

Review of light quark mass determination via $\eta \rightarrow 3\pi$

Emilie Passemar Indiana University/Jefferson Laboratory

Chiral Dynamics 2021, November 15 - 19, 2021 IHEP, Beijing, China

In collaboration with G. Colangelo, S. Lanz and H. Leutwyler (ITP-Bern)

Phys. Rev. Lett. 118 (2017) no.2, 022001 *Eur.Phys.J.* C78 (2018) no.11, 947

- 1. Introduction and Motivation
- 2. Light quark masses from $\eta \rightarrow \pi^+ \pi^- \pi^0$
- 3. Light quark masses from $\eta \rightarrow \pi^0 \pi^0 \pi^0$
- 4. Comparison with Lattice QCD
- 5. Conclusion and Outlook

1. Introduction and Motivation

1.1 Why is it interesting to study η and η' physics?

- In the study of η and η' physics, large amount of data have been collected:
 - GlueX

More to come: *JEF, REDTOP* is see talk by *A. Somov*

- Unique opportunity:
 - Test chiral dynamics at low energy
 - Extract fundamental parameters of the Standard Model: ex: light quark masses
 - Study of fundamental symmetries: C, P & T violation
 - Looking for beyond Standard Model Physics

1.2 Decays of η

• η decay from PDG:

 $M_{\eta} = 547.862(17) \text{ MeV}$

η DECAY MODES								
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level					
		Neutral modes						
Γ_1	neutral modes	(72.12 ± 0.34) %	S=1.2					
Γ2	2γ	$(39.41\pm0.20)~\%$	S=1.1					
Г ₃	$3\pi^0$	(32.68 ± 0.23) %	S=1.1					
		Charged modes						
Г ₈	charged modes	(28.10 ± 0.34) %	S=1.2					
Γ ₉	$\pi^+\pi^-\pi^0$	(22.92 ± 0.28) %	S=1.2					
Γ ₁₀	$\pi^+\pi^-\gamma$	(4.22±0.08) %	S=1.1					

1.3 Why is it interesting to study $\eta \rightarrow 3\pi$?

Decay forbidden by isospin symmetry

$$\implies A = \left(m_{u} - m_{d} \right) A_{1} + \alpha_{em} A_{2}$$

- *α_{em}* effects are small Sutherland'66, Bell & Sutherland'68 Baur, Kambor, Wyler'96, Ditsche, Kubis, Meissner'09
- Decay rate measures the size of isospin breaking $(m_u m_d)$ in the SM:

$$L_{QCD} \rightarrow L_{IB} = -\frac{m_u - m_d}{2} \left(\overline{u} u - \overline{d} d \right)$$

 \rightarrow Unique access to $(m_u - m_d)$

2. Light quark masses from $\eta \rightarrow \pi^+ \pi^- \pi^0$

2.1 Definitions
•
$$\eta$$
 decay: $\eta \rightarrow \pi^{*} \pi^{*} \pi^{0}$
 $\sqrt[\pi^{*}\pi^{*}\pi^{*}\pi^{0}}_{mr}|\eta\rangle = i(2\pi)^{*} \delta^{*}(p_{\eta} - p_{\pi^{*}} - p_{\pi^{*}} - p_{\pi^{*}})A(s,t,u)$
• Mandelstam variables $s = (p_{\pi^{*}} + p_{\pi^{*}})^{2}$, $t = (p_{\pi^{*}} + p_{\pi^{0}})^{2}$, $u = (p_{\pi^{0}} + p_{\pi^{*}})^{2}$
• Mandelstam variables $s = (p_{\pi^{*}} + p_{\pi^{*}})^{2}$, $t = (p_{\pi^{*}} + p_{\pi^{0}})^{2}$, $u = (p_{\pi^{0}} + p_{\pi^{*}})^{2}$
• Mandelstam variables $s = (p_{\pi^{*}} + p_{\pi^{*}})^{2}$, $t = (p_{\pi^{*}} + p_{\pi^{0}})^{2}$, $u = (p_{\pi^{0}} + p_{\pi^{*}})^{2}$
• Mandelstam variables $s = (p_{\pi^{*}} + p_{\pi^{*}})^{2}$, $t = (p_{\pi^{*}} + p_{\pi^{0}})^{2}$, $u = (p_{\pi^{0}} + p_{\pi^{*}})^{2}$
• Shody decay Dalitz plot

