Theoretical analysis of the doubly radiative decays $\eta^{(\prime)} \to \pi^{0} \gamma \gamma$ and $\eta' \to \eta \gamma \gamma$

10th International Workshop on Chiral Dynamics, Beijing (China), 15-19 November, 2021

Sergi Gonzàlez-Solís

Email: sergig@lanl.gov

THEORETICAL DIVISION, LOS ALAMOS NATIONAL LABORATORY

BASED ON: • R. ESCRIBANO, S. GONZÀLEZ-SOLÍS, R. JORA AND E. ROYO, PHYS.REV.D 102 (2020) 3, 034026

INTRODUCTION

• η and η' decays offer **fantastic opportunities** to:

- test low-energy QCD search for New Physics beyond SM
- **High priority** $\eta^{(\prime)}$ decays for experiment and theory

(L. Gan, B. Kubis, E. Passemar and S. Tulin, 2007.00664)

Decay channel	Standard Model	Discrete symmetries	BSM particles
$\eta^{(\prime)} ightarrow \pi^+ \pi^- \pi^0$	light quark masses	C/CP violation	scalar bosons
$\eta^{(\prime)} \to \gamma \gamma$	η - η' mixing, width	_	_
$\eta^{(\prime)} \to \ell^+ \ell^- \gamma$	$(g-2)_{\mu}$	_	Z', dark photon
$\eta^{(\prime)} ightarrow \pi^{o} \gamma \gamma$ and	higher-order χ PT,	—	U(1) _B boson,
$\eta' o \eta \gamma \gamma$	scalar dynamics		scalar boson
$\eta^{(\prime)} ightarrow \mu^+ \mu^-$	$(g-$ 2 $)_{\mu}$, precision tests	CP violation	_
$\eta^{(\prime)} \to \pi^{o} \ell^+ \ell^-$	_	C violation	scalar bosons
$\eta^{(\prime)} \to \pi^+ \pi^- \ell^+ \ell^-$	$(g-2)_{\mu}$	_	ALP, dark photon
$\eta^{(\prime)} \to \pi^{0} \pi^{0} \ell^{+} \ell^{-}$	_	C violation	ALP

- Important experimental activities: A2, Belle-II, BESIII, GlueX, LHCb, KLOE-II, WASA-at-COSY
- Forthcoming experiments: JLab Eta Factory (JEF) and REDTOP

$\eta \to \pi^{\mathbf{0}} \gamma \gamma$ decays: Theoretical motivation

▶ 1st sizable contribution comes at $\mathcal{O}(p^6)$, but LEC's are not well known

To test ChPT and a wide range of chiral models, e. g. VMD and LσM

BSM motivation: search for a *B* boson via $\eta \to B\gamma \to \pi^{0}\gamma\gamma$ (see talks by: Gatto, Somov, Kang)

2

$\eta \to \pi^{o} \gamma \gamma$ decays: VMD calculation

Six diagrams corresponding to the exchange of $V = \rho^0, \omega, \phi$

$$\mathcal{A}_{\eta \to \pi^{0} \gamma \gamma}^{\text{VMD}} = \sum_{\mathsf{V} = \rho^{0}, \omega, \phi} g_{\mathsf{V} \eta \gamma} g_{\mathsf{V} \pi^{0} \gamma} \left[\frac{(\mathsf{P} \cdot q_{2} - m_{\eta}^{2})\{a\} - \{b\}}{D_{\mathsf{V}}(t)} + \left\{ \begin{array}{c} q_{2} \leftrightarrow q_{1} \\ t \leftrightarrow u \end{array} \right\} \right]$$

Mandelstam variables and Lorentz structures given by:

$$\begin{split} t, u &= (P - q_{2,1})^2 = m_{\eta}^2 - 2P \cdot q_{2,1} ,\\ \{a\} &= (\epsilon_1 \cdot \epsilon_2)(q_1 \cdot q_2) - (\epsilon_1 \cdot q_2)(\epsilon_2 \cdot q_1) ,\\ \{b\} &= (\epsilon_1 \cdot q_2)(\epsilon_2 \cdot P)(P \cdot q_1) + (\epsilon_2 \cdot q_1)(\epsilon_1 \cdot P)(P \cdot q_2) \\ &- (\epsilon_1 \cdot \epsilon_2)(P \cdot q_1)(P \cdot q_2) - (\epsilon_1 \cdot P)(\epsilon_2 \cdot P)(q_1 \cdot q_2) , \end{split}$$

