The 10th International Workshop on Chiral Dynamics

Contribution ID: 57

Type: Parallel-Hadron Structure

Results on spin sum rules and polarizabilities at low Q^2 .

We will report on recently published experimental results on spin sum rules, and particularly on the generalized spin polarizabilities $\gamma_0(Q^2)$ (for both the proton and neutron) and $\delta_{LT}(Q^2)$ (for the neutron).

The data were taken at Jefferson Lab in Hall A (neutron) and B (proton and deuteron) by experiments E97-110 and EG4, respectively. They covered the very low Q^2 domain, down to $Q^2\sim 0.02~{\rm GeV}^2$, where Chiral Effective Field Theory ($\chi{\rm EFT}$) predictions should be valid. While some obervables agree with the state-of-the-art $\chi{\rm EFT}$ theoretical predictions, others are in tensions, including $\delta^n_{LT}(Q^2)$ for which $\chi{\rm EFT}$ prediction was expected to be robust. This suggests that $\chi{\rm EFT}$ does not yet consistently describe nucleon spin observables, even in the very low Q^2 domain covered by the experiments.

Primary author: DEUR, Alexandre (J)

Presenter: DEUR, Alexandre (J)