tot}}^S\left(k',l,\Lambda\right) T(E;l,k)}{E - l^2/M_{J/2} + i\epsilon}$ Eb (MeV) $V_{\rm ct} = -8$ \succ $V_{\rm ct} = -7$ Parameters: -6 $V_{\rm ct} = -6$ $V_{ct} = -5$ $\Lambda(1 \sim 3 \text{ GeV}), \ \xi(1 \sim 3) \text{ and } V_{\text{ct}} \text{ in } \text{GeV}^{-2}$ $V_{ct} = -4$ -8 $V_{\rm ct} = -3$ $V_{\rm ct} = -$ Poles for $\xi = 1$. \geq -101.0 2.53.0 1.5 2.0 Λ (GeV)

 \geq

Solid for bound states and

dashed for virtual states

$J/\psi J/\psi$ molecular state

Strategy:

- ✓ Near threshold poles (bound or virtual), $E_B = 1$ or 5 MeV fixed (hints from LHCb data)
- ✓ ξ (=1,2,3) fixed
- Contribution of V_{exch} to the binding, *R*

$$R \equiv \frac{V_{\text{exch}}^{S} \left(k'=0, k=0, \Lambda\right)}{V_{\text{tot}}^{S} \left(k'=0, k=0, \Lambda\right)}$$

Plausible?

- Contact term + two pion/kaon exchange leads to a molecule of $J/\psi J/\psi$
- > $J/\psi J/\psi$ interaction suppressed by OZI or $\Lambda^2_{\rm QCD}/m_c^2$, no reason for $V_{\rm ct} \gg V_{\rm exch}$
- Naturalness: contact term is of the same order as two pion/kaon exchange
- \blacktriangleright Reasonable cutoff, 1 ~ 1.5 GeV
- > We take it plausible if two pion/kaon exchange has sizeable contributions to the binding of $J/\psi J/\psi$, characterized by the ratio

$$R \equiv \frac{V_{\text{exch}}^{S} \left(k'=0, k=0, \Lambda\right)}{V_{\text{tot}}^{S} \left(k'=0, k=0, \Lambda\right)} \gtrsim 1/2$$

Summary

- > LHCb $J/\psi J/\psi$ data can be well described by the coupled-channel method.
- > Hints of a state near $J/\psi J/\psi$ threshold, with large molecular component.
- Soft gluon exchange between $J/\psi J/\psi$ described by two pion and kaon exchange.
- ► Coupling constants of $\psi(2S)J/\psi\pi\pi$ coupling extracted from BESII data on $\psi(2S) \rightarrow J/\psi\pi\pi$ decay.
- > $J/\psi J/\psi \pi \pi$ coupling is argued to be larger than $\psi(2S)J/\psi \pi \pi$ coupling.
- With reasonable cutoff Λ , two pion and kaon exchanges provide sizeable contribution to the $J/\psi J/\psi$ attraction.
- The binding of $J/\psi J/\psi$ system is plausible, given our current understanding of hadron-hadron interaction.
 - ✓ Data in the $\psi(2S)J/\psi$ channel ⇒ distinguish between the models
 - ✓ Data in the $\eta_c \eta_c$ channel ⇒ verify predictive power of the models
 - ✓ Data on Υ production \Rightarrow check in complementary sector
 - ✓ Lattice simulation of double- J/ψ (η_c) scattering ⇒ independent test
 - ✓ Take a look at $J/\psi e^+e^-$ or $J/\psi \mu^+\mu^-$ channels
 - ✓ Lattice simulations of *S* and *P*-wave $J/\psi\pi$ scattering ⇒ c_1 and c_2

