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: Source functionS(r)

φ(−)(q, r) : Relative wave function

• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

• Depends on …

Collision detail (Ai, energy, centrality)

• Including information of…

size of hadron source,  
momentum dependence, weight…

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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• Depends on …

Interaction (strong and Coulomb)

quantum statistics (Fermion, boson)

Hadron correlation in high energy nuclear collision

 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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 Qualitative feature of correlation function

R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

Hadron correlation in high energy nuclear collision

: Source functionS(r)
φ(−)(q, r) : Relative wave function

• Gaussian source with radius  
• Approximate  by asymptotic wave func. 

•   with scat. length 

R
φ

ℱ(q) = [−1/a0 − iq]−1 a0
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful

Bound state 
or repulsive  
 ( )a0 > 0

Attractive  

No bound state ( )a0 < 0

Morita, et al., PRC101 (2020)

C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2

C(q) = 1 + [ |ℱ(q) |2

2R2
F3 ( reff

R ) +
2Re ℱ(q)

πR
F1(x) −

Im ℱ(q)
R

F2(x)]

C = C(qR, / )R a0

Sgn(a0) Interaction

- Attraction w/o bound state 

+
Attraction w/  bound state 

or 
 Repulsion 

•  is sensitive to  at C(q) R /a0 qR ≲ 1

• Clear relation between  and  

• Sensitive to (non)existence of bound state

C(q) ℱ(q)
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 interaction and  correlationK̄N K−p
 interaction and  K̄(sl̄)N Λ(1405)

K−pπΣ K̄0n

Λ(1405)

σK−p→K−p
σK−p→K̄0n

SIDDHARTA 
constraint on aK−p

0

Re s

 correlationK−p

Vstrong
ij (r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics <—  ,  fitted 

• Coupled-channel, energy dependent as 

aK−p
0 σ

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

Ikeda, Hyodo, Weise, NPA881 (2012)

• Coupled-channel system of - -πΣ πΛ K̄N

• Strong attraction reproducing  
quasi-bound state  Λ(1405)

• Strong constraint on  by SIDDHARTA 
experiment of Kaonic hydrogen 

aK−p
0

• Structure of  Λ(1405)
• two pole structure

•  molecular picture (high-mass pole)K̄N
 J. A. Oller and U. G. Meissner, PLB500, 263 (2001)

R.H. Dalitz, S.F. Tuan, PRL 425 (1959).

M. Bazzi, et al.. PLB 704 (2011)

Miyahara, Hyodo, Weise, PRC 98 (2018) 
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 interaction and  correlationK̄N K−p
 interaction and  resonanceK̄(sl̄)N Λ(1405)

Vstrong
ij (r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics <—  ,  fitted 

• Coupled-channel, energy dependent as 

aK−p
0 σ

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

Ikeda, Hyodo, Weise, NPA881 (2012)

• Coupled-channel system of - -πΣ πΛ K̄N

• Strong attraction reproducing  
quasi-bound state  Λ(1405)

• Strong constraint on  by SIDDHARTA 
experiment of Kaonic hydrogen 

aK−p
0

M. Bazzi, et al.. PLB 704 (2011)

• Structure of  Λ(1405)
• two pole structure

•  molecular picture (high-mass pole)K̄N K−pπΣ K̄0n

Λ(1405)

σK−p→K−p
σK−p→K̄0n

SIDDHARTA 
constraint on aK−p

0

Re s

 correlationK−p

44 Y. Kamiya et al. / Nuclear Physics A 954 (2016) 41–57

Fig. 1. Absolute value of the I = 0 combination of the K̄N scattering amplitude |f (I=0)(z)| defined in Eq. (6) from the 
NLO approach in Refs. [24,25] in the complex energy z plane. At each Re z, we choose the Riemann sheet which is most 
adjacent to the real axis.

While the gross features of the !(1405) in the K̄N amplitude are already well described just 
by the Weinberg–Tomozawa term, higher order contributions [9,12] can be used to quantitatively 
improve the description. To determine the low-energy constants in the higher order terms, suffi-
ciently many precise experimental data are necessary. In 2004, the DEAR collaboration reported 
measurements of kaonic hydrogen [26] from which the K−p scattering length can be deduced 
(see the next section). Systematic studies with the NLO interactions however pointed out an 
inconsistency of the DEAR result with the scattering data [27–30].

