

Yuki Kamiya HISKP, Bonn Univ.

Low-energy *KN* interaction from high-energy nuclear collisions

The 10th International Workshop on Chiral Dynamics 2021.11.16, Beijing (online)

High energy nuclear collision and FSI

Hadron-hadron correlation

$$C_{12}(k_1, k_2) = \frac{N_{12}(k_1, k_2)}{N_1(k_1)N_2(k_2)}$$

=
$$\begin{cases} 1 & (\text{w/o correlation}) \\ \text{Others (w/ correlation)} \end{cases}$$

High energy nuclear collision and FSI

Hadron-hadron correlation

• Koonin-Pratt formula : S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990) $C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \ S(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2_{\mathbf{q} = (m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2)/(m_1 + m_2)}$ $S(\mathbf{r}) \quad : \text{Source function}$

 $\varphi^{(-)}(\mathbf{q},\mathbf{r})$: Relative wave function

High energy nuclear collision and FSI

• High energy nuclear collision and FSI A_2 Final State Interaction (FSI)

Hadronization

A

- Koonin-Pratt formula : $\underset{S.E. \text{ Koonin, PLB 70 (1977)}}{\text{S. Pratt et. al. PRC 42 (1990)}}$ $C(\mathbf{q}) \simeq \int d^3 \mathbf{r} S(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2_{\mathbf{q} = (m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2)/(m_1 + m_2)}$ $S(\mathbf{r})$: Source function $\varphi^{(-)}(\mathbf{q}, \mathbf{r})$: Relative wave function
- Depends on ...

Interaction (strong and Coulomb)

mmm

quantum statistics (Fermion, boson)

- Un-bound Qualitative feature of correlation^ofunction $C(\mathbf{q}) \simeq \left[d^3 \mathbf{r} \, \mathbf{S}(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2 \right]$ $S(\mathbf{r})$: Source function R/a_0 $\varphi^{(-)}(\mathbf{q},\mathbf{r})$: Relative wave function
- Gaussian source with radius R
- Approximate φ by asymptotic wave func.
- $\mathcal{F}(q) = [-1/a_0 iq]^{-1}$ with scat. length a_0 R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

$$C = C(qR, \frac{R}{a_0})$$

• C(q) is sensitive to R/a_0 at $qR \leq 1$

Sgn(a ₀)	Interaction		
_	Attraction w/o bound state		
+	Attraction w/ bound state or Repulsion		

- Clear relation between C(q) and $\mathcal{F}(q)$
- Sensitive to (non)existence of bound state

Unitary

-2

Bound

4

• $\bar{K}(s\bar{l})N$ interaction and $\Lambda(1405)$

- Coupled-channel system of $\pi\Sigma$ - $\pi\Lambda$ - $\bar{K}N$
- Strong attraction reproducing quasi-bound state $\Lambda(1405)$
- Strong constraint on $a_0^{K^-p}$ by SIDDHARTA experiment of Kaonic hydrogen M. Bazzi, et al.. PLB 704 (2011)
- Structure of $\Lambda(1405)$
 - two pole structure J. A. Oller and U. G. Meissner, PLB500, 263 (2001)
 - *K̄N* molecular picture (high-mass pole) R.H. Dalitz, S.F. Tuan, PRL 425 (1959).
- Chiral SU(3) based $\overline{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential
- Miyahara, Hyodo, Weise, PRC 98 (2018)

Miyahara, Hyodo, Weise, PRC 98 (2018)

- Constructed based on the amplitude with NLO chiral SU(3) dynamics $< -a_0^{K^-p}$, σ fitted Ikeda, Hyodo, Weise, NPA881 (2012)
- Coupled-channel, energy dependent as

 $V_{ij}^{\text{strong}}(r, E) = e^{-(b_i/2 + b_j/2)r^2} \sum_{\alpha=0}^{\alpha_{\text{max}}} K_{\alpha, ij} (E/100 \text{ MeV})^{\alpha}$

