

Motivation

Motivation

Conditions on Bounds

The curse of χ PT (and other EFTs)

Many LECs Limited observables LO LECs (2): NLO LECs (10):

NNLO LECs (90): N³LO LECs (1233):

(J. Bijnens and G. Ecker, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149)

high precision %-level precision educated guesses unknown

Whence bounds?

Introduction

Motivation

Recent Developmen

na datata na manad

Deriving Bounds Conditions on Bounds

Improving Bou

Linear Constraint

Basic Definition

New Bounds on YPT

2.6----- NI O

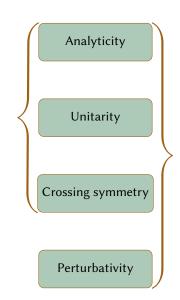
2-Havour NEO

3-flavour NLO

2 dlamana NII d

Higher flavou

Guaranteed for "ordinary" QFT



Not necessarily consistent for EFT ⇒ bounds!

Recent Developments

Introduction

Recent Developments

Positivity Bound

Conditions on Bounds

Basis Definitions

Deep Results

New Bounds on χP

2-flavour NNLO 3-flavour NLO 3-flavour NLO

....

■ Principles go back to the 60's; renewed interest in the 90's

A. Martin, Springer-Verlag, 1 ed., 1969

B. Ananthanarayan, D. Toublan and G. Wanders, *Phys. Rev. D* 51 (1995) 1093 [hep-ph/9410302] etc., etc.

Our method is based on work by Manohar & Mateu

A. V. Manohar and V. Mateu, *Phys. Rev. D* 77 (2008) 094019 [0801.3222]

V. Mateu, Phys. Rev. D 77 (2008) 094020 [0801.3627]

 This talk is based on ongoing work by Alvarez, Bijnens & MS (extension of Benjamin Alvarez' 2018 master thesis)

B. Alvarez, J. Bijnens and M. Sjö, [2111.XXXXX]

■ Some recent (2020) extensions in similar directions

Y.-J. Wang, F.-K. Guo, C. Zhang and S.-Y. Zhou, JHEP 07 (2020) 214 [2004.03992]

A. J. Tolley, Z.-Y. Wang and S.-Y. Zhou, JHEP 05 (2021) 255 [2011.02400]

Introduction

Motivation

Recent Developments

Positivity Bounds

Conditions on Bounds

Conditions on Dodne

Linear Constraint

asic Definitions

lew Bounds on χ P

2 fla...... NII O

2-flavour NNL

2 - flavour NLO

3-flavour NL(

Higher flavou

Positivity Bounds

Decomposition and Crossing

Deriving Bounds

UNIVERSITY

(Generalised) Isospin Decomposition

$$T(s,t) = \sum_{\mathcal{I}} a_{\mathcal{I}} T^{\mathcal{I}}(s,t)$$

 $\begin{cases} \text{isospin } 0, 1, 2 \\ \text{representation } I, A, S, AS, SS, (AA) \end{cases}$ in 2-flavour, in 3(4+)-flavour

Example: $\pi^{\pm}\pi^{\pm} \to \pi^{\pm}\pi^{\pm}$ is purely isospin 2 (or SS)

$s \leftrightarrow u$ Crossing Symmetry

$$T^{I}(u,t) = C_{u}^{IJ}T^{J}(s,t)$$

Matrix C_{ν}^{IJ} determined entirely by group structure

Deriving Bounds

Introduction

Recent Develonmen

Positivity Rounds

Deriving Bounds

Conditions on Bounds

Linear Constrain

Basic Definitions

New Bounds on VPT

New Bounds on χ_1

2-Havour NEO

2 - flavour NL (

2 (I NII

Higher flavor

Conclusio

LUND

Dispersion relations (following Manohar & Mateu)