2.2. NLO analysis with precise kaonic hydrogen data

An experimental breakthrough came in 2011 when the SIDDHARTA collaboration provided 
a new measurement of the shift "E and width # of the 1s level of kaonic hydrogen [31,32]:

"E = 283 ± 36(stat) ± 6(syst) eV, # = 541 ± 89(stat) ± 22(syst) eV. (4)

Kaonic hydrogen is the Coulombic bound state of the K−p system. The 1s energy shift and width 
are induced by the strong interaction. In the non-relativistic effective Lagrangian approach, this 
shift and width are related to the K−p scattering length aK−p as [33]

"E − i#/2 = −2α3 µ2
r aK−p

[
1 + 2α µr (1 − lnα) aK−p

]
, (5)

where α is the fine-structure constant and µr = mK−Mp/(mK− +Mp) is the K−p reduced mass. 
Thus the kaonic hydrogen measurement (4) provides a direct constraint on the K̄N scattering 
amplitude at threshold. We note that the formula (5) can be further improved by summing up the 
logarithmically enhanced terms, as discussed in Ref. [34]. See also the estimation of the validity 
of the formula (5) based on explicit calculations within potential models [35,36].

The first systematic NLO analysis including the SIDDHARTA constraint has been performed 
in Refs. [24,25]. Here we focus on the results of Refs. [24,25], and the comparison with other 
approaches will be discussed in the next section. The data base used in this analysis consists 
of the K−p total cross sections, the threshold branching ratios, and the K−p scattering length 
deduced from the SIDDHARTA data. We obtain a best fit result in the full NLO approach with 
χ2/d.o.f. = 0.96, showing that the new measurement of kaonic hydrogen is now consistent with 
the scattering data. The same analysis can be performed with only the Weinberg–Tomozawa term. 
A reasonable fit is found with χ2/d.o.f. = 1.12, provided that some of the subtraction constants 

N

K̄

ℱK̄N

 J. A. Oller and U. G. Meissner, PLB500, 263 (2001)

R.H. Dalitz, S.F. Tuan, PRL 425 (1959).

Miyahara, Hyodo, Weise, PRC 98 (2018) 
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Theoretical model for CK−p
Y. Kamiya, et. al. PRL 124 (2020) 13, 132501

Comparison with exp.

1

1.5

2

2.5

3

0 50 100 150 200 250 300

R = 0.9 fm

C
(q
)

q [MeV/c]

ALICE (pp 13 TeV, HM)

Cfit

Cfit with !⇡⌃ = 0
Cfit + Cres

Cusp at  
threshold

K̄0n

  source πΣ SπΣ

Λ(1520)
Resonance

Miyahara, Hyodo, Weise, PRC 98 (2018) 

ALICE  PRL 124, 092301 (2020) 

• ALICE data of    
from  13 TeV collisions

CK−p
pp

• Reproduces  
 • Coulomb enhancement  
 •  cusp structure  
 • Enhancement by coupled 
    channel sources

K̄0n

Coulomb 
enhancement

• Interaction : Coupled-channel chiral based effective potential    VK̄N-πΣ-πΛ

• Formula for  : coupled-channel Koonin-pratt formula CK−p R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

• Source function : Common static Gaussian source Sj(r) = SR(r) = exp(−r2/4R2)/(4πR2)3/2

 interaction and  correlationK̄N K−p

• Channel weight : Varied around the estimation by simple statistical model: ~ twice pairs for πΣ

ωπΣ = 2.95
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Source size dependence of  K−p
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• shifts the dip structure 
• makes cusp structure less prominent 
• reduces the c.c. source contribution

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.
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normalization of the source function implies that the weight
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The K−p correlation function was calculated in Ref. [14]
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K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.
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• Enlarging source size

 interaction and  correlationK̄N K−p

R = 1 fm

R = 3 fm



 interaction and  correlationK̄N K−p
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ALICE [arXiv:2105.05683v1]
Source size dependence of  K−p

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3)
k*(

C

0.9

1

1.1

1.2

1.3

p+ K⊕p −K

(syst) fm
 1.25−

 0.51+ 0.23(stat)± = 8.9 KpR

5%−0

 = 5.02 TeVNNsPb − PbALICE

0 50 100
)c (MeV/k*

0.8

0.9

1
)

k*
C

(

p− K⊕p +K

 

