

Hadron physics results at KLOE-2 experiment

Elena Perez del Rio for the KLOE-2 Collaboration

The 10th International Workshop on Chiral Dynamics 15-19 November 2021, Beijing

Outline

• KLOE-2 at $DA\Phi NE$

- KLOE-2 Physics Program
- Hadron Physics results of the KLOE-2 collaboration
 - The $\eta \rightarrow \pi^0 \gamma \gamma$ decay
 - Dark Matter searches
 - Leptophobic B boson
 - $\eta \rightarrow \pi^+ \pi^-$ analysis results
 - Search for $\phi \rightarrow \eta \pi^+ \pi^-$ and $\phi \rightarrow \eta \mu^+ \mu^-$ decays
 - $\gamma\gamma \rightarrow \pi^0$ search
 - ω cross section measurement in the e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma_{ISR}$
- Summary

KLOE @ DAΦNE

- Drift Chamber
- Low-mass gas mixture 90% Helium + 10% isobutane
- $\delta p_{\perp} / p_{\perp} < 0.4\% \ (\theta > 45^{\circ})$
- $\sigma_{xy} = 150 \ \mu m$; $\sigma_z = 2 \ mm$
- 12582 cells
- Stereo geometry
- 4m diameter, 3.3m long

- <u>Calorimeter</u>
- 98% coverage full solid angle
- $\sigma_{\rm E} / E = 5.7\% / \sqrt{E({\rm GeV})}$
- $\sigma_{\rm T} = 57 \text{ ps} / \sqrt{E(\text{GeV})} \oplus 140 \text{ ps}$
- Barrel + 2 end-caps:
 - Pb/scintillating fiber read out by 4880 PMTs

Magnetic field B = 0.52 T

- $e^+ e^-$ collider $\sqrt{s} = M_{\Phi} = 1019.4 \text{ MeV}$
- 2 interaction regions
- e⁺ e⁻ separated rings
- 105 + 105 bunches spaced by 2.7 ns

KLOE-2

- LET (Low Energy Tagger) & HET (High Energy Tagger)
 - e+e--taggers for γγ-physics
- CCALT & QCALT
 - 2 new calorimeters (for low angle γs & quadrupole coverage from K_L decays)
- IT (Inner Tracker)
 - 4 layers of C-GEM
- better vertex reconstruction and Track parameters

KLOE/KLOE-2 Experiment

- 1999: KLOE experiment starts
- 2000 2006: KLOE data-taking campaign
 - 2.5 fb⁻¹@ $\sqrt{s}=M_{\phi}$
 - + 250 pb⁻¹ off-peak @ \s=1000 MeV
- 2008: DAΦNE upgrade: new interaction scheme
- Dec.2012-July 2013: installation of the new detectors
- 2014-2018: KLOE-2 data-taking campaign

5.5 fb⁻¹ collected $@\sqrt{s}=M_{\phi}$

KLOE + KLOE-2 data sample ~ 8 fb⁻¹ represents the largest sample collected at a Φ-factory

About 2.4 x 10¹⁰ Φ-mesons

KLOE-2 Physics Program

Light meson Physics:

• η decays, ω decays Transition Form Factors

- C,P,CP violation: improve limits on $\eta \rightarrow \gamma \gamma \gamma$, $\pi^+ \pi^-$, $\pi^0 \pi^0$, $\pi^0 \pi^0 \gamma$
- improve $\eta \rightarrow \pi^+ \pi^- e^+ e^-$
- $\chi pT: \eta \rightarrow \pi^0 \gamma \gamma$
- Light scalar mesons: $f_0(500)$ in $\phi \rightarrow K_S K_S \gamma$
- $\gamma\gamma$ Physics: $\gamma\gamma \rightarrow \pi^0$ and π^0 TFF $e^+e^- \rightarrow \pi^0\gamma\gamma_{\rm ISR}$ (π^0 TFF)
- search for axion-like particles

Dark force searches:

• Improve limits on

 $U\gamma$ associate production

 $e^+e^- \rightarrow U\gamma \rightarrow \pi\pi\gamma, \mu\mu\gamma$

Higgsstrahlung:

 $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- + miss.$ energy

- Leptophobic B boson search:
 - $\phi \rightarrow \eta B, B \rightarrow \pi^0 \gamma, \eta \rightarrow \gamma \gamma$
 - $\eta \rightarrow B\gamma, B \rightarrow \pi^0 \gamma, \eta \rightarrow \pi^0 \gamma \gamma$
- Search for U invisible decays

Kaon Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test: $K_s \rightarrow 3\pi^0$

direct measurement of $\text{Im}(\epsilon'\!/\epsilon)$

• CKM V_{us}:

