Statistically rigorous analyses of light nuclei with chiral interactions

Dick Furnstahl
Chiral Dynamics 2021, November 2021

https://buqeye.github.io/
Jupyter notebooks here!

https://www.lenpic.org/

https://bandframework.github.io/

Outline

- Bayesian methods for uncertainty quantification
- Challenges for analyses of light nuclei
- "Sampling" of applications to light nuclei
- Recap and future prospects

Outline

- Bayesian methods for uncertainty quantification
- Challenges for analyses of light nuclei
- "Sampling" of applications to light nuclei
- Recap and future prospects

Goals of uncertainty quantification (UQ) for chiral EFT

- Full accounting of experiment and theory uncertainties
- Propagation of errors from LEC fits to observables
- Order-by-order error bars or bands for observables
- Statistical assumptions are explicit and testable
- Provide advice on what experiment to do next
- Comparison or *combination* of EFT implementations

Bayesian statistics enables all of these goals!

$$\operatorname{pr}(A|B,I) = \frac{\operatorname{pr}(B|A,I)\operatorname{pr}(A|I)}{\operatorname{pr}(B|A)}$$

Density $n \, [\text{fm}^{-3}]$

From Drischler et al., PRL 125 (2020)

Density $n \, [\text{fm}^{-3}]$

From Maris et al., PRC 103 (2021)

What makes Bayesian UQ statistically rigorous?

- Incorporate all sources of experimental and theoretical errors
- Formulate *statistical models* for uncertainties
- Use informative priors (at least weakly informative)
- Account for correlations in inputs (type x) and observables (type y)
- Propagate errors through the calculation (e.g., LECs → observables)
- Use model checking to validate the model
- Include oversight by experts (statisticians)

For publications and talks, see https://buqeye.github.io/
Jupyter notebooks also!

Bayesian updating of knowledge

$$\operatorname{pr}(A|B,I) = \frac{\operatorname{pr}(B|A,I)\operatorname{pr}(A|I)}{\operatorname{pr}(B|I)} \Longrightarrow \underbrace{\operatorname{pr}(\boldsymbol{\theta}|\mathbf{y}_{\exp},I)}_{\operatorname{posterior}} \propto \underbrace{\operatorname{pr}(\mathbf{y}_{\exp}|\boldsymbol{\theta},I)}_{\operatorname{likelihood}} \times \underbrace{\operatorname{pr}(\boldsymbol{\theta}|I)}_{\operatorname{prior}}$$

Characteristics of Bayesian statistics

- Update knowledge as new information comes in (prior → posterior)
- Almost everything has a probability distribution function (PDF)
- Takes advantage of hierarchical models (sub-models with parameters)
- Marginalize rather than optimize (integrate vs. point estimate)
- With many parameters most often sample the posterior with MCMC
- Can model, combine, and propagate systematic, correlated theory errors!

$$\operatorname{pr}(\boldsymbol{\theta}|\mathbf{y}_{\mathrm{exp}}, \Sigma_{\mathrm{exp}}, \Sigma_{\mathrm{th}}, I) \propto e^{-\frac{1}{2}\mathbf{r}^{\mathsf{T}}(\Sigma_{\mathrm{exp}} + \Sigma_{\mathrm{th}})^{-1}\mathbf{r}} \times e^{-\boldsymbol{\theta}^2/2\bar{\theta}^2}$$

Bayesian updating of knowledge

 $\operatorname{pr}(\boldsymbol{ heta}|\mathbf{y}_{\mathrm{exp}},I) \propto \operatorname{pr}(\mathbf{y}_{\mathrm{exp}}|\boldsymbol{ heta},I) imes \operatorname{pr}(\boldsymbol{ heta}|I)$ posterior likelihood prior

Two ways to treat the theory model discrepancy

Statistical model for observable $m{y}$: $m{y}_{\mathrm{exp}} = m{y}_{\mathrm{th}} + \delta m{y}_{\mathrm{th}} + \delta m{y}_{\mathrm{exp}}$

Advice from statisticians: any model for theory discrepancy is better than no model!