$$\frac{A(s,t,u)^{2} = N(1 + aY + bY^{2} + dX^{2} + fY^{3} + ...)}{X = \sqrt{3} \frac{T_{+} - T_{-}}{Q_{c}} = \frac{\sqrt{3}}{2M_{\eta}Q_{c}}(u - t)}$$

$$Y = \frac{\sqrt{3}}{Q_{c}} - 1 = \frac{3}{2M_{\eta}Q_{c}}((M_{\eta} - M_{\pi^{0}})^{2} - s) - 1$$
while Passemar
 $Q_{c} = M_{\eta} - 2M_{\pi^{*}} - M_{\pi^{0}}$

Emilie Passemar

2.2 $\eta \rightarrow 3\pi$ Dalitz plot measurements

• In the charged channel: experimental data from WASA, KLOE, BESIII

2.3 Quark mass ratio

• In the following, extraction of Q from $\eta \to \pi^+ \pi^- \pi^0$

$$\begin{bmatrix} \Gamma_{\eta \to \pi^+ \pi^- \pi^0} = \frac{1}{Q^4} \frac{M_K^4}{M_\pi^4} \frac{\left(M_K^2 - M_\pi^2\right)^2}{6912\pi^3 F_\pi^4 M_\eta^3} \int_{s_{\min}}^{s_{\max}} ds \int_{u_-(s)}^{u_+(s)} du \left| M(s,t,u) \right|^2 \\ \text{Determined from experiment} \\ \text{Determined from:} \\ \text{Origonalization} \\ \text{Origonalization} \\ \text{Origonalization} \\ \text{Origonalization} \\ \text{Determined from:} \\ \text{Origonalization} \\ \text{Ori$$

• Aim: Compute M(s,t,u) with the *best accuracy*

Computation of the amplitude 2.4

- What do we know?
- Compute the amplitude using ChPT : ٠

$$\Gamma_{\eta \to 3\pi} = \begin{pmatrix} 66 + 94 + \dots + \dots \end{pmatrix} eV = (300 \pm 12) eV$$

$$IO \quad NLO \quad NNLO \qquad PDG'19$$

$$NLO: Bijnens \& Ghorbani'07$$

The Chiral series has convergence problems

Anisovich & Leutwyler'96

LO: Osborn, Wallace'70

NLO: Gasser & Leutwyler'85

2.5 Dispersive treatment

• The Chiral series has convergence problems

- Dispersive treatment :
 - analyticity, unitarity and crossing symmetry
 - Take into account all the rescattering effects

2.5 Dispersive treatment

• Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

• Unitarity relation:

$$disc\left[M_{\ell}^{I}(s)\right] = \rho(s)t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s) + \hat{M}_{\ell}^{I}(s)\right)$$

• Relation of dispersion to reconstruct the amplitude everywhere:

$$M_{I}(s) = \Omega_{I}(s) \left(\frac{P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| (s' - s - i\varepsilon)} \right) \left[\Omega_{I}(s) = \exp \left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)} \right) \right]$$

Omnès function
$$Gasser \& Rusetsky' 18$$

P_I(s) determined from a fit to NLO ChPT + experimental Dalitz plot

Emilie Passemar

٠

See talk by *T. Isken*

2.6 Quark mass ratio

Experimental systematics needs to be taken into account

3. Light quark masses from $\eta \rightarrow 3\pi^0$

3.1 Neutral channel :
$$\eta \rightarrow \pi^0 \pi^0 \pi^0$$

- What do we know?
- We can relate charged and neutral channels

A(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)

Correct formalism should be able to reproduce both charged and neutral channels

Ratio of decay width precisely measured

$$r = \frac{\Gamma(\eta \to \pi^0 \pi^0 \pi^0)}{\Gamma(\eta \to \pi^+ \pi^- \pi^0)} = 1.426 \pm 0.026 \qquad PDG'19$$

