Measurements of charged pion and neutral pion polarizabilities at GlueX

Rory Miskimen
University of Massachusetts, Amherst
and the GlueX Collaboration

 Consider placing a pion in a parallel plate capacitor at very high electric field

Electric polarizability
$$= \alpha \approx 10^{-4} \times Volume$$
 Small numbers because hadrons are "stiff"!

Polarizabilities provide information about the excited states of hadrons, and can test effective field theories

 Charged pion polarizability: arguably the most solid theoretical prediction we have for a hadron polarizability

O(p4) prediction:
$$\alpha_\pi = -\beta_\pi = \frac{4\alpha_{EM}}{m_\pi F_\pi^2} \left(L_9^r - L_{10}^r\right) \approx \frac{F_A}{F_V}$$

where F_A and F_V are the weak FFs in $\pi^+ \to e^+ \nu \gamma$

$$\alpha_{\pi} = -\beta_{\pi} = 2.78 \pm 0.1 \times 10^{-4} e \, fm^3$$

O(p⁶) prediction:
$$\alpha_{\pi} - \beta_{\pi} = 5.7 \pm 1.0 \times 10^{-4} e \ fm^3$$

$$\alpha_{\pi} + \beta_{\pi} = 0.16 \pm 0.1 \times 10^{-4} e \ fm^3$$

O(p6) corrections are predicted to be small

 Neutral pion polarizability: a severe challenge for chiral perturbation theory

NLO calculation:
$$\alpha_{\pi^0}+\beta_{\pi^0}=0$$

$$\alpha_{\pi^0}-\beta_{\pi^0}=-\frac{\alpha_{EM}}{48\pi^2m_\pi F_\pi^2}\approx -1.1\times 10^{-4}~fm^3$$

NNLO calculations for $\alpha_{\pi^0} - \beta_{\pi^0}$ vary from -50% to -70% of NLO

Neutral pion polarizability has never been measured

Measuring hadron polarizabilties

Strong electric field is needed to polarize a hadron:

$$E \approx \frac{100MeV}{1fm} = 10^{23} \frac{V}{m}$$

Probe of choice is Compton scattering:

$$\vec{E} \approx 10^{23} volts / m$$

$$H = H_{Born} \left(e, \overrightarrow{\mu} \right) - 4\pi \left(\frac{1}{2} \alpha \overrightarrow{E}^2 + \frac{1}{2} \beta \overrightarrow{H}^2 \right)$$

$$\approx 10\%$$

Measuring charged pion polarizabilty: radiative charged pion photoproduction

Proton target as a source of charged pions

Measuring charged pion polarizabilty: radiative Primakoff production

• Measuring charged or neutral pion polarizabilty: $\gamma\gamma \to \pi\pi$

• Published measurements of charged pion polarizability

COMPASS:
$$\pi^- Ni \to \pi^- \gamma \ Ni \ @ \ 160 \ GeV$$

 $\alpha_{\pi} - \beta_{\pi} = 4.0 \pm 1.2 (stat) \pm 1.4 (sys) \times 10^{-4} fm^3$

• New technique for measuring charged and neutral pion polarizability: Primakoff photoproduction of $\pi^+\pi^-$ and $\pi^0\pi^0$ pairs from nuclear target

$\sigma(\gamma\gamma \to \pi^+\pi^-)$

$\sigma(\gamma\gamma\to\pi^0\pi^0)$

• Pion polarizability experiment at JLab GlueX

• Pion polarizability experiment at JLab GlueX

Engineering design for muon detector installation in GlueX

- Design is complete
- Procurement of parts and materials for installation is nearly complete

Muon chambers for charged pion polarizability measurement

- Eight muon chambers were constructed at UMass for the measurement. All of them are now at JLab
- Bench testing of the detectors using cosmic rays is underway at JLab
- Design of neural-net for e^{\pm}/π^{\pm} separation finalized, and design of a machine learning A.I. for μ^{\pm}/π^{\pm} identification using the muon chambers is underway

Time-of-flight trigger for GlueX measurment

Experiment uses a non-standard GlueX trigger based on two charged tracks going into the time-of-flight (TOF) scintillator system

Results from trigger tests:

- ✓ The 30 kHz TOF trigger rate at the nominal 20 nA CPP current is within the operational range of the GlueX DAQ system.
- ✓ It may be possible to run CPP at a higher beam current than 20 nA.

Summary

- ✓ Charged pion polarizability provides an excellent test of ChPT, with neutral pion polarizability providing a challenge for theory
- ✓ An experiment that utilizes a new technique for measuring pion polarizability, Primakoff production of $\pi^+\pi^-$ and $\pi^0\pi^0$ pairs, is being prepared at GlueX (JLab)
- ✓ Preparations are well along for running this experiment at GlueX, with all major components in-hand or committed
- ✓ Tentative JLab schedule shows the experiment taking data June 2022