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C
0.9

1

1.1

1.2

1.3 

(syst) fm
 1.09−

 0.30+ 0.26(stat)± = 8.1 KpR

10%−5

Kyoto model

L-L fit

2c 0.03 GeV/± = 0.92 〉Tm〈

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.59−

 0.50+ 0.24(stat)± = 6.9 KpR

20%−10

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3)
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.86−

 0.23+ 0.13(stat)± = 6.4 KpR

30%−20

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.52−

 0.19+ 0.11(stat)± = 5.2 KpR

40%−30

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.48−

 0.22+ 0.14(stat)± = 4.9 KpR

50%−40

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

/ndf2χ
Kyoto: 589/210 = 2.8

L-L: 297/210 = 1.4

Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17
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Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17

�0.03(syst) fm

6

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3)
k*(

C

0.9

1

1.1

1.2

1.3

p+ K⊕p −K

(syst) fm
 1.25−

 0.51+ 0.23(stat)± = 8.9 KpR

5%−0

 = 5.02 TeVNNsPb − PbALICE

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

p− K⊕p +K

 

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 1.09−

 0.30+ 0.26(stat)± = 8.1 KpR

10%−5

Kyoto model

L-L fit

2c 0.03 GeV/± = 0.92 〉Tm〈

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.59−

 0.50+ 0.24(stat)± = 6.9 KpR

20%−10

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3)
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.86−

 0.23+ 0.13(stat)± = 6.4 KpR

30%−20

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.52−

 0.19+ 0.11(stat)± = 5.2 KpR

40%−30

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150 )c (MeV/k*

0 50 100 150

0.9

1

1.1

1.2

1.3 )
k*(

C

0.9

1

1.1

1.2

1.3 

(syst) fm
 0.48−

 0.22+ 0.14(stat)± = 4.9 KpR

50%−40

0 50 100
)c (MeV/k*

0.8

0.9

1

)
k*

C
(

 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

0 50 100 150
)c (MeV/k*

0 50 100 150

5−

0

5 st
at

σ
 (D

at
a-

M
od

el
)/

5−

0

5
 

/ndf2χ
Kyoto: 589/210 = 2.8

L-L: 297/210 = 1.4

Figure 2: The K�p�K+p correlation functions in the six centrality classes, with the corresponding Lednický–
Lyuboshitz fits (denoted as “L–L”) and Kyoto model calculations shown as light cyan and orange bands, respec-
tively. The width of the bands corresponds to the 1-s uncertainties. The inserts show the K+p�K�p correlation
functions with Lednický–Lyuboshitz fits as light cyan bands. The bottom panels show the difference between data
and the fit (model) normalised by the statistical uncertainty of the data sstat. The average pair transverse mass
hmTi is 0.92± 0.03 GeV/c2 for all centrality intervals. The statistical and systematic uncertainties are added in
quadrature and shown as vertical bars.

The following effects can be observed: the K�p�K+p pairs show an attractive Coulomb interaction for
small k⇤. The effect is opposite for K+p�K�p pairs. The influence of the repulsive strong interaction
manifests as correlation functions reaching values below unity in the region of k⇤ ⇡ 20�50 MeV/c and
becomes more pronounced towards more peripheral events, i.e., smaller source sizes. As predicted in
Ref. [39], features of the correlation function related to the coupled channels, observed in the analysis of
pp collisions [37], are negligible here. Neither the cusp structure at 58 MeV/c due to the presence of the
isospin-breaking channel K0n ! K�p nor the enhancement due to the coupled channels below threshold
enhancing the correlation above unity in the intermediate k⇤ range are visible in the correlation function
in Pb–Pb.

The common femtoscopic radii RKp for same- and opposite-charge pairs obtained from the Lednický–
Lyuboshitz fit are provided in Fig. 2 as well. They increase from around 5 fm for peripheral events to
almost 9 fm for central events, and all are larger than 3 fm where the predicted effect of coupled channels
is reduced or negligible [39]. The radii scale linearly with the cube root of the mean charged-particle
multiplicity density hdNch/dhi1/3, as observed for pion–pion [67], kaon–kaon [49], and pion–kaon [57]
pairs. The scattering length parameters obtained from the fit are ¬ f0 =�0.91± 0.03(stat)+0.17
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 interaction and  correlationK̄N K−p
 interaction and  K̄(sl̄)N Λ(1405)

Vstrong
ij (r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based - -  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with NLO chiral SU(3) dynamics <—  ,  fitted 