■ The decays $\eta' \rightarrow \{\pi^{o}, \eta\}\gamma\gamma$ are formally identical, with:

$$g_{
m V\eta\gamma}g_{
m V\pi^o\gamma} o g_{
m V\eta^\prime\gamma}g_{
m V\{\pi^o,\eta\}\gamma}$$

■ $g_{VP\gamma}$ couplings fixed from the measured widths ($P = \pi^{o}, \eta, \eta'$)

$$\Gamma_{V
ightarrow P \gamma}^{
m exp} = rac{1}{3} rac{g_{V P \gamma}^2}{32 \pi} \left(rac{m_V^2 - m_P^2}{m_V}
ight)^3 \,, \quad \Gamma_{P
ightarrow V \gamma}^{
m exp} = rac{g_{V P \gamma}^2}{32 \pi} \left(rac{m_P^2 - m_V^2}{m_P}
ight)^3 \,,$$

Decay	Branching ratio (pdg)	$ g_{V\!P\gamma} $ GeV $^{-1}$
$\rho^{\rm o} \to \pi^{\rm o} \gamma$	$(4.7\pm0.6) imes$ 10 $^{-4}$	0.22(1)
$\rho^{\rm o} \to \eta \gamma$	$(3.00\pm0.21) imes$ 10 $^{-4}$	0.48(2)
$\eta' o ho^{o} \gamma$	$(28.9\pm0.5)\%$	0.40(1)
$\omega \to \pi^{o} \gamma$	$(8.40 \pm 0.22)\%$	0.70(1)
$\omega \to \eta \gamma$	$(4.5\pm0.4) imes$ 10 $^{-4}$	0.135(6)
$\eta' \to \omega \gamma$	$(2.62 \pm 0.13)\%$	0.127(4)
$\phi \to \pi^{o} \gamma$	$(1.30\pm0.05) imes10^{-3}$	0.041(1)
$\phi \to \eta \gamma$	$(1.303 \pm 0.025)\%$	0.2093(20)
$\phi ightarrow \eta' \gamma$	$(6.22\pm0.21) imes10^{-5}$	0.216(4)

$L\sigma M$ for the scalar resonance contributions

χPT loops complemented by the exchange of scalar resonances, a₀(980), κ, σ, f₀(980), e.g.:

$$\begin{aligned} \mathcal{A}_{K^+K^- \to \pi^0 \eta^{(\prime)}}^{\text{L}\sigma\text{M}} = & \frac{1}{2f_{\pi}f_K} \left\{ (s - m_{\eta^{(\prime)}}^2) \frac{m_K^2 - m_{a_0}^2}{D_{a_0}(s)} \cos \varphi_P + \frac{1}{6} \left[(5m_{\eta^{(\prime)}}^2 + m_{\pi}^2 - 3s) \cos \varphi_P \right. \\ & \left. - \sqrt{2} (m_{\eta^{(\prime)}}^2 + 4m_K^2 + m_{\pi}^2 - 3s) \sin \varphi_P \right] \right\} \,, \end{aligned}$$

Complete one-loop propagator for the scalar resonances:

$$D_R(s) = s - m_R^2 + \operatorname{Re}\Pi(s) - \operatorname{Re}\Pi(m_R^2) + i \operatorname{Im}\Pi(s) ,$$

$\eta \to \pi^{\rm O} \gamma \gamma$ predictions

Our theoretical prediction BR = 1.35(8) × 10⁻⁴
 (R. Escribano, S. G-S, R. Jora, E. Royo, Phys.Rev.D 102, 034026 (2020))

- VMD dominates:
- ρ : 27% of the signal
- ω : 21% of the signal
- ϕ : 0% of the signal
- interference between ρ - ω - ϕ : 52%
- interference between scalar and vector mesons: 7%

$\eta ightarrow \pi^{o} \gamma \gamma$ predictions vs data (spectra)

- VMD comparison with A2 and CB data (R. Escribano, S. G-S, R. Jora, E. Royo, Phys.Rev.D 102, 034026 (2020))
 - Shape of the spectra is captured well Normalization offset M-B couplings A2 (2014) A2 (2009) $d\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)/dm_{\gamma \gamma}^2$ [eV/GeV²] Emp. couplings A2 (2007) CB (2008) 0.00 0.05 0.10 0.15 $m_{\gamma\gamma}^2$ [GeV²]

$\eta ightarrow \pi^{o} \gamma \gamma$ predictions vs data (spectra)

 Comparison with KLOE preliminary results (See talk by Elena P. del Rio, figure taken from her talk)

Good agreement

$\eta \to \pi^{\rm O} \gamma \gamma$ predictions vs data (BR)