3.1 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$

- Decay amplitude $\left| \Gamma_{\eta \to 3\pi} \propto \left| \overline{A} \right|^2 \propto 1 + 2\alpha Z \right|$ with $Z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3T_i}{Q_i} 1 \right)^2$
 - α has been precisely measured for a long time

recently very high-statistics from A2@MAMI'2018

 $Q_n \equiv M_n - 3M_{\pi^0}$

3.2 Quark mass ratio

Experimental systematics needs to be taken into account

3.3 Z distribution for $\eta \rightarrow \pi^0 \pi^0 \pi^0$ decays

• The amplitude squared in the neutral channel is

Emilie Passemar

4. Comparison with Lattice QCD and uncertainties

4.1 Quark mass ratio

Experimental systematics needs to be taken into account

4.2 Uncertainties and Prospects

4.2 Light quark masses

• Smaller values for $Q \implies$ smaller values for m_s/m_d and m_u/m_d than LO ChPT

Tension with lattice results

Emilie Passemar

• Low energy theorem:

Gell-Mann-Oakes-Renner relations.

(meson mass)² = (spontaneous ChSB) x (explicit ChSB) $\langle \bar{q}q \rangle$ m_q

• From LO ChPT without e.m effects:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}}+m_{ extsf{d}})\,B_0 + O(m^2)\ M_{K^+}^2 &= (m_{ extsf{u}}+m_{ extsf{s}})\,B_0 + O(m^2)\ M_{K^0}^2 &= (m_{ extsf{d}}+m_{ extsf{s}})\,B_0 + O(m^2) \end{aligned}$$

• Electromagnetic effects: *Dashen's theorem*

$$\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{em}-\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{em}=O\left(e^{2}m\right)$$

Dashen'69

2 unknowns B_0 and Δ_{em}

 $M_{\pi^{0}}^{2} = B_{0} (m_{u} + m_{d})$ $M_{\pi^{+}}^{2} = B_{0} (m_{u} + m_{d}) + \Delta_{em}$

 $M_{K^+}^2 = B_0 (m_u + m_s) + \Delta_{om}$

 $M_{K^0}^2 = B_0 \left(m_d + m_s \right)$

Quark mass ratios

Weinberg'77

$$\frac{m_u}{m_d} \stackrel{\text{\tiny LO}}{=} \frac{M_{K^+}^2 - M_{K^0}^2 + 2M_{\pi^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 0.56 \,,$$

$$\frac{m_s}{m_d} \stackrel{\text{\tiny LO}}{=} \frac{M_{K^+}^2 + M_{K^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 20.2$$

Meson masses from ChPT

• Mass formulae to second chiral order Gasser & Leutwyler'85 $\frac{M_K^2}{M_\pi^2} = \frac{m_s + \hat{m}}{2\hat{m}} \left[1 + \Delta_M + \mathcal{O}(m^2) \right]$ $\frac{M_{K^0}^2 - M_{K^+}^2}{M_K^2 - M_\pi^2} = \frac{m_d - m_u}{m_s - \hat{m}} \left[1 + \Delta_M + \mathcal{O}(m^2) \right]$ with $\Delta_M = \frac{8(M_K^2 - M_\pi^2)}{F_\pi^2} (2L_8 - L_5) + \chi$ -logs • The same O(m) correction appears in both ratios $\begin{bmatrix} \hat{m} = \frac{m_d + m_u}{2} \end{bmatrix}$

 \rightarrow Take the double ratio

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}} = \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2} - M_{\pi}^{2}}{\left(M_{K^{0}}^{2} - M_{K^{+}}^{2}\right)_{QCD}} \left[1 + O(m_{q}^{2}, e^{2})\right]$$

Very Interesting quantity to determine since Q² does not receive any correction at NLO!

Emilie Passemar

Meson masses from ChPT

- Mass formulae to second chiral order ۲ $\frac{M_K^2}{M^2} = \frac{m_s + \hat{m}}{2\hat{m}} \left[1 + \Delta_M + \mathcal{O}(m^2) \right]$ $\frac{M_{K^0}^2 - M_{K^+}^2}{M_{\nu}^2 - M_{\pi}^2} = \frac{m_d - m_u}{m_s - \hat{m}} \left[1 + \Delta_M + \mathcal{O}(m^2) \right]$ with $\Delta_M = \frac{8(M_K^2 - M_\pi^2)}{F^2}(2L_8 - L_5) + \chi$ -logs Г
- The same O(m) correction appears in both ratios ٠ Take the double ratio