• Coupled-channel, energy dependent as 

aK−p
0 σ

• Constructed to reproduce the chiral SU(3) amplitude around the  sub-threshold regionK̄N

Ikeda, Hyodo, Weise, NPA881 (2012)

• Coupled-channel system of - -πΣ πΛ K̄N

• Strong attraction reproducing  
quasi-bound state  Λ(1405)

• Strong constraint on  by SIDDHARTA 
experiment of Kaonic hydrogen 

aK−p
0

M. Bazzi, et al.. PLB 704 (2011)

• Structure of  Λ(1405)
• two pole structure

•  molecular picture (high-mass pole)K̄N K−pπΣ K̄0n

Λ(1405)

σK−p→K−p
σK−p→K̄0n

SIDDHARTA 
constraint on aK−p

0

Re s

 correlationK−p

44 Y. Kamiya et al. / Nuclear Physics A 954 (2016) 41–57

Fig. 1. Absolute value of the I = 0 combination of the K̄N scattering amplitude |f (I=0)(z)| defined in Eq. (6) from the 
NLO approach in Refs. [24,25] in the complex energy z plane. At each Re z, we choose the Riemann sheet which is most 
adjacent to the real axis.

While the gross features of the !(1405) in the K̄N amplitude are already well described just 
by the Weinberg–Tomozawa term, higher order contributions [9,12] can be used to quantitatively 
improve the description. To determine the low-energy constants in the higher order terms, suffi-
ciently many precise experimental data are necessary. In 2004, the DEAR collaboration reported 
measurements of kaonic hydrogen [26] from which the K−p scattering length can be deduced 
(see the next section). Systematic studies with the NLO interactions however pointed out an 
inconsistency of the DEAR result with the scattering data [27–30].

2.2. NLO analysis with precise kaonic hydrogen data

An experimental breakthrough came in 2011 when the SIDDHARTA collaboration provided 
a new measurement of the shift "E and width # of the 1s level of kaonic hydrogen [31,32]:

"E = 283 ± 36(stat) ± 6(syst) eV, # = 541 ± 89(stat) ± 22(syst) eV. (4)

Kaonic hydrogen is the Coulombic bound state of the K−p system. The 1s energy shift and width 
are induced by the strong interaction. In the non-relativistic effective Lagrangian approach, this 
shift and width are related to the K−p scattering length aK−p as [33]

"E − i#/2 = −2α3 µ2
r aK−p

[
1 + 2α µr (1 − lnα) aK−p

]
, (5)

where α is the fine-structure constant and µr = mK−Mp/(mK− +Mp) is the K−p reduced mass. 
Thus the kaonic hydrogen measurement (4) provides a direct constraint on the K̄N scattering 
amplitude at threshold. We note that the formula (5) can be further improved by summing up the 
logarithmically enhanced terms, as discussed in Ref. [34]. See also the estimation of the validity 
of the formula (5) based on explicit calculations within potential models [35,36].

The first systematic NLO analysis including the SIDDHARTA constraint has been performed 
in Refs. [24,25]. Here we focus on the results of Refs. [24,25], and the comparison with other 
approaches will be discussed in the next section. The data base used in this analysis consists 
of the K−p total cross sections, the threshold branching ratios, and the K−p scattering length 
deduced from the SIDDHARTA data. We obtain a best fit result in the full NLO approach with 
χ2/d.o.f. = 0.96, showing that the new measurement of kaonic hydrogen is now consistent with 
the scattering data. The same analysis can be performed with only the Weinberg–Tomozawa term. 
A reasonable fit is found with χ2/d.o.f. = 1.12, provided that some of the subtraction constants 

N

K̄

ℱK̄N

 J. A. Oller and U. G. Meissner, PLB500, 263 (2001)

R.H. Dalitz, S.F. Tuan, PRL 425 (1959).
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 interaction  K̄N

Cieply and Mai, EPJ Web Conf. 130, 02001 (2016)

CHIRALLY MOTIVATED K̄N AMPLITUDES

A modern treatment of low-energy meson-baryon interactions is provided by approaches based on chiral perturbation
theory combined with coupled channel T-matrix re-summations techniques. The parameters of such models are fitted
to low energy K

�
p total cross sections, the threshold branching ratios (see e.g [? ] and to the strong-interaction

characteristics of the 1s level in kaonic hydrogen measured recently by the SIDDHARTA collaboration [4]. Several
theoretical groups presented models describing about equally well this set of experimental data. We refer to these
approaches as Kyoto-Munich (KM) [5], Prague (P) [6], Bonn (B2, B4) [7], Murcia (MI , MII) [8] and Barcelona
(BCN) [9], with some of them providing two solutions. The first four models are compared in [10].