- 1. Model the distribution of residuals: $m{r} \equiv m{y}_{
 m exp} m{y}_{
 m th}$
 - $(\delta y_{exp})_n$ is often a Gaussian with mean $\mu = 0$ and variance $\sigma_n^2 \rightarrow$ error bars of size σ_n
 - For δy_{th} , look at pattern of residuals and *model* it (train and test; correlated \rightarrow GP).
- 2. For effective field theories (EFT), learn from convergence pattern
 - Expect that each order will *roughly* improve by expansion parameter Q < 1:

Theory at order k:
$$m{y}_k = m{y}_{\mathrm{ref}} \sum_{n=0}^\kappa c_n Q^n$$
 Omitted orders: $\delta m{y}_{\mathrm{th}} = m{y}_{\mathrm{ref}} \sum_{n=k+1}^\infty c_n Q^n$

• Treat the c_ns as random variables and learn their distribution from calculated orders

Coefficients for a Bayesian EFT truncation model (not LECs!)

x can be continuous (e.g., energy, angle, density,) or discrete (e.g., nuclear level).

Either case can be correlated!

- Order-by-order predictions of y: $y_{\rm th}(x) = y_0 \to y_1 \to \cdots \to y_k$
- Focus on differences: $\Delta y_n = y_n y_{n-1} \rightarrow$ rescale by reference and Q^n : $c_n \equiv \frac{\Delta y_n}{y_{\rm ref}Q^n}$
- Treat c_n s (not LECs!!) as random variables and learn from calculated orders

$$oldsymbol{y}_k = oldsymbol{y}_{ ext{ref}} \sum_{n=0}^k c_n Q^n \quad \Rightarrow \quad \delta oldsymbol{y}_{ ext{th}} = oldsymbol{y}_{ ext{ref}} \sum_{n=k+1}^{\infty} c_n Q^n \qquad \chi ext{EFT} \Rightarrow Q = rac{\{p, m_\pi\}}{\Lambda_b}, \quad \Lambda_b pprox 600 \, ext{MeV}$$

Assumption: behavior of c_n s persists across orders with characteristic size \overline{c} (natural) 8

Fast & rigorous constraints on chiral three-nucleon forces from few-body observables

S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, rjf, J. A. Melendez, and D. R. Phillips

BUQEYE Collaboration

Notebook with all figures at https://buqeye.github.io

arXiv:<u>2104.04441</u> PRC (in press)

See talk by Daniel Phillips, Tuesday 20:30 [Few-Body] for physics and stats details

Fast: uses eigenvector continuation emulators for observables

Rigorous: statistical best practices for parameter estimation

Chiral 3N forces: estimate constraints on c_D and c_E

Few-body observables (cf. other possibilities):

³H ground-state energy; ³H β-decay half-life; ⁴He ground-state energy; ⁴He charge radius

(almost) Full Bayesian approach to constraining parameters

Uses NNLO chiral EFT without Δ 's based on Carlsson et al. PRX **6**, 011019 (2016), but methods are general (other regulators, Δ 's, other observables)

Sample pdf with MCMC over 15 dimensions (11 NN LECs + c_D , c_E + Q, \bar{c}^2) \rightarrow marginalize (integrate out) what you are not considering

Posteriors from "Fast & Rigorous" (arXiv:2104.04441)

Posterior for c_D and c_E

Tails are *not* well approximated by a Gaussian! (See Daniel P.'s talk!)

Posterior for Q and \bar{c}

Truncation error for observables:

Posterior predictive distribution

$$\operatorname{pr}(\vec{a}, Q, \bar{c}^2 | \mathbf{y}_{\exp}, I)$$
, $y_k = y_{\text{ref}} \sum_{k=0}^{k} c_n Q^k$, \bar{c}^2 variance for c_n 's

Sample pdf with MCMC over 11 NN LECs + c_D , $c_E + Q$, $\bar{c}^2 \rightarrow$ marginalize (integrate out) what you are not considering

Outline

- Bayesian methods for uncertainty quantification
- Challenges for analyses of light nuclei
- "Sampling" of applications to light nuclei
- Recap and future prospects

Challenge 1: Computational cost

Calculating Bayesian pdfs and expectation values can be prohibitively costly for expensive likelihood. What can we do to mitigate the cost?