$$a_{\mathcal{I}} \frac{\mathrm{d}^{k}}{\mathrm{d}s^{k}} T^{\mathcal{I}}(s,t) = \underbrace{\frac{k!}{2\pi i}}_{f} \oint_{\gamma} \mathrm{d}z \underbrace{\frac{a_{\mathcal{I}} T^{\mathcal{I}}(z,t)}{(z-s)^{k+1}}}_{f} \xrightarrow{\text{Contour manipulation}}_{f}$$

$$=\frac{k!}{\pi}\int_4^\infty \mathrm{d}z \left(\frac{a_{\mathcal{I}}}{(z-s)^{k+1}}+\frac{(-1)^k a_{\mathcal{I}} C_u^{I\mathcal{I}}}{(z-u)^{k+1}}\right) \mathrm{Im} \ T^{\mathcal{I}}(z+\varepsilon i,t)$$

Partial-wave expansion, optical theorem

$$\operatorname{Im} T^{\mathcal{I}}(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) s \beta(s) \sigma_{\ell}^{I} P_{\ell} \left(1 + \frac{2t}{s-4}\right) \geq 0$$

Bounds!

Deriving Bounds

Positivity bounds

$$a_{\mathcal{I}} \frac{\mathrm{d}^k}{\mathrm{d}s^k} T^{\mathcal{I}}(s,t) \ge 0$$

Linear in all LECs up to NNLO

Conditions

 $k \geq 2$ (convergence), k even in 2-flavour

$$a_{I}\left\{\delta^{IJ}\left[\frac{z-u}{z-s}\right]^{k+1}+(-1)^{k}C_{u}^{IJ}\right\}\geq0\quad\text{for all }z\geq4$$

$$t\in[0,4]\qquad s\in[-t,4]$$

$$t\in[0,4], \qquad s\in[-t,4]$$

Conditions on s, t, u

Introduction Motivation

Recent Developmen

Pocitivity Rounds

Conditions on Bounds

Improving Rounds

Linear Constrain

Basic Definitions

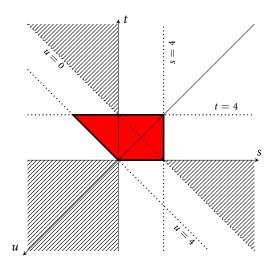
New Bounds on χP

2. flavour NLO

2-flavour NNL

3-flavour NLO

Higher flavo



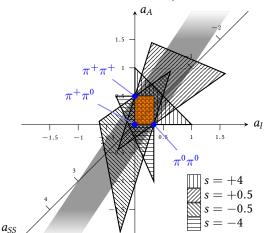
Conditions on a_7

Conditions on Bounds

New Bounds on YPT

UNIVERSITY

No need to restrict to mass eigenstates No need to consider bounds valid for all s, t - specific values is enough (also sufficient to check z = 4 and $z = \infty$)



Improving Bounds

Introduction

Recent Development

Positivity Bound

Deriving Bounds

Improving Bounds

Linear Constrain

Basic Definitions Deen Results

Deep Results

vew bounds on χτ

2-Havour INL

0.0

3-Havour NEC

Higher flavou

Conclusions

- Move up to NNLO amplitude at equal meson masses
 I. Bijnens and I. Lu. JHEP 03 (2011) 028 [1102.0172]
- Most general choice of a_{ij} (previous slide)
- Integration above threshold

$$a_{\mathcal{I}} \frac{\mathrm{d}^{k}}{\mathrm{d}s^{k}} T^{\mathcal{I}} = \int_{4}^{\infty} \mathrm{d}z[\ldots] \operatorname{Im} T^{\mathcal{I}}$$

$$\to a_{\mathcal{I}} \left(\frac{\mathrm{d}^{k}}{\mathrm{d}s^{k}} T^{\mathcal{I}} - \int_{4}^{\lambda} \mathrm{d}z[\ldots] \operatorname{Im} T^{\mathcal{I}} \right) = \int_{\lambda}^{\infty} \mathrm{d}z[\ldots] \operatorname{Im} T^{\mathcal{I}}$$