In Fig. 1 we present the predictions of the models for K
�

p and K
�

n elastic amplitudes in the free space. Concerning
the K

�
p amplitude, all these state-of-the-art chiral models are in agreement in a region of energies at and above the

K
�

p threshold. The only exception is the Bonn approach due to different treatment of off-shell effects and partial
waves. The above models yield considerably different K

�
p amplitude below the threshold. On the other hand, for

the K
�

n amplitude the model variations are quite large over the whole energy region. The reason is that the I = 1
amplitudes, as well as the subthreshold K

�
p amplitudes, are not sufficiently restricted by the experimental data.

In nuclear matter the free-space K
�

N amplitudes are modified due to Pauli blocking and hadron self-energies,
the latter effectively modifying the in-medium hadron masses as well. It appears that for energies at least about
20 MeV below the K̄N threshold the main effect comes from the Pauli blocking and can be approximated by a simple
multiplication of the free-space K

�
N amplitudes by an energy and density dependent factor derived from considering
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p (top panels) and K
�

n (bottom panels) elastic scattering amplitudes generated by recent chirally motivated
approaches. The various lines refer to the models: B2 (dotted, purple), B4 (dot-dashed, red), MI (dashed, blue), MII (long-dashed,
green), P (dot-long-dashed, violet), BCN (dot-dot-dashed, brown), and KM (continuous, black). The thin vertical lines in the
panels mark the pertinent K

�
N thresholds.
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ℱK̄N,I=1

Further constraint on  interaction?K̄N

• Can we constrain   interaction / amplitude from femtoscopy?K̄N I = 1

B2, B4: Mai, Meißner, EPJA 51 (2015) 

M1, MII: Guo, Oller, PRC 87 (2013) 

PNLO: Cieplý, Smejkal, NPA 881 (2012)

KMNLO: Ikeda, Hyodo Weise NPA 881 (2012)
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 correlationK0
S p

 interaction from  correlation functionK̄N K0
S p

|K0
S p⟩ = [ | K̄0p⟩ − |K0p⟩]/ 2

KN, I = 0, 1K̄N, I = 1
CK0

S p = [CK̄0p + CK0p]/2

•  component only I = 1

re = − 0.06 + i0.20 fm

K. Aoki and D. Jido, PTEP (2019) Ikeda, Hyodo, Weise, NPA881 (2012)

• Well determined with scat. exp. 

• Chiral amplitude• Chiral amplitude
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1400 1450 1500 1550 1600 1650 1700 1750

F
K̄

0
p

W [MeV]

Re FK̄0p
Im FK̄0p

Figure 1: Scattering amplitude of K̄0p diagonal component.

We show the scattering amplitude above the threshold in Fig. 1. Compared to the K−p channel, the
attraction is moderate but not so small. The large imaginary part indicates the coupling to the lower
channels is strong. The scattering length a0 and the effective range re of the K̄0p channel are obtained
as

a0 = −0.61− i0.78 fm, (6)

re = −0.06 + i0.20 fm, (7)

where the scattering length is defined as a0 = −F(E = Eth).

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 50 100 150 200 250 300

R = 1 fm

C
K̄

0
p

q [MeV/c]

K̄0p only
K̄0p+ ⇡⌃

K̄0p+ ⇡⌃+ ⇡+⇤

Figure 2: K̄0p correlation function.

In Fig. 2, we show the K̄0p correlation function for the Gaussian source with radius R = 1 fm case.
We find that the K̄0p correlation function shows the strong enhancement at the low momentum region
due to the strong attraction. The πΣ source contribution gives the non-negligible enhancement to CK̄0p.
Note that here we have assumed ωi = 1 for every channels. In the actual cases, these weight factors of
πΣ and πΛ should be larger than unity, which leads the larger contribution of coupled channel source
compared to Fig. 2.

2

ωj = 1

The K0p correlation function is calculated using the KN effective potential as shown in Fig. 4. As
expected from the weakly repulsive K0p amplitude, the K0p correlation function shows weak suppression.
The K+n source contribution is very small due to the weak coupling. The difference between the two
models can be considered as the theoretical uncertainty of the chiral dynamics.
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Figure 4: K0p correlation function.