→ 1. Use conjugate priors: for some likelihoods, posterior pdf is in same family as prior pdf → analytical updating of posterior.
 An example is the EFT truncation variance:

$$\underbrace{\operatorname{pr}(\bar{c}^{2}|\{c_{n}\})}_{\sim\chi^{-2}(\nu,\tau^{2})} \propto \underbrace{\operatorname{pr}(\{c_{n}\}|\bar{c}^{2})}_{\sim\mathcal{N}(0,\bar{c}^{2})} \underbrace{\operatorname{pr}(\bar{c}^{2})}_{\chi^{-2}(\nu_{0},\tau_{0}^{2})} \leftarrow \underbrace{\nu = \nu_{0} + n_{c}}_{\nu\tau^{2} = \nu_{0}\tau_{0}^{2} + \sum_{n} c_{n}^{2}}_{n}$$

- 2. Gaussian approximation (data >> model complexity)
- 3. Variational approximation (approximate the posterior)
- → 4. Sample with Markov chain Monte Carlo (MCMC) using an *emulator*
 - → Make a computer model of your calculation
 - Gaussian process model emulators [e.g., https://arxiv.org/abs/2004.08474]
 - Eigenvector continuation (EC) and extensions [König et al., PLB 810, 135814 (2020)]

Eigenvector continuation emulators for few-nucleon observables

Basic idea: a small # of ground-state eigenvectors from a selection of parameter sets is an extremely effective variational basis for other parameter sets. **Characteristics:** fast and accurate!

EC emulators for NN and 3N scattering

- EC extended to 2-body scattering by rjf et al., PLB (2020) using the Kohn variational principle.
- Method improved by Drischler et al., <u>arXiv:2108.08269</u> (e.g., mitigate Kohn anomalies).
- Two-body emulation w/o wfs by Melendez et al., PLB 821, (2021) (Newton variational method).

What about 3-body scattering emulators? Most useful for Bayesian xEFT LEC estimation.

→ Xilin Zhang recent <u>proof of principle</u> w/ KVP.

See also Sarkar and Lee, <u>PRL 126 (2021)</u> and <u>arXiv:2017.13449</u> and Krackow group for Faddeev emulator, <u>EPJA 57 (2021)</u>. ₁₅

Challenge 2: Accounting for correlations

- Type x: Between observables y(x) and y(x') [also discrete]
 - Cross section at nearby energies; EOS at nearby densities
- Type y: Between observables $y_1(x)$ and $y_2(x)$ [or $y_2(x')$]
 - Symmetric and neutron matter; two energy levels
- Possible consequences of correlations
 - Overestimating information provided by correlated inputs
 - Overestimating errors in differences of observables
- Rigorous statistical treatment of correlations
 - Learn correlations (e.g., by training a Gaussian process)
 - Incorporate correlated errors (e.g., covariance matrix Σ_{th})
 - Model checking (e.g., Mahalanobis distance)

Refs.: Melendez et al., PRC 100 (2019); Drischler et al., PRC 102 (2020)

Challenge 3: Estimating the expansion parameter

Model:
$$oldsymbol{y}_k = oldsymbol{y}_{ ext{ref}} \sum_{n=0}^k c_n Q^r$$

Model: $y_k=y_{\mathrm{ref}}\sum_{n=0}^k c_nQ^n$ Expectation: $\chi\mathrm{EFT}\Rightarrow Q=rac{\{p,m_\pi\}}{\Lambda_b},\quad \Lambda_bpprox 600\,\mathrm{MeV}$

What about spectra of light nuclei? Convergence pattern obscured at low order by KE vs. PE cancellation. \rightarrow only use higher orders \rightarrow Q \approx 0.3 [consistent with $(m_{\pi})^{\text{eff.}}/\Lambda_{\text{h}}$ (see Ref.)]

Λ_b from NN observables

Λ_h from infinite matter

Q from few-body observables

Outline

- Bayesian methods for uncertainty quantification
- Challenges for analyses of light nuclei
- "Sampling" of applications to light nuclei
- Recap and future prospects

Light nuclei with semilocal momentum-space regularized chiral interactions up to third order

LENPIC Collaboration https://www.lenpic.org/

P. Maris et al., PRC **103**, 054001 (2021) arXiv:2104.04441

See talk by Hermann Krebs, Thursday 20:20 for more on LENPIC physics and results

ENPIC

- Consistent NN and 3N potentials to N²LO
- "Semilocal" to reduce regulator artifacts
- c_E and c_D from ³H binding and *Nd* diff. cross section minimum
- Results for few-body and p-shell nuclei (NCCI plus SRG)
- Bayesian estimates of EFT truncation errors (also method error)
- Here: accounting for correlations in excitation energies

Ground-state energies with Bayesian truncation errors

• Apply pointwise Bayesian:

$$oldsymbol{y}_k = oldsymbol{y}_{ ext{ref}} \sum_{n=0} c_n Q^n$$

 \rightarrow learn c_n 's from calculated orders and applied to omitted

$$\delta oldsymbol{y}_{
m th} = oldsymbol{y}_{
m ref} \sum_{n=k+1}^{\infty} c_n Q^n$$

- Use experiment for y_{ref}
- Expansion param. Q ≈ 0.31
- E_{gs} up to A=10 agrees with experiment within 95% bands; overbound above

What about excitation energies and their errors?