- Our prediction, BR= $1.35(8) \times 10^{-4}$, agrees with BR= $1.30(13) \times 10^{-4}$ (KLOE prel, talk by del Rio)
- KLOE-II final measurement is forthcoming
- JEF experiment: (see talk by Somov)
 - \blacktriangleright BR and Dalitz distribution with \sim 5% precision
 - Improved understanding of the interplay of meson resonances
 - O(p⁶) LEC's determination

$\eta' \to \pi^{\rm O} \gamma \gamma ~{\rm DECAYS}$

Our theoretical predictions BR = [2.91(21), 3.57(25)] × 10⁻³
 (R. Escribano, S. G-S, R. Jora, E. Royo, Phys.Rev.D 102, 034026 (2020))

- VMD completely dominates:
- ω : 78% of the signal
- ρ : 5% of the signal
- ϕ : 0% of the signal
- ▶ interference: 17%

$\eta' \to \pi^{\rm O} \gamma \gamma$ decays

- Our theoretical predictions BR = [2.91(21), 3.57(25)] × 10⁻³
 (R. Escribano, S. G-S, R. Jora, E. Royo, Phys.Rev.D 102, 034026 (2020))
- First time $m_{\gamma\gamma}$ invariant mass distribution by the BESIII coll.; $BR = 3.20(7)(23) \times 10^{-3}$ (Ablikim *et al.* Phys.Rev.D 96, 012005 (2017))

$\eta' \to \eta \gamma \gamma \; {\rm DECAYS}$

- 1st BR measurement by BESIII, $BR = 8.25(3.41)(0.72) \times 10^{-5}$ or $BR < 1.33 \times 10^{-4}$ at 90% C.L. (Ablikim *et al.* Phys.Rev.D 100, 052015 (2019))
- Our theoretical predictions BR = [1.07(7), 1.17(8)] × 10⁻⁴ (R. Escribano, S. G-S, R. Jora, E. Royo, Phys.Rev.D 102, 034026 (2020))
 - VMD predominates (91% of the signal)
 - Substantial scalar meson effects (16%)
 - Interference between scalar and vector mesons (7%)

• We look forward to the release of the $m_{\gamma\gamma}$ spectrum

Ουτιοοκ

■ Within the VMD and LσM frameworks we have described

• $\eta \to \pi^{o} \gamma \gamma$: the situation is **not conclusive**

 $BR = 1.35(8) \times 10^{-4} \begin{cases} \sim 1/2 \text{ of } BR = 2.54(27) \times 10^{-4} & (A2, 2014) \\ \sim 1.6\sigma \text{ from } BR = 2.21(24)(47) \times 10^{-4} & (CB, 2008) \\ \text{agrees with } BR = 1.30(13) \times 10^{-4} & (\text{prel. KLOE, del Rio CD'21}) \end{cases}$

•
$$\eta' \rightarrow \pi^{o} \gamma \gamma$$
: in fair agreement with BESIII data

▶ $\eta' \rightarrow \eta \gamma \gamma$: in line with BESIII data

- Important experimental activity: A2, Belle-II, BESIII, KLOE-II, GlueX, WASA. The contribution of new experiments (JEF, REDTOP), will be very welcome
- Search for New Physics BSM, e.g. *U*(1)_{*B*} boson, requires: robust SM predictions and precise experiments
- A lot of **interesting physics** to be done in the η/η' sector

Phenomenological $\textit{VP}\gamma$ couplings

$$\begin{split} g_{\rho^{0}\pi^{0}\gamma} &= \frac{1}{3}g, \\ g_{\rho^{0}\eta\gamma} &= g z_{\rm NS} \cos \varphi_{P}, \\ g_{\rho^{0}\eta'\gamma} &= g z_{\rm NS} \sin \varphi_{P}, \\ g_{\omega\pi^{0}\gamma} &= g \cos \varphi_{V}, \\ g_{\omega\eta\gamma} &= \frac{1}{3}g \Big(z_{\rm NS} \cos \varphi_{P} \cos \varphi_{V} - 2\frac{\overline{m}}{m_{s}} z_{\rm S} \sin \varphi_{P} \sin \varphi_{V} \Big), \\ g_{\omega\eta'\gamma} &= \frac{1}{3}g \Big(z_{\rm NS} \sin \varphi_{P} \cos \varphi_{V} + 2\frac{\overline{m}}{m_{s}} z_{\rm S} \cos \varphi_{P} \sin \varphi_{V} \Big), \\ g_{\phi\pi^{0}\gamma} &= g \sin \varphi_{V}, \\ g_{\phi\eta\gamma} &= \frac{1}{3}g \Big(z_{\rm NS} \cos \varphi_{P} \sin \varphi_{V} + 2\frac{\overline{m}}{m_{s}} z_{\rm S} \sin \varphi_{P} \cos \varphi_{V} \Big), \\ g_{\phi\eta\gamma} &= \frac{1}{3}g \Big(z_{\rm NS} \sin \varphi_{P} \sin \varphi_{V} - 2\frac{\overline{m}}{m_{s}} z_{\rm S} \cos \varphi_{P} \cos \varphi_{V} \Big), \end{split}$$