K_s semileptonic decays and A_s

- (CP and CPT test)
- $K_{\mu3}$ form factors, K_{13} radiative corrections
- χpT : $K_s \rightarrow \gamma \gamma$
- Search for rare K_s decays

Hadronic cross section:

- ISR studies with 3π , 4π final states
- F_{π} with increased statistics

Measurement of a_{μ}^{HLO} in the space-like region using Bhabha process

KLOE-2 Coll., EPJC68(2010)619 http:// agenda.infn.it/event/kloe2ws Proceedings: EPJ WoC 166 (2018)

- $\eta \rightarrow \pi^0 \gamma \gamma$ (from $\phi \rightarrow \eta \gamma$): χPT golden mode,
 - O(p2) null, O(p4) suppressed \Rightarrow sensitive to O(p6)
- Mass of non- π^0 photons can be used as a test of theoretical model

Previous measurements:

- BR = $(22.1 \pm 2.4 \pm 4.7) \times 10^{-5}$ CB@AGS (2008) [PRC 78 (2008) 015206]
- BR = $(25.6 \pm 2.4) \times 10^{-5}$ CB@MAMI (2014) A2 MAMI [*PRC 90 (2014) 025206*]
 - Sample of ~6·10⁷ η's
 - ~1200 $\eta \rightarrow \pi^0 \gamma \gamma$ events found
- Old KLOE preliminary: (8.4 ± 2.7 ±1.4) x 10⁻⁵
 - (L = 450 pb-1 ~ 70 signal events)
- Latest theoretical studies by Escribano et al. *PRD 90 (2020) 034026*:
 - Calculated BR = $1.35(8) \cdot 10^{-4}$
- Many previous predictions differ by a factor ~ 2

DATA

MC All

MC η→π°γγ signal

MC $\eta \rightarrow 3\pi^{\circ}$

MC sum: a₀,f₀,ω

Nev / 2 MeV

1000

800

60

400

200

Data-MCsum/o

•

- Very pure channel, backgrounds well bellow 1%
- When used, can reduce part of systematic effects

 $S/B \sim 2\%$

 $N_s \sim 1400$

- MC's fitted to data
- Fit χ²/(ndf=98)=1.033 (fit_prob=39%)

 $\frac{BR(\eta \to \pi^{\circ} \gamma \gamma)}{BR(\eta \to 3\pi^{\circ})} = \frac{N_S / \varepsilon_S}{N_{3\pi^{\circ}} / \varepsilon_{3\pi^{\circ}}}$

• BR normalization to $3\pi^0$

10⁻¹ 800 400 500 600 700 IM(eta) [MeV/c²]

$$BR = (1.21 \pm 0.13_{stat}) \cdot 10^{-4}$$

5064880

547.5

22.2

Integra5 065e+006

Entries

Mear

RMS

Separate fits to $M^2(\gamma\gamma)$ slices

- Bin 0.011-0.0275 GeV²/c⁴ missing due to $\pi^{\circ}\pi^{\circ}$ veto
- Half of contribution compared with previous experiments
- Good agreement with the latest theoretical predictions by Escribano et al. From 2020 (BR=1.35(8)·10⁻⁴)

From integration of $d\Gamma/dM^2$ (missing bin linearly interpolated) one can calculate KLOE preliminary:

BR= $(1.30 \pm 0.13_{stat}) \cdot 10^{-4}$

Leptophobic B-boson

• Dark Force mediator coupled to baryon number (B-boson) with the same quantum numbers of the $\omega(782) \Rightarrow I^{G}=0^{-1}$

$$\mathcal{L} = rac{1}{3} \mathbf{g_B} \mathbf{ar q} \gamma^\mu \mathbf{q} \mathbf{B}_\mu \qquad lpha_\mathbf{B} = rac{\mathbf{g_B^2}}{4\pi} \lesssim \mathbf{10^{-5}} imes (\mathbf{m_B}/\mathbf{100 MeV})$$

- Dominant decay channel ($m_{_B} < 600 \text{ MeV}$): $B \rightarrow \pi^0 \gamma$
- Can be studied in: $\phi \rightarrow \eta B \Rightarrow \eta \pi^0 \gamma \Rightarrow 5 \text{ prompt } \gamma \text{ final state}$ $\eta \rightarrow B \gamma \Rightarrow \pi^0 \gamma \gamma$ $e^+e^- \rightarrow \pi^0 \gamma \gamma_{\text{ISR}}$