Excitation energies are highly correlated

Coefficients for all the levels

- Empirically: calculated excitation energies are better determined than each level.
- Why? If E_1 and E_2 have δy_{th} variance σ^2 , then $E_2 E_1$ has $2\sigma^2$ if uncorrelated but $2(1-\rho)\sigma^2$ if correlated with ρ !
- Plan: learn ρ from \mathbf{y}_{th} coefficients c_n :

$$oldsymbol{y}_k = oldsymbol{y}_{ ext{ref}} \sum_{n=0}^k c_n Q^n \quad c_n \equiv rac{\Delta y_n}{y_{ ext{ref}} Q^n}$$

- **Model checking:** empirical coverage in agreement with experiment *if* correlations used for errors.
- **Diagnostic of physics**: exceptions in ¹²C and ¹²B point to different theoretical correlations in the nuclear structure.
- Future: N³LO results will enable better estimates of correlations → more insight

- Mainz group (Acharya and Bacca), Gaussian process error modeling for chiral effective-field-theory
 calculations of np dy at low energies, arXiv:2109.13972. χΕΓΤ with 1B+2B currents. Extends Bayesian
 methods for truncation error to an electromagnetic reaction cross section. "...an important step towards
 calculations with statistically interpretable uncertainties for astrophysical reactions involving light nuclei."
- LLNL/TRIUMF group (Kravvaris et al.), *Quantifying uncertainties in neutron-alpha scattering with chiral nucleon-nucleon and three-nucleon forces*, PRC 102 (2021). χΕFT with EMN N4LO NN + N2LO 3N. Uses Gaussian Process Model (GPM) emulator. Bayesian UQ with combined uncertainties (incl. uncorrelated NCSM(-C) method and truncation errors). Many results on convergence, cD-cE correlations, phase shifts!
- Chalmers group (Djärv et al.), *Fast & rigorous predictions for A=6 nuclei with Bayesian posterior sampling*, arXiv:2108.13313. Non-local-MS-regulated χEFT with NN+3N. Introduces JupyterNCSM → construction and validation of EC emulators. Bayesian UQ with correlated truncation error → more precise predictions for separation energies and beta-decay Q-value. Many results!

FIG. 3. The 2σ truncation error bands on the χ EFT predictions y_k at k=2,3,4 along with the prediction y_5 and data from Fig. 1. (a) The product of $p(n,\gamma)d$ cross section and the neutron speed versus the energy of the neutron. (b) The deuteron photodissociation cross section as a function of the photon energy in the rest frame of the deuteron.

an rds lei."

ral

d

recise

FIG. 2. GP modeling of the χ EFT expansion coefficients and its diagnostics. (a) The simulators (solid lines) along with the corresponding GP emulators (dashed lines) and their 2σ intervals (bands). The training data are denoted by filled circles; 4 validation points are located uniformly between each adjacent pair of training points. (b) The Mahalanobis distances compared to the mean (interior line), 50% (box) and 95% (whiskers) credible intervals of the reference distribution. (c) The pivoted Cholesky diagnostics versus the index along with 95% credible intervals (gray lines). (d) The credible interval diagnostics with 1σ (dark gray) and 2σ (light gray) bands estimated by sampling 1000 GP emulators.

an rds lei."

ral S

> d fts!

ecise

- Mainz group (Acharya and Bacca), *Gaussian process error modeling for chiral effective-field-theory calculations of np ↔ dy at low energies*, arXiv:2109.13972. χEFT with 1B+2B currents. Extends Bayesian methods for truncation error to an electromagnetic reaction cross section. "...an important step towards calculations with statistically interpretable uncertainties for astrophysical reactions involving light nuclei."
- LLNL/TRIUMF group (Kravvaris et al.), *Quantifying uncertainties in neutron-alpha scattering with chiral nucleon-nucleon and three-nucleon forces*, PRC 102 (2021). χΕFT with EMN N4LO NN + N2LO 3N. Uses Gaussian Process Model (GPM) emulator. Bayesian UQ with combined uncertainties (incl. uncorrelated NCSM(-C) method and truncation errors). Many results on convergence, cD-cE correlations, phase shifts!
- Chalmers group (Djärv et al.), *Fast & rigorous predictions for A=6 nuclei with Bayesian posterior sampling*, arXiv:2108.13313. Non-local-MS-regulated χΕFT with NN+3N. Introduces JupyterNCSM → construction and validation of EC emulators. Bayesian UQ with correlated truncation error → more precise predictions for separation energies and beta-decay Q-value. Many results!