- Strengthens bounds
- Reliant on low-energy approximation
- Breakdown scale is $\lambda \sim 70/n$ at n flavours

 R. S. Chivukula, M. J. Dugan and M. Golden, *Phys. Rev. D* 47 (1993) 2930 [hep-ph/9206222]
- We have performed analytic integral up to NNLO
- Mathematical framework for reducing sets of bounds

Introduction

Motivation

Recent Developments

Positivity Bounds

Conditions on Bounds

mproving Bounds

Linear Constraints

asic Definition

Danie Barrilla

New Bounds on χ P $^{\circ}$

2-flavour N

2-flavour NNI

3-flavour NLC

3-Havour IVE

· - - - 1.. - 1 - - . .

Linear Constraints

Definition of a Linear Constraint

Introductio Motivation

Recent Developmen

Positivity Bounds

rositivity bound

Conditions on Bounds

Improving Boui

Linear Constrain

Basic Definitions

New Bounds on χ P

2-Havour NL

Z-Havour ININ

3-Tlavour INL

3-flavour NL

_ . . .

Linear Constraints

Parameters b_i , constants α_i , c

$$\alpha_1 b_2 + \alpha_2 b_2 + \ldots + \alpha_N b_N - c \ge 0 \quad \Leftrightarrow \quad \boldsymbol{\alpha} \cdot \boldsymbol{b} \ge c$$

Expressed as

"The (linear) constraint $\langle \alpha, c \rangle$ is satisfied by ${m b}$ "

Combination and Comparison

Conditions on Bounds

Basic Definitions

Combined constraints

 $\langle \alpha, c \rangle + \langle \beta, d \rangle$ satisfied if both $\langle \alpha, c \rangle$ and $\langle \beta, d \rangle$ satisfied. Generally:

$$\Omega = \sum_i \langle \boldsymbol{\alpha}_i, c_i \rangle$$

Stronger and weaker constraints

If Ω' satisfied by all points satisfying Ω :

$$\Omega' \leq \Omega$$

Basic examples

$$\langle \boldsymbol{\alpha}, -1 \rangle \le \langle \boldsymbol{\alpha}, 0 \rangle \le \langle \boldsymbol{\alpha}, 1 \rangle, \qquad \Omega \le (\Omega + \Omega') \ge \Omega'$$

Deep Results

Introductio

Recent Developmen

Positivity Rounds

Deriving Bounds
Conditions on Bound

Linear Constrain

Basic Definitions

Deep Results

New Bounds on χ I

0.0

- 2. flavour h
- 3-flavour N
- 3-flavour NI

Higher fla

Conclusio

Result 1

 $\langle m{lpha}, c
angle$ weaker than $\Omega = \sum_i \langle m{lpha}_i, c_i
angle$ if and only if

$$oldsymbol{lpha} = \sum_i \lambda_i oldsymbol{lpha}_i, \qquad \sum_i \lambda_i c_i \geq c, \qquad \lambda_i \geq 0$$

Result 2

Equivalently, if and only if α satisfies $\sum_{j} \langle \mathbf{n}_{j}, r_{j} \rangle$

Straightforward algorithm to generate $\langle \boldsymbol{n}_j, r_j \rangle$ based on convex hulls.

Result 3

Of all possible sets $\mathcal S$ such that $\Omega=\sum_{\langle {m lpha},c \rangle \in \mathcal S} \langle {m lpha},c \rangle$, there is a (nearly) unique *smallest* such set.

Obtained as side-effect of above algorithm.

