UNIVERSITÄT BONN

New insights into the nucleon form factors and proton radius from dispersive analysis

Yonghui Lin

HISKP, Universität Bonn In collaboration with Hans-Werner Hammer, Ulf-G. Meißner Based on arXiv2019.12960 and EPJA 57 255(2021)

> 10th International workshop on Chiral Dynamics (CD2021) November 17, 2021

Nucleon Form Factors

Definition

$$\langle p'|\boldsymbol{j}_{\mu}^{\mathrm{em}}|p\rangle = \bar{u}(p') \left[\boldsymbol{F}_{1}(t)\gamma_{\mu} + i\frac{F_{2}(t)}{2m}\sigma_{\mu\nu}q^{\nu} \right] u(p), \quad \underline{\boldsymbol{j}}_{\mu\nu} = \boldsymbol{v}_{\mu\nu} \boldsymbol{$$

 $t = q^2 = (p' - p)^2 \equiv -Q^2$, t > 0 for time-like, t < 0 for space-like

- Normalization $F_1^p(0) = 1, F_1^n(0) = 0, F_2^p(0) = \kappa_p, F_2^n(0) = \kappa_n$.
- Isospin decomposition $F_i^{\text{isoscalar}} = \frac{1}{2} (F_i^p + F_i^n), F_i^{\text{isovector}} = \frac{1}{2} (F_i^p - F_i^n), i = 1, 2$
- Sachs NFFs

$$G_E(t) = F_1(t) - \tau F_2(t), G_M(t) = F_1(t) + F_2(t)$$
$$\tau = -t/(4m^2)$$
$$11/17/21 \qquad 2 \qquad \text{YHL}$$

Proton charge radius

- Definition $r_p^2 \equiv -6G'_E(0)$
- Measurements
 - Leptonic hydrogen Lamb shift $(\Delta E_{LS})_{\text{measured}} = \Delta E_1 + \Delta E_2 C(r_p^2) + \mathcal{O}(m_r \alpha^6),$ $C(r_p^2) = c_1 + c_2 r_p^2 + \mathcal{O}(\alpha^2)$
 - Lepton-proton Scattering (Rosenbluth separation)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{measured}} = \frac{d\sigma_{\text{Mott}}}{d\Omega} \frac{1}{1+\tau} \left(\boldsymbol{G_E}^2 + \frac{\tau}{\varepsilon} \boldsymbol{G}_M^2\right) \left(1 + \delta_{\text{radia.}}\right) + \mathcal{O}(\alpha^2)$$

Why Dispersion Theory?

- Difficulties on NFFs
 - Unknown expression parametrization-dependent
- Dispersion theoretical NFFs

Dispersion theoretical NFFs
$$F(t) = \frac{1}{\pi} \int_{t_0}^{\infty} \frac{\text{Im } F(t')}{t' - t - i\epsilon} dt'$$

- Unitarity and analyticity guaranteed,

- Works well in the whole t-region, $(\sim 10^{-4}-10 \,\mathrm{GeV}^2)$ experimentally
- Theoretical constraints of asymptotic behavior of NFFs can be added consistently,
- Connects to data from various processes. (πN -scattering, \cdots)

Dispersion Relations of NFFs

• Definition

$$F(t) = \frac{1}{\pi} \int_{t_0}^{\infty} \frac{\operatorname{Im} F(t')}{t' - t - i\epsilon} dt'$$

Starting from the lowest two-pion cuts $(t_0 = (2M_\pi)^2)$

- Low-mass part: Spectral Decomposition
 - Crossing symmetry $\langle N(p')|j_{\mu}^{\rm em}|N(p)\rangle \longleftrightarrow \langle N(p)\bar{N}(\bar{p})|j_{\mu}^{\rm em}|0\rangle$
 - Spectral decomposition G. F. Chew, *et al.* PhysRev110, 265(1958) $\operatorname{Im}\langle N(p)\bar{N}(\bar{p})|j_{\mu}^{\mathrm{em}}|0\rangle$ $\sim \sum_{n}\langle N(p)\bar{N}(\bar{p})|n\rangle\langle n|j_{\mu}^{\mathrm{em}}|0\rangle$
 - Intermediate mass states (continua)
 - Isoscalar $3\pi, 5\pi, K\bar{K}, \pi\rho, \cdots$ Isovector $2\pi, 4\pi, \cdots$

Dispersion Relations of NFFs

• High-mass part: Vector meson dominance

Effective poles > Narrow state $s_1, s_2, \dots, v_1, v_2, \dots$ > Broad state $S_1, S_2, \dots, V_1, \dots$