- Mainz group (Acharya and Bacca), *Gaussian process error modeling for chiral effective-field-theory calculations of np⇔dy at low energies*, arXiv:2109.13972. χEFT with 1B+2B currents. Extends Bayesian methods for truncation error to an electromagnetic reaction cross section. "...an important step towards calculations with statistically interpretable uncertainties for astrophysical reactions involving light nuclei."
- LLNL/TRIUMF group (Kravvaris et al.), *Quantifying uncertainties in neutron-alpha scattering with chiral nucleon-nucleon and three-nucleon forces*, PRC 102 (2021). χΕFT with EMN N4LO NN + N2LO 3N. Uses Gaussian Process Model (GPM) emulator. Bayesian UQ with combined uncertainties (incl. uncorrelated NCSM(-C) method and truncation errors). Many results on convergence, cD-cE correlations, phase shifts!
- Chalmers group (Djärv et al.), *Fast & rigorous predictions for A=6 nuclei with Bayesian posterior sampling*, arXiv:2108.13313. Non-local-MS-regulated χΕFT with NN+3N. Introduces JupyterNCSM → construction and validation of EC emulators. Bayesian UQ with correlated truncation error → more precise predictions for separation energies and beta-decay Q-value. Many results!

N

FIG. 8. Full PPD for binding energies and thresholds including both method and model (EFT truncation) uncertainties. The dashed (dotted), vertical lines on the diagonal show the median (68% credible interval), while the blue, solid lines indicate the experimental values. See also Table [I]. The open, grey histograms on the diagonal represent low-statistics results based on only 25 LEC samples (see text for details). The level curves in the off-diagonal panels show the 68% and 95% probability mass regions of the bivariate distributions.

FIG. 9. A=6 level scheme. Dashed lines show experimental thresholds for ${}^4\mathrm{He} + 2n({}^4\mathrm{He} + \mathrm{d})$ relative ${}^6\mathrm{He}({}^6\mathrm{Li})$ while the blue line and band show the median and 68% credible interval from the full PPD. The red distributions, from left to right, show the evolution of the PPD as we go from the NCSM prediction, PPD_{NCSM}, to the inclusion of method errors, and finally including the EFT truncation error—with thick (thin) vertical lines indicating the 68%(95%) credible interval. Note that the NCSM prediction for each threshold has been shifted by the mean values of the relevant method errors. The uncertainty in the β^- -decay Q-value is dominated by the method ($N_{\rm max}$ -extrapolation) uncertainty.

- Mainz group (Acharya and Bacca), Gaussian process error modeling for chiral effective-field-theory
 calculations of np dy at low energies, arXiv:2109.13972. χΕΓΤ with 1B+2B currents. Extends Bayesian
 methods for truncation error to an electromagnetic reaction cross section. "...an important step towards
 calculations with statistically interpretable uncertainties for astrophysical reactions involving light nuclei."
- LLNL/TRIUMF group (Kravvaris et al.), *Quantifying uncertainties in neutron-alpha scattering with chiral nucleon-nucleon and three-nucleon forces*, PRC 102 (2021). χΕFT with EMN N4LO NN + N2LO 3N. Uses Gaussian Process Model (GPM) emulator. Bayesian UQ with combined uncertainties (incl. uncorrelated NCSM(-C) method and truncation errors). Many results on convergence, cD-cE correlations, phase shifts!
- Chalmers group (Djärv et al.), *Fast & rigorous predictions for A=6 nuclei with Bayesian posterior sampling*, arXiv:2108.13313. Non-local-MS-regulated χΕFT with NN+3N. Introduces JupyterNCSM → construction and validation of EC emulators. Bayesian UQ with correlated truncation error → more precise predictions for separation energies and beta-decay Q-value. Many results!