• Constructed to reproduce the chiral SU(3) amplitude around the $\overline{K}N$ sub-threshold region

• $\overline{K}(s\overline{l})N$ interaction and $\Lambda(1405)$ resonance

- Coupled-channel system of $\pi\Sigma$ - $\pi\Lambda$ - $\bar{K}N$
- Strong attraction reproducing quasi-bound state $\Lambda(1405)$
- Strong constraint on $a_0^{K^-p}$ by SIDDHARTA experiment of Kaonic hydrogen M. Bazzi, et al.. PLB 704 (2011)
- Structure of $\Lambda(1405)$
 - two pole structure J. A. Oller and U. G. Meissner, PLB500, 263 (2001)
 - *K̄N* molecular picture (high-mass pole) R.H. Dalitz, S.F. Tuan, PRL 425 (1959).
- Chiral SU(3) based $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential _N
 - Constructed based on the amplitude with NLO chiral SU(3) dynamics $< -a_0^{K^-p}$, σ fitted Ikeda, Hyodo, Weise, NPA881 (2012)
 - Coupled-channel, energy dependent as

 $V_{ij}^{\text{strong}}(r, E) = e^{-(b_i/2 + b_j/2)r^2} \sum_{\alpha=0}^{\alpha_{\text{max}}} K_{\alpha, ij} (E/100 \text{ MeV})^{\alpha}$

• Constructed to reproduce the chiral SU(3) amplitude around the $\overline{K}N$ sub-threshold region

Miyahara, Hyodo, Weise, PRC 98 (2018)

Miyahara, Hyodo, Weise, PRC 98 (2018)

8

• Theoretical model for C_{K^-p}

Y. Kamiya, et. al. PRL 124 (2020) 13, 132501

- Interaction : Coupled-channel chiral based effective potential $V^{\bar{K}N-\pi\Sigma-\pi\Lambda}$
 - Miyahara, Hyodo, Weise, PRC 98 (2018)
- Formula for C_{K^-p} : coupled-channel Koonin-pratt formula R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).
- Source function : Common static Gaussian source $S_j(r) = S_R(r) = \exp(-r^2/4R^2)/(4\pi R^2)^{3/2}$
- Channel weight : Varied around the estimation by simple statistical model: ~ twice pairs for $\pi\Sigma$

Comparison with exp.

- ALICE data of C_{K^-p} from *pp* 13 TeV collisions ALICE PRL 124, 092301 (2020)
- Reproduces
 - Coulomb enhancement
 - $\bar{K}^0 n$ cusp structure
 - Enhancement by coupled channel sources

• Source size dependence of K^-p 1.221.1 4 R = 3 fm3.51 C(q)1.50.9 3 K^{-} 0.82.5 $K^-p + \bar{K}^0$ $K^- p + \bar{K^0} n + \pi \Sigma$ R [fm] 2 0.71 Ful Full without Coulomb 0.6 1.550 100 150 250200 300 0 $q \, [\text{MeV}/c]$ 0.51 1.20.5-1.1R = 1 fm0 0 300 200 50250100 1500 1 $q \, [\text{MeV}]$ C(q)0.9 Enlarging source size lacksquare $K^-p +$ 0.8 $K^-p + \bar{K}^0n + \bar{K}^0n$ • shifts the dip structure 0.7Full • makes cusp structure less prominent Full without Coulomb 0.6

50

0

100

150

 $a \, [\text{MeV}/c]$

200

250

• reduces the c.c. source contribution

300

• $\overline{K}(s\overline{l})N$ interaction and $\Lambda(1405)$

- Coupled-channel system of $\pi\Sigma$ - $\pi\Lambda$ - $\bar{K}N$
- Strong attraction reproducing quasi-bound state $\Lambda(1405)$
- Strong constraint on $a_0^{K^-p}$ by SIDDHARTA experiment of Kaonic hydrogen M. Bazzi, et al.. PLB 704 (2011)
- Structure of $\Lambda(1405)$
 - two pole structure J. A. Oller and U. G. Meissner, PLB500, 263 (2001)
 - *K̄N* molecular picture (high-mass pole) R.H. Dalitz, S.F. Tuan, PRL 425 (1959).