Introduction

Motivation

Recent Developments

Positivity Bounds

Conditions on Bounds

mnroving Bounds

Linear Constraint

asic Definitions

_

New Bounds on $\chi {\rm PT}$

2-flavour NL

2-flavour NNI

3-flavour NLC

Higher flavou

Conclusions

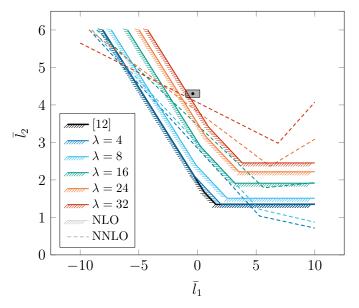
New Bounds on χ PT

2-flavour NLO

Recent Developments

Conditions on Bounds

2-flavour NLO



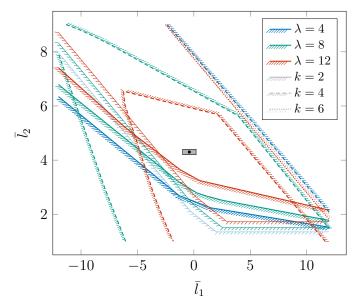
2-flavour NNLO

Recent Developments

Conditions on Bounds

2-flavour NNI O

UNIVERSITY

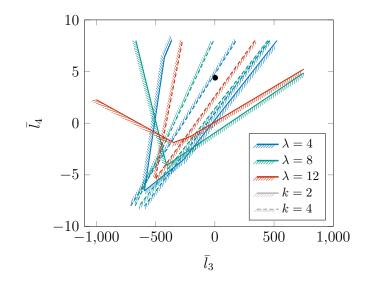


2-flavour NNLO

Recent Developments

Conditions on Bounds

2-flavour NNLO

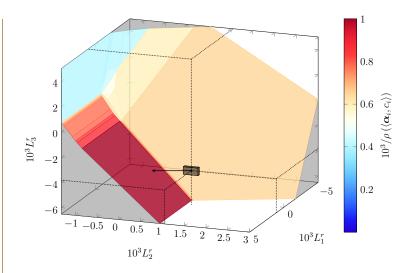


3-flavour NLO

Motivation

Conditions on Bounds

3-flavour NLO

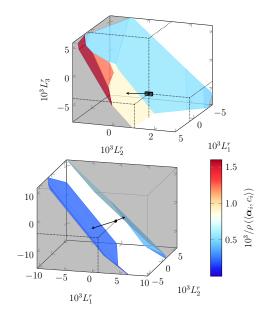


3-flavour NNLO

Motivation

Conditions on Bounds

3-flavour NLO



3-flavour NNLO

Introduction

Recent Developments

Docitivity Dounds

Deriving Bounds Conditions on Bounds

Improving Bounds

Basic Definitions

New Bounds on χ PT

2-flavour NL

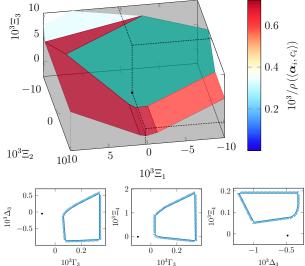
2-flavour N1

3-Tlavour INL

3-flavour NLO

Higher flavo

NNLO LECs appearing through combinations $\Xi_i, \Gamma_i, \Delta_i$



Higher Flavour

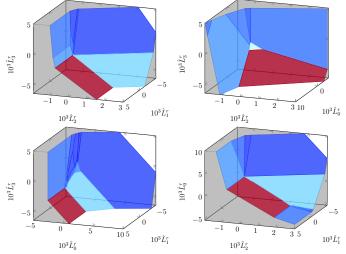
Recent Developments

Conditions on Bounds

New Bounds on YPT

Higher flavour

4-flavour NLO, no great difference at even higher flavour



Summary & Outlook

Introduction

Recent Developmen

Positivity Bound

Deriving Bounds
Conditions on Bounds

Linear Constraints

Basic Definitions Deep Results

New Bounds on χ I

2-flavour NNLO 3-flavour NLO 3-flavour NLO

Conclusions

Summary

- First full NNLO bounds
- Stronger and more general bounds produced
- Powerful mathematical framework

Outlook

- Multiple imporvements possible (general masses, etc.)
- Mostly plug-and-play for new amplitudes
 - N³LO, higher-point, etc.
 - Other EFTs

Thank you!