Outline

- Bayesian methods for uncertainty quantification
- Challenges for analyses of light nuclei
- "Sampling" of applications to light nuclei
- Recap and future prospects

Recap and takeaways

- Bayesian methods enable statistically rigorous analyses of light nuclei
 - Chiral power counting → statistical model for truncation error
 - Assumptions are explicit and testable → Bayesian model checking
 - Statistics for *diagnostics* and *discovery* (not just theory error bands)
- Addressing challenges for analyses of light nuclei
 - Fast & accurate emulators enable use of full Bayesian machinery
 - Correlations are important (both x,y) \rightarrow account for them and exploit them
 - Learn chiral EFT expansion parameter from data and test consistency
- Applications to light nuclei are growing
 - More nuclei and hypernuclei; more interactions and higher order (e.g., N3LO)
 - More observables; consistent external currents

Future prospects for Bayesian analyses

Relevant for light nuclei with chiral forces, but also more generally applicable

- Emulators: 3-body scattering with chiral forces; new emulator technology
- Exploiting statistical correlations in nuclear spectra using Bayesian tools
- Power counting at finite density (see talk by Christian Drischler on matter)
- External currents (see LENPIC talk by Hermann Krebs; talk by Saori Pastore)
- Experimental design (see Compton scattering talk by Harald Griesshammer)
- Bayesian frontier: model mixing (BAND collaboration)
- And much more . . .

BAND (Bayesian Analysis of Nuclear Dynamics)

An NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI) Framework (from 7/2020)

Look to https://bandframework.github.io/ over the coming years!

ISNET 8 and the Second Annual BAND Camp is Dec. 13-17, 2021.

Hybrid meeting: remote participation by zoom. See website for details on events and registration.

https://indico.frib.msu.edu/event/47/

Propaganda: Jupyter notebooks for Bayesian UQ

- Jupyter notebooks and Python are great tools for nuclear physics UQ
- E.g., Bayesian methods for EFT and other theory errors (combined with experiment)
 - Many examples from the BUQEYE collaboration [see https://buqeye.github.io/]
- Aspiration: every paper should provide a notebook for reproducing figures
- Github repositories with notebooks for learning Bayesian statistics for physics
 - BAYES 2019 (TALENT course): https://nucleartalent.github.io/Bayes2019/ [developed by Christian Forssén, rjf, Daniel Phillips]
 - Christian Forssén's course at Chalmers in Jupyter Book format with notebooks:
 https://physics-chalmers.github.io/tif285/doc/LectureNotes/_build/html/
 - rjf course at Ohio State with notebooks: https://furnstahl.github.io/Physics-8820/ [Jupyter Book based on BAYES 2019 and updates by rjf and C. Forssén]

Thank you!

Extra slides

State of knowledge as probability distributions (pdfs)

- pr(A, B | C) "joint probability (density) of A and B given C" (contingent on C)
- A, B, C can be observables, parameters, uncertainties, propositions, models, ...
- cf. quantum mechanics $|\psi(x, y)|^2$ or $|\psi(x)|^2 = \int |\psi(x, y)|^2 dy$ (marginalization)
- Bayesian confidence (credible) interval:

$$\operatorname{pr}(a \le x \le b) = \int_a^b |\psi(x)|^2 dx$$

Examples of pdfs for theory UQ:

Pr(θ | \mathbf{y}_{exp} , Σ_{exp} , Σ_{th} , I) \Rightarrow pdf of model parameters θ given data y_{exp} and experiment/theory errors Σ , plus other information I

Bayes's Theorem: How to update knowledge in PDFs

$$\operatorname{pr}(A|B,I) = \frac{\operatorname{pr}(B|A,I)\operatorname{pr}(A|I)}{\operatorname{pr}(B|I)} \Longrightarrow \underbrace{\operatorname{pr}(\boldsymbol{\theta}|\mathbf{y}_{\exp},I)}_{\operatorname{posterior}} \propto \underbrace{\operatorname{pr}(\mathbf{y}_{\exp}|\boldsymbol{\theta},I)}_{\operatorname{likelihood}} \times \underbrace{\operatorname{pr}(\boldsymbol{\theta}|I)}_{\operatorname{prior}}$$

Likelihood overwhelms prior

Prior suppresses unconstrained likelihood

The BUQEYE Cheatsheet for Pointwise Truncation Errors (arXiv:1904.10581)

From observable y, extract coefficients

$$\vec{y}_k \equiv \{y_0, y_1, \cdots, y_k\}
\Rightarrow \vec{c}_k \equiv \{c_0, c_1, \cdots, c_k\}$$
(A1)