Miyahara, Hyodo, Weise, PRC 98 (2018)

12

- Constructed based on the amplitude with NLO chiral SU(3) dynamics $< -a_0^{K^-p}$, σ fitted Ikeda, Hyodo, Weise, NPA881 (2012)
- Coupled-channel, energy dependent as

 $V_{ij}^{\text{strong}}(r, E) = e^{-(b_i/2 + b_j/2)r^2} \sum_{\alpha=0}^{\alpha_{\text{max}}} K_{\alpha,ij} (E/100 \text{ MeV})^{\alpha}$

• Constructed to reproduce the chiral SU(3) amplitude around the $\overline{K}N$ sub-threshold region

Further constraint on *KN* interaction?

Cieply and Mai, EPJ Web Conf. 130, 02001 (2016)

• Can we constrain $\overline{K}NI = 1$ interaction / amplitude from femtoscopy?

$\bar{K}N$ interaction from $K_S^0 p$ correlation 0.75

 $C_{K_{s}^{0}p} = [C_{\bar{K}^{0}p} + C_{K^{0}p}]/2$

100

 $q \, [\text{MeV}/c]$

250

200

Y. Kamiya, et. al. in preparation

 $\overline{300}$

50

- Enhancement by $\bar{K}^0 p(\bar{K}N I = 1)$ is sizable.
- Prediction for the future $K_0 p$ data

component only 0.3 Chiral amplitude 1600 1650 1700 1750 Ikeda, Hyodo, Weise, NPA881 (2012)

Effective potential

0.7

0.6

0.5

 ${\cal F}_{\bar{K}^0p}$ 0.4

Miyahara, Hyodo, Weise, PRC 98 (2018)

KN, I = 0, 1

- Well determined with scat. exp.
- Chiral amplitude
 - K. Aoki and D. Jido, PTEP (2019)
- Effective potential
 - Constructed from chiral amp.

$\overline{D}N$ interaction and D^-p correlation function

• $\overline{D}(\overline{c}l)N$ interaction (C = -1)

 $a_0 \equiv \mathscr{F}(E = E_{\rm th})$

1 •

+ : attractive w/o bound

				-		
Moldes	$a_0^{DN(I=0)}$ [fm]	$a_0^{DN(I=1)}$ [fm]	bout nd state (I=0) $$	bound state $(I=1)$	or attractive w/ bound	
[1] J. Hofmann and M. Lutz, NPA 763 (2005)	-0.16	-0.26	None	None		
[2] J. Haidenbauer, et. al. EPJA 33(2007)	0.07	-0.45	None	None		
[3] Y. Yamaguchi, et. al. PRD 84 (2011)	-4.38	-0.07	2804	None		
[4] C. Fontoura, et. al. PRC 87 (2013)	0.03-0.16	0.20-0.25	None	None		

- Not well determined due to lack of scat. data
- One model predicts bound state in I = 0 channel

$\circ D^- p$ correlation

- Coulomb attractive
- Construct effective potential V from models
 - Coupling between D^-p and $\overline{D}{}^0n$ (I = 0,1)
- Bound state case —> dip structure
- Can be tested by experimental data in future

Summary

Summary

- Femtoscopic correlation function in high energy nuclear collisions is a powerful tool to investigate the hadron-hadron interaction.
- Chiral dynamics based $\overline{K}N$ correlation function model gives the good description for the K^-p correlation function.
- Further study on $\overline{K}N$ interaction for I = 1 from femtoscpic study with $\overline{K}_{S}^{0}p$ correlation.
- Femtoscopic method can be applicable to charm sector in future study.

Thank you for your attention!

Thank you!