Decay \rightarrow Production \downarrow	$B \rightarrow e^+ e^-$ $m_B \sim 1 - 140 \text{ MeV}$	$B \rightarrow \pi^0 \gamma$ 140–620 MeV	$B \rightarrow \pi^+ \pi^- \pi^0$ 620–1000 MeV	$B \rightarrow \eta \gamma$
$\pi^0 \rightarrow B\gamma$	$\pi^0 \rightarrow e^+ e^- \gamma$			
$\eta \rightarrow B\gamma$	$\eta \rightarrow e^+ e^- \gamma$	$\eta \rightarrow \pi^0 \gamma \gamma$		
$\eta' \rightarrow B\gamma$	$\eta' ightarrow e^+ e^- \gamma$	$\eta' ightarrow \pi^0 \gamma \gamma$	$\eta' ightarrow \pi^+ \pi^- \pi^0 \gamma$	$\eta' \rightarrow \eta \gamma \gamma$
$\omega \rightarrow nB$	$\omega \rightarrow \eta e^+ e^-$	$\omega \rightarrow n\pi^0 \gamma$		
$\phi \rightarrow \eta B$	$\phi \rightarrow \eta e^+ e^-$	$\phi \rightarrow \eta \pi^0 \gamma$		

Leptophobic B-boson

11

- $\eta \rightarrow \pi + \pi is P$ and CP violating process
- The BR prediction in SM [Phys. Scripta T99, 23 (2002)]
 - proceeds only via the CP-violating in weak interaction $\rightarrow 10^{-27}$
 - introducing a CP violating term in QCD \rightarrow to 10^{-17}
 - allowing CP violation in the extended Higgs sector $\rightarrow 10^{-15}$

Any observation of larger branching ratio would indicate a new source of CP violation in the strong interaction

- The previous limit $\text{Br}(\eta \rightarrow \pi + \pi) < 1.3 \times 10^{-5} @ 90\%$ C.L. by KLOE with $L_{int} \sim 350 \text{ pb}^{-1}$
- LHCb limit BR($\eta \rightarrow \pi + \pi$)<1.6×10⁻⁵ @ 90% C.L. with Lint~3.3 fb⁻¹

Search for $\Phi \rightarrow \eta \gamma$, with $\eta \rightarrow \pi^+ \pi^-$

- New analysis using independent 1.6 fb⁻¹ of KLOE data
- No event excess in the η region, limit extracted using CLs technique

- Combined with previous KLOE result (~ 0.4 fb⁻¹)
 - BR $(\eta \rightarrow \pi + \pi) < 4.4 \times 10^{-6}$ @ 90% C.L.

Published in JHEP10 (2020) 047

$\Phi \rightarrow \eta \pi^+ \pi^-$ and $\Phi \rightarrow \eta \mu^+ \mu^-$

- In VMD model, e⁺e⁻→ηπ⁺π⁻ proceeds via ρ resonances, mainly via ρη intermediate state. KLOE/KLOE-2 data allow to measure the line shape around Φ
- $\Phi \rightarrow \eta \pi^+ \pi$ -violates the OZI rule and G-parity, VMD predicts the Br~ 0.35×10-6. Br<1.8×10-5 @ 90% CL @ CMD-2 *PLB491(2000)81*

 The same sample can be also used to search for the Dalitz decay Φ→ημ+μ-, Br<0.94×10-5 @ 90% CL @ CMD-2 PLB501(2001)191

yy physics with High Energy Tagger (HET)

 $[\mathbf{C}(\mathbf{X}) = +1]$ $\mathbf{X} = \pi^{\mathbf{0}}, \pi\pi, \eta$

Measurement concept: Eur. Phys. J. C 72 (2012) 1917

Bernstein & Holstein, Rev. Mod. Phys., 85 (2013) 49

- Precision measurement of $\Gamma(\pi^0 \rightarrow \gamma \gamma)$
- Transition form factor $F_{\pi\gamma\gamma^*}(q^2,0)$ at space-like q^2 $(|q^2| < 0.1 \text{ GeV}^2)$, impact on value and precision of $a_{\mu}^{LbyL;\pi 0}$

First bending dipoles of DA Φ NE act as spectrometers for scattered leptons $(420 \le E \le 495 \text{ MeV})$

Scintillator hodoscope + PMTs, inserted in Roman pots pitch: 5 mm, ~ 11 m from IP ($\sigma_{\rm E}$ ~2.5 MeV $\sigma_{\rm t}$ ~500 ps)

HET is acquired asynchronously w.r.t. the KLOE-2 DAQ (Xilinx Virtex 5 - FPGA), synchronization with the "Fiducial» signal from DAΦNE (each 325 ns)and the KLOE trigger

HET acquisition window corresponds to about 2.5 DA Φ NE revolutions, data are recorded only when a KLOE trigger is asserted

The analysis is based on the HET-KLOE coincidences and the accidental-pure samples used for background modelling (shape and number)

Status of yy Analysis

Single-arm selection:

-Sample of 2 clusters associated with the same bunch crossing in the KLOE barrel calorimeter -Selected bunch crossing, and, independently selected HET signal, are in a time window of 40 ns around the KLOE trigger

Analysis Strategy:

-ML fits of A+/A samples.
-Fit to accidental-pure samples used to constrain the number of accidentals in A+
-Time coincidence window : 4 ÷ 5 bunch crossings depending on the period

-Accidental pure sample (A) used to model background pdf

-Signal pdfs by Ekhara simulation, control samples and BDSIM transport of the leptons through the beam line Example of ML fit, statistics: 2fb⁻¹, HET electron data from October '16 to March '18

Signal-enriching cut applied: | T-R/c | < 0.5 ns, cut efficiency 80% from control sample studies

10% precision level on signal reached. Some improvements still possible.