$\eta \to \pi^{\rm O} \gamma \gamma \; {\rm DECAYS}$

$$\eta
ightarrow \pi^{\mathsf{o}} \gamma \gamma$$
 decays

Danilkin et al. Phys.Rev.D 96, 114018 (2017)

$\eta \to \pi^{\rm O} \gamma \gamma$ decays

Dispersive comparison with A2 and CB data (Lu and Moussallam, Eur.Phys.J.C 80, 436 (2020)

- Shape of the spectra is captured well
- Normalization offset
- New measurements from KLOE-II and JEF are welcome

 $\eta^{(\prime)}
ightarrow \{\pi^{\mathsf{o}},\eta\} \overline{\ell^+\ell^-}$ decays $(\ell=\overline{m{e},\mu})$

In the SM:

- ▶ $\eta \to \pi^{o} \gamma^{*} \to \pi^{o} \ell^{+} \ell^{-}$ forbidden by C and CP
- ► $\eta \rightarrow \pi^{o} \ell^{+} \ell^{-}$ proceed via C-conserving two-photon intermediate state

Decay channel	$\textit{BR}_{ m th}$ (Escribano&Royo 2007.12467)	${\it BR}_{ m exp}$ (pdg)
$\eta ightarrow \pi^{o} \mathbf{e}^{+} \mathbf{e}^{-}$	$2.1(1)(2) imes 10^{-9}$	$<$ 7.5 $ imes$ 10 $^{-6}$ (CL=90%)
$\eta \to \pi^{\rm o} \mu^+ \mu^-$	$1.2(1)(1) imes 10^{-9}$	$<$ 5 $ imes$ 10 $^{-6}$ (CL=90%)
$\eta' ightarrow \pi^{o} e^{+} e^{-}$	4.6(3)(7) × 10 ⁻⁹	$<$ 1.4 $ imes$ 10 $^{-3}$ (CL=90%)
$\eta' \to \pi^{\rm o} \mu^+ \mu^-$	$1.8(1)(2) imes 10^{-9}$	$<$ 6.0 $ imes$ 10 $^{-5}$ (CL=90%)
$\eta^\prime ightarrow \eta e^+ e^-$	$3.9(3)(4) imes 10^{-10}$	$<$ 2.4 $ imes$ 10 $^{-3}$ (CL=90%)
$\eta' \to \eta \mu^+ \mu^-$	$1.6(1)(2) imes 10^{-10}$	$<$ 1.5 $ imes$ 10 $^{-5}$ (CL=90%)

- Background for BSM searches, e.g. C-violating virtual photon exchange or new scalar mediators
- REDTOP can improve the experimental state

Other interesting η and η' decays

- Standard Model decays:
 - ▶ $\eta \rightarrow 3\pi$: Dalitz plot measurements with improved precision (GlueX, REDTOP) \Rightarrow more precise extraction of Q
 - ▶ $\eta' \rightarrow 3\pi$: theoretical advances \Rightarrow extraction of *Q* also possible
 - ► $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \ell^+ \ell^-$: detailed differential information \Rightarrow access to the doubly-virtual transition form factors $\Rightarrow (g 2)_{\mu}$
- Discrete symmetry tests:
 - $\eta \rightarrow \mu^+ \mu^-$: high-precision experimental test (REDTOP) can probe *CP* violation
 - ▶ $\eta^{(\prime)} \rightarrow \pi \pi$: improved experimental bounds are welcome
 - ▶ $\eta^{(\prime)} \rightarrow \pi^{o} \pi^{o} \ell^{+} \ell^{-}$: test of *C*-violation
- New light BSM particles:
 - dark photon appears as a resonance in $\eta^{(\prime)} \rightarrow \ell^+ \ell^- \gamma$ (REDTOP)
 - ▶ Axion-like particles searches in $\eta^{(\prime)}$ decays, *e.g.* $\eta^{(\prime)}
 ightarrow 2\pi a$