Choose ν_0 and τ_0 . Update hyperparameters

$$\nu = \nu_0 + n_c \tag{A7}$$

$$\nu \tau^2 = \nu_0 \tau_0^2 + \vec{c}_k^2 \tag{A8}$$

Compute posterior

$$\mathsf{pr}(y \,|\, \vec{y}_k, Q) \sim t_{\nu} \bigg[y_k, y_{\mathsf{ref}}^2 \frac{Q^{2(k+1)}}{1 - Q^2} au^2 \bigg] \ (\mathsf{A}13)$$

```
import numpy as np
y_ref = 20.0; Q = 0.3; k = 3
y_k = [21.7, 27.3, 25.4, 26.2]
c_k = np.array([y_k[0] / y_ref] + [
  (y_k[n] - y_k[n-1]) / (y_ref * Q**n)
 for n in range(1, k+1)])
nu_0 = 1; tau_0 = 1 \# \sim Uninformative
nu = nu_0 + len(c_k)
tau_sq = \
  (nu \ 0 * tau \ 0**2 + c k @ c k) / nu
from scipy.stats import t
scale = y_ref * Q**(k+1) * \
  (tau_sq / (1 - Q**2))**0.5
y = t(nu, y_k[-1], scale)
dob = y.interval(0.95) # (25.7, 26.7)
```

Note: If $n_c \gg 1$, the posterior for y becomes a normal distribution.

Model Checking I: Weather plots (empirical coverage)

Test of EKM NN chiral EFT potentials from Melendez et al., PRC **96**, 024003 (2017)

In progress (2021): similar analysis of other NN interactions

Model Checking I: Weather plots (empirical coverage)

Test of EKM NN chiral EFT potentials from Melendez et al., PRC **96**, 024003 (2017) In progress (2021): similar analysis of other NN interactions

Model checking: Does our model refer to reality?

Use metric to measure GP-ness to test model: Mahalanobis distance

This is what success looks like!

Model checking: Does our model refer to reality?

Use metric to measure GP-ness to test assumption: Mahalanobis distance

This is what failure looks like!

Reminder about statistical correlations

• $pr(x, y \mid z)$ "joint probability (density) of x and y given z" (contingent on z)

$$\mathcal{N}e^{-\frac{1}{2}\mathbf{r}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\mathbf{r}} = \mathcal{N}e^{-\frac{(x-\mu)^2}{2\sigma_x^2}}e^{-\frac{(y-\mu)^2}{2\sigma_y^2}}$$

$$\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{bmatrix}$$

e.g.,
$$X - Y \sim \mathcal{N}(\mu_x - \mu_y, \sigma_x^2 + \sigma_y^2)$$

Reminder about statistical correlations

• $pr(x, y \mid z)$ "joint probability (density) of x and y given z" (contingent on z)

$$\mathcal{N}e^{-\frac{1}{2}\mathbf{r}^{\mathsf{T}}\Sigma^{-1}\mathbf{r}} = \text{correlated gaussian}$$

$$\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_x^2 & \rho\sigma_x\sigma_y \\ \rho\sigma_x\sigma_y & \sigma_y^2 \end{bmatrix}$$

With two points x and y, $-1 \le \rho \le 1 \xrightarrow{\rightarrow}$ correlation. With many points x_1 , x_2 , ... x_N , all pairs have a ρ_{ij} correlation to be learned.

$$X - Y \sim \mathcal{N}(\mu_x - \mu_y, \sigma_x^2 + \sigma_y^2 - 2\sigma_x\sigma_y\rho)$$

Bayes is great, but won't the sampling be too expensive?

Global sensitivity analysis of bulk properties of an atomic nucleus

A. Ekström and G. Hagen

Ground-state energy (MeV)

Charge radius (fm)

-140

-160

-180

2.8

2.7

2.6

SP-CC(5) (points 1-5)

SP-CC(3) (points 1-3)

16()

3.5

CCSD

3.0

Low-energy constant $C_{^{1}S_{0}}$ (10⁴ GeV⁻⁴)

2.5

"We have to use $(16 + 1) \cdot 216 = 1,114,112$ quasi MC samples to extract statistically significant main and total effects of the energy and radius for all LECs. With SP-CC(64) this took about 1 hour on a standard laptop, while an equivalent set of exact CCSD computations would require 20 years."

arXiv: 1910.02922