4 K0
sp correlation function

With the K0p and the K̄0p correlation function, the K0
sp correlation function is calculated with Eq. (1) as

shown in Fig. 5. Due to the strong enhancement of the CK̄0p at the low momentum, the K0
sp correlation

function also shows the enhancement.
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ωj = 1K0p

The K0p correlation function is calculated using the KN effective potential as shown in Fig. 4. As
expected from the weakly repulsive K0p amplitude, the K0p correlation function shows weak suppression.
The K+n source contribution is very small due to the weak coupling. The difference between the two
models can be considered as the theoretical uncertainty of the chiral dynamics.
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4 K0
sp correlation function

With the K0p and the K̄0p correlation function, the K0
sp correlation function is calculated with Eq. (1) as

shown in Fig. 5. Due to the strong enhancement of the CK̄0p at the low momentum, the K0
sp correlation

function also shows the enhancement.
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4

K0
S p

K̄0p
• Enhancement by  is sizable.   

• Prediction for the future  data

K̄0p(K̄N I = 1)

K0p

Y. Kamiya, et. al. in preparation

• Effective potential
Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Effective potential
Constructed from chiral amp.



 interaction and  correlation function D̄N D−p
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 correlation D−p

• Coupling between  and   ( )D−p D̄0n I = 0,1

 interaction D̄(c̄l)N (C = − 1) a0 ≡ ℱ(E = Eth)
+ : attractive w/o bound  
- : repulsive  
    or attractive w/ bound 

• Not well determined due to lack of scat. data
• One model predicts bound state in  channelI = 0

• Bound state case —> dip structure 

• Can be tested by experimental data in future

• Construct effective potential  from models V

• Coulomb attractive 

DN and D̄N correlation function

January 8, 2021

ALICE がDNとDbarNの相関をはかろうとしていることを受けて何ができるか考えてみる。測れるのはD+pとD−pと思われる。DN interaction も D̄N interaction も相互作用を決める実験データはほとんどなく、これらのチャネルのモデルはフレーバー SU(3)を SU(4)に拡張するなどした類推から構築されている。DN(I=1)　チャネルは引力的であろうといった、統一的な予測もあるが、その強さはモデルごとにバラバラである。従って、散乱長の正負を決めるだけでも価値があるのではないかと思う。
1 D̄N interaction and D−p correlation function

1.1 D̄N scattering length

The scattering length parameters for the D̄N model are summarized in Table 1.1. Here we use the
notation of scattering length as a0 ≡ F(

√
s =

√
sth) with threshold of referenced channel

√
sth. The

positive scattering length corresponds to

model aD̄N(I=0)
0 [fm] aD̄N(I=1)

0 [fm] aD
−p

0 [fm] boutnd state (I=0) bound state (I=1)
1 [1] -0.16 -0.26 -0.21 None None
2 [2] 0.07 -0.45 -0.19 None None
3 [3] -4.38 -0.07 -2.23 2804 None
4 [4] 0.03-0.16 0.20-0.25 0.12-0.22 None None

Table 1: I = 0 and I = 1 D̄N scattering length. D−p scattering length aD
−p

0 is given by taking the

average of aDN(I=0)
0 and aDN(I=1)

0 . The pole positions of the bound state are listed.

1.2 potential construction

V (r) = V0 exp(−(mr)2) (1)

m = mρ. V0 is the depth of the potential at r = 0. V0 is real for D̄N interaction.

model V D̄N(I=0)
0 [MeV] V DN(I=1)

0 [MeV] V D−p
0 [MeV]

1 1317 4202
2 -244 65699
3 -1380 381
4 (-117)-(-452) (-520) - (-592)

Table 2: Fitted potential potential depth of ρ meson exchange potential for I = 0 and I = 1.

1
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Summary

Further study on  interaction for   from femtoscpic study with 
 correlation. 

K̄N I = 1
K̄0

S p

Chiral dynamics based  correlation function model gives the good 
description for the  correlation function. 

K̄N
K−p

Femtoscopic correlation function in high energy nuclear collisions is a 
powerful tool to investigate the hadron-hadron interaction.

Summary

Thank you for your attention!

Femtoscopic method can be applicable to charm sector in future study.



Thank you!
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