 $e^+e^- \rightarrow \pi^0 \pi^+ \pi^- \gamma_{\rm ISR}$

- $e^+e^- \rightarrow 3\pi$ is the second largest contribution on a^{HVP} at the leading order, both in absolute values and uncertainties.
- Current cross section measurement of $e+e-\rightarrow 3\pi$ comes from CMD-2/SND measurement with energy scan and by Babar/BES with ISR technique.
- For in $\sqrt{s} < M\phi$ this measurement is feasible using ISR technique in KLOE/KLOE-2
- ISR KLOE measurement in low energy region, complementary to direct energy scans.

Further physics goals:

- to extract the peak cross section of the process $e^+e^- \rightarrow V \rightarrow 3\pi$, involving vector resonances $V = \varphi, \omega$
- to measure cross section of non-resonant process $e^+e^- \rightarrow \gamma^* \rightarrow 3\pi$.
- to measure product of branching fractions $B(\omega \rightarrow e^+e^-) \ge B(\omega \rightarrow 3\pi)$

- Analysis on ~1.7 fb⁻¹ on-peak and ~246 pb⁻¹ off-peak data samples.
- Selection based in at least 2 tracks with opposite curvature + 3 neutral clusters

 $\rightarrow \pi^0 \pi^+ \pi^- \gamma_{\rm ISR}$

• Kinematic fit to improve resolution

- Fit with a single Breit-Wigner convoluted with the ISR radiator and mass resolution smearing function
- Systematics evaluation ongoing
- Theoretical model for fit is being refined

cross section in the $\omega(782)$ region fit

in agreement with PDG value

KLOE and KLOE-2 experiments have collected ~ 8 fb⁻¹, which represents the largest sample collected at a Φ-factory.

Summary

- Rich KLOE-2 program for Kaon and Hadron Physics.
- We are studying the golden χ -PT process $\Phi \rightarrow \eta \gamma, \eta \rightarrow \pi^0 \gamma \gamma$
 - Preliminary BR is $\sim 1/2$ of previous best measurements and in agreement with the most recent theory calculation.
- We are studying 5 photon final state to set the first limit on the leptophobic B-Boson searching for the decay chain $\Phi \rightarrow \eta B$, $B \rightarrow \pi^0 \gamma$.
- We have published the world best limit on $\eta \rightarrow \pi + \pi using$ the KLOE data sample reaching a Br($\eta \rightarrow \pi + \pi -$) <4.9×10⁻⁶ @ 90% C.L., 3 times better than previous one. Limit has already been included in the PDG.
- We have observed for the first time, clean signals for $\Phi \to \eta \pi + \pi -$ and $\Phi \to \eta \mu + \mu$ decays.
- We are using π^0 's produced with $\gamma\gamma$ -fusion and tagged with our low angle tagging system (HET) to determine the $\Gamma(\pi^0 \to \gamma\gamma)$ of this process.
- A clean signal of 3π final state in the ω region through ISR method is established.

Measurement concept:

$$\frac{\sigma_{\pi^{0}}}{\sigma_{\text{Bha}}} = \frac{N_{\pi^{0}}}{\epsilon_{\text{ana}} \sigma_{\text{Bha}}^{\text{meas}} \int L dt} \frac{A_{\text{Bha}}}{A_{\pi^{0}}}$$

Status of the measurement:

Number of π^0 tagged events. Preliminary results on the whole reconstructed data sample (electron station) obtained, 10% precision level.

 $\epsilon_{ana} \longrightarrow$ Analysis efficiency evaluation completed, only small refinement needed.

 $\frac{A_{Bha}}{A_{0}}$

 N_{π^0}

Full simulation of signal ($\gamma\gamma \rightarrow \pi^0$ triggering KLOE DAQ and one lepton in the HET) and normalization channel (low angle e⁺e⁻ γ with one lepton reaching HET) events, obtained with EKHARA/BBBREM generators + BDSIM for lepton transport, completed.

 $\sigma_{\rm Bha}^{\rm meas} \int {\rm Ldt} \longrightarrow$

Obtained from the KLOE online luminosity measurement. Product independent from luminometer scale, scaling behavior checked along data-taking periods.