$$\hat{m} \equiv \frac{m_d + m_u}{2}$$

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}} = \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2} - M_{\pi}^{2}}{\left(M_{K^{0}}^{2} - M_{K^{+}}^{2}\right)_{QCD}} \begin{bmatrix} 1 + O(m_{q}^{2}, e^{2}) \end{bmatrix}$$

$$(1 + \Delta Q)$$

In our calculation we take $\Delta Q = 0$ •

Emilie Passemar

Gasser & Leutwyler'85

Mass formulae to second chiral order

$$\frac{M_{K}^{2}}{M_{\pi}^{2}} = \frac{m_{s} + \hat{m}}{2\hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$

$$\implies \frac{2M_{K}^{2}}{M_{\pi}^{2}} = (S+1)(1 + \Delta_{S}) \quad \text{with} \quad S = \frac{m_{s}}{\hat{m}}$$

$$\frac{M_{K}^{2} - M_{\pi}^{2}}{M_{K}^{2} - M_{\pi}^{2}} = \frac{m_{d} - m_{u}}{m_{s} - \hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$

$$\implies \frac{M_{K}^{2} - M_{\pi}^{2}}{\hat{M}_{K}^{2} - \hat{M}_{K}^{2}} = R(1 + \Delta_{R}) \quad \text{with} \quad R = \frac{m_{s} - \hat{m}}{m_{d} - m_{u}}$$

$$2Q^{2} \equiv R(S+1) \qquad \Longrightarrow \qquad (1 + \Delta_{Q}) = (1 + \Delta_{S})(1 + \Delta_{R})$$

Emilie Passemar

$$\frac{2M_K^2}{M_\pi^2} = (S+1)(1+\Delta_S) \quad \text{with} \quad S = \frac{m_s}{\hat{m}}$$

$$\frac{M_{K}^{2} - M_{\pi}^{2}}{\hat{M}_{K^{0}}^{2} - \hat{M}_{K^{+}}^{2}} = R(1 + \Delta_{R}) \quad \text{with} \quad R = \frac{m_{s} - \hat{m}}{m_{d} - m_{u}}$$

$$\left[\hat{m} \equiv \frac{m_d + m_u}{2}\right]$$

$2Q^2 \equiv R(S +$	1)	$(1 + \Delta_Q) = ($	$(1+\Delta_S)(1+\Delta_S)$	R)
	Q	Δ_S	Δ_R	Δ_Q
BMW [92]	23.4(6)	-0.063	-0.028	-0.089
RM123 [93]	23.8(1.1)	-0.042	-0.060	-0.099
this work	22.1(7)	-0.051(12)	+0.053(14)	0
				7

Important corrections for Δ_Q from lattice QCD in contradiction with convergence of chiral series!

5. Conclusion and Outlook

Conclusion and Outlook

- $\eta \rightarrow 3\pi$ gives a unique opportunity to access the light quark mass double ratio Q experimentally
- To do so we need a parametrization of the amplitude + fix the normalization
- To extract Q with the best precision: Development of amplitude analysis techniques consistent with analyticity, unitarity, crossing symmetry dispersion relations allow to take into account *all rescattering effects* being as model independent as possible combined with ChPT Provide very precise and robust parametrization for experimental studies especially to extract Q systematic uncertainties to be extracted
- Charged channel and neutral channels give results consistent
 good check
- Tensions with some lattice results exist is need to be understood.

6. Back-up

Experimental Facilities and Role of JLab 12

M. J. Amaryan et al. CLAS Analysis Proposal, (2014)

π	e⁺ e⁻ γ			
η	e⁺ e⁻ γ	π⁺ π⁻ γ	$\pi^+\pi^-\pi^0,$ $\pi^+\pi^-$	π ⁺ π ⁻ e ⁺ e ⁻
η΄	e⁺ e⁻ γ	π⁺ π⁻ γ	π ⁺ π ⁻ π ⁰ , π ⁺ π ⁻	π ⁺ π ⁻ η, π ⁺ π ⁻ e ⁺ e ⁻
ρ		<i>π⁺</i> π⁻ γ		
ω	<i>e</i> ⁺ <i>e</i> ⁻ <i>π</i> ⁰	<i>π⁺</i> π ⁻ γ	$\pi^+\pi^-\pi^0$	
φ			$\pi^+\pi^-\pi^0$	<i>π</i> ⁺ <i>π</i> ⁻ η

2.3 Computation of the amplitude

- What do we know?
- Compute the amplitude using ChPT : the effective theory that describe dynamics of the Goldstone bosons (kaons, pions, eta) at low energy
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

$$\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_{d} , \mathcal{L}_{d} = \mathcal{O}(p^{d}), p \equiv \{q, m_{q}\}$$

$$p \ll \Lambda_{_H} = 4\pi F_{\pi} \sim 1 \text{ GeV}$$

2.5 Iterative Procedure

2.6 Subtraction constants

• Extension of the numbers of parameters compared to Anisovich & Leutwyler'96

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

- In the work of Anisovich & Leutwyler'96 matching to one loop ChPT Use of the SU(2) x SU(2) chiral theorem
 ➡ The amplitude has an Adler zero along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III
 Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

2.7 Subtraction constants

• The subtraction constants are

 $P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$ $P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$ $P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 + \delta_0 s^3$

Only 6 coefficients are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive M_I Subtraction constants Taylor coefficients

$$M_{0}(s) = A_{0} + B_{0}s + C_{0}s^{2} + D_{0}s^{3} + \dots$$
$$M_{1}(s) = A_{1} + B_{1}s + C_{1}s^{2} + \dots$$
$$M_{2}(s) = A_{2} + B_{2}s + C_{2}s^{2} + D_{2}s^{3} + \dots$$

• Gauge freedom in the decomposition of M(s,t,u)

2.7 Subtraction constants

Build some gauge independent combinations of Taylor coefficients

$$H_{0} = A_{0} + \frac{4}{3}A_{2} + s_{0}\left(B_{0} + \frac{4}{3}B_{2}\right) \qquad H_{0}^{ChPT} = 1 + 0.176 + O\left(p^{4}\right)$$

$$H_{1} = A_{1} + \frac{1}{9}\left(3B_{0} - 5B_{2}\right) - 3C_{2}s_{0} \qquad \Longrightarrow \qquad H_{1}^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(1 - 0.21 + O\left(p^{4}\right)\right)$$

$$H_{2} = C_{0} + \frac{4}{3}C_{2}, \qquad H_{3} = B_{1} + C_{2} \qquad h_{2}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(4.9 + O\left(p^{4}\right)\right)$$

$$H_{4} = D_{0} + \frac{4}{3}D_{2}, \qquad H_{5} = C_{1} - 3D_{2} \qquad h_{3}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(1.3 + O\left(p^{4}\right)\right)$$

$$\chi^{2}_{theo} = \sum_{i=1}^{3} \left(\frac{h_{i} - h_{i}^{ChPT}}{\sigma_{h_{i}^{ChPT}}} \right)^{2}$$

$$\sigma_{\boldsymbol{h}_{i}^{ChPT}}=0.3\left|\boldsymbol{h}_{i}^{NLO}-\boldsymbol{h}_{i}^{LO}\right|$$

 $h_i \equiv \frac{H_i}{H_0}$

Isospin breaking corrections

Dispersive calculations in the isospin limit

 to fit to data one has to include
 isospin breaking corrections

•
$$M_{cln}(s,t,u) = M_{disp}(s,t,u) \frac{M_{DKM}(s,t,u)}{\tilde{M}_{GL}(s,t,u)}$$
 with M_{DKM} : amplitude at one loop with $\mathcal{O}(e^{2}m)$ effects
 $Ditsche, Kubis, Meissner'09$
 M_{GL} : amplitude at one loop in the isospin limit
 $Gasser \& Leutwyler' 85$
Kinematic map:
 $isospin symmetric boundaries$
 $M_{GL} \rightarrow \tilde{M}_{GL}$
 $M_{GL} \rightarrow \tilde{M}_{GL}$

Emilie Passemar

2.3 Computation of the amplitude

- What do we know?
- The amplitude has an Adler zero: soft pion theorem Adler'85
 Amplitude has a zero for :

 $p_{\pi^{+}} \to 0 \implies s = u = 0, \ t = M_{\eta}^{2} \qquad M_{\pi} \neq 0 \qquad s = u = \frac{4}{3}M_{\pi}^{2}, \ t = M_{\eta}^{2} + \frac{M_{\pi}^{2}}{3}$ $p_{\pi^{-}} \to 0 \implies s = t = 0, \ u = M_{\eta}^{2} \qquad s = t = \frac{4}{3}M_{\pi}^{2}, \ u = M_{\eta}^{2} + \frac{M_{\pi}^{2}}{3}$

SU(2) corrections

Anisovich & Leutwyler'96

2.4 Neutral channel :
$$\eta \rightarrow \pi^0 \pi^0 \pi^0$$

- What do we know?
- We can relate charged and neutral channels

 $\overline{A}(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$

Correct formalism should be able to reproduce both charged and neutral channels

Ratio of decay width precisely measured

$$r = \frac{\Gamma(\eta \to \pi^0 \pi^0 \pi^0)}{\Gamma(\eta \to \pi^+ \pi^- \pi^0)} = 1.426 \pm 0.026 \qquad PDG'19$$

2.4 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$

2.5 Dispersive treatment

The Chiral series has convergence problems

2.5 Dispersive treatment

• The Chiral series has convergence problems

- Dispersive treatment :
 - analyticity, unitarity and crossing symmetry
 - Take into account all the rescattering effects

2.6 Why a new dispersive analysis?

- Several new ingredients:
 - New inputs available: extraction $\pi\pi$ phase shifts has improved

Ananthanarayan et al'01, Colangelo et al'01 Descotes-Genon et al'01 Kaminsky et al'01, Garcia-Martin et al'09

 New experimental programs, precise Dalitz plot measurements *TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) BES III (Beijing)*

- Many improvements needed in view of very precise data: inclusion of
 - Electromagnetic effects (O(e²m)) Ditsche, Kubis, Meissner'09
 - Isospin breaking effects
 - Inelasticities

Emilie Passemar

Gullstrom, Kupsc, Rusetsky'09, Schneider, Kubis, Ditsche'11

Albaladejo & Moussallam'15

3. Dispersive analysis of $\eta \rightarrow 3\pi$

3.1 Method

Emilie Passemar

3.1 Method

- S-channel partial ways decomposition $(\theta_s)f_J(s)$ $A_{\lambda}(s,t) = \sum_{j=1}^{\infty} (2J+1)d_{\lambda,0}^J(\theta_s)A_J(s)$ $A_{\lambda}(s,t) = \sum_{j=1}^{\infty} (2J+1)d_{\lambda,0}^J(\theta_s)f_J(s)$
- One truncates the partial wave expansion

$$\begin{split} A_{\lambda}(s,t) &= \sum_{\substack{A_{\lambda}^{J}(s,t) \\ J_{\max}(s,t) = \sum_{j}^{\infty} (2J+1)d_{\lambda,0}^{J}(\theta_{s})f_{J}(s) \\ + \sum_{\substack{J_{\max} \\ J_{\max}(s,t) = \sum_{j}^{\infty} (2J+1)d_{\lambda,0}^{J}(\theta_{t})f_{J}(t) \\ A_{\lambda}^{J}(s,t) &= \sum_{j}^{\infty} (2J+1)d_{\lambda,0}^{J}(\theta_{s})f_{J}(s) \\ + \sum_{j}^{\sum_{j}^{\infty} (2J+1)d_{\lambda,0}^{J}(\theta_{s})f_{J}(s) \\ + \sum_{j}^{\sum_{j}^{\infty} (2J+1)d_{\lambda,0}^{J}(\theta_{s})f_{J}(t) \\ \end{bmatrix} \end{split}$$

 M^2

 $\theta_s, s \; \theta_t, t$

ν α Σ 눩 Isob

Emilie Passemar

.

3.2 Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- \succ M_I isospin *I* rescattering in two particles
- > Amplitude in terms of S and P waves \implies exact up to NNLO ($\mathcal{O}(p^6)$)
- ➢ Main two body rescattering corrections inside M₁

3.4 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

• The amplitude along the line s = u :

Emilie Passer

3.4 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

• The amplitude along the line t = u :

Emilie Passemar

2.12 Comparison of results for α