• Sketch of the spectral functions

Theoretical constraints

- Normalization (4)
- Neutron charge radius squared (1) A. A. Filin, *et al.* PhysRevLett124, 082501(2020)

$$\langle r_n^2 \rangle = -0.105^{+0.005}_{-0.006} \ {\rm fm}^2$$

• Superconvergence relations from pQCD (6)

$$\int_{t_0}^{\infty} \text{Im} F_i(t) t^n dt = 0, \quad i = 1, 2$$

with n = 0 for F_1 , n = 0, 1 for F_2

Data basis

Region	Observables	Coll.	<i>t</i> (GeV ²)	number
	$d\sigma/d\Omega$	MAMI	0.00384-0.977	1422
		PRad	0.000215-0.058	71
Spacelike(t < 0)	$\mu_p G_E^p/G_M^p$	JLab	1.18-8.49	16
	G_E^n	world	0.14-1.47	25
	G_M^n	world	0.071 - 10.0	23
	$ G_{eff}^p $	world	3.52-20.25	153
Timelike(t < 0)	$ G_{eff}^n $	world	3.53-9.49	27
	$ G_E^p/G_M^p $	BaBar	3.52-9.0	6
	$d\sigma/d\Omega$	BESIII	3.52-3.80	10

• Number of data/free parameters

 $1753 \Longrightarrow 4 + 3(N_s + N_v) + 4(N_S + N_V) - 11 + 31 + 2$

• Fitting strategy:
$$\chi^2_{\text{total}} \equiv \sum_{i \text{ in {data basis}}} \frac{\chi^2_i}{\text{data points}}$$

8

Space-like results

- Best configuration '3s+5v+3S+3V'
 - 74 parameters
 - $\omega, \phi, s_1, s_2, s_3, S_1, S_2, S_3 + K\bar{K} + \rho\pi$
 - $v_1, v_2, v_3, v_4, v_5, V_1, V_2, V_3 + \pi\pi$

$$-\chi^2/dof = 1.223$$

Line best fit Band error from bootstrap sampling.

YHL

UNIVERSITÄT BONN

9

Space-like results $G_M^n/(\mu_n G_{dip})$

Time-like results

Time-like results

• Effective FFs $|G_{eff}^n|$

Time-like results

 $|G_{\text{eff}}^p/G_{\text{eff}}^n|$

Proton charge radius

• Our determination "Systematical" error from variation of the spectral functions "Statistical" error form bootstrap

 $r_E^p = 0.840^{+0.003+0.002}_{-0.002-0.002} \text{ fm}, r_M^p = 0.849^{+0.003+0.001}_{-0.003-0.004} \text{ fm}$

• Comparing to existing DR determinations

Comparing to recent measurements

11/17/21

15

YHL

Zemach radius and third Zemach moment

• Our determination

$$r_z = 1.054^{+0.003}_{-0.002}_{-0.001} \text{ fm},$$

$$\langle r^3 \rangle_{(2)} = 2.310^{+0.022}_{-0.018}_{-0.015} \text{ fm}^3.$$

16

Comparison to spectroscopy observables

$$\Delta E_{\rm LS} = 206.0336(15) - 5.2275(10) \langle r^2 \rangle_p + 0.0347 \langle r^3 \rangle_{(2)}$$
$$\Delta E_{\rm HFS} = 22.9843(30) - 0.1621(10)r_z$$

A. Antognini, et al. AnnalsPhys, 331 127(2013)

Bands from μ -H meaurement, Black triangles are our determination. A. Antognini, *et al.* Science, 339 417(2013)

Summary

- NFFs is extracted from the latest experimental data over the full range of momentum transfer by using dispersion theory for the first time.
 - Spacelike data 0.000215-0.977 GeV^2
 - Timelike data 3.52-20.25 GeV^2
- DR analysis on NFFs data provide robust and consistent proton radius over decades, agrees with the small one.
- The DR NFFs is also consistent with μ -H spectroscopy observables.
- Several issues on the behavior of NFFs are addressed,
 - **Disfavor** the zero crossing at intermediate spacelike momentum transfer.
 - $-|G_{\text{eff}}^p/G_{\text{eff}}^n|$ and $\operatorname{Arg}(G_E^p/G_M^p)$ in the time-like region are predicted.

Thank you very much for your attention!

Parametrization of NFFs

• Our spectral functions of NFFs read

$$\begin{split} \operatorname{Im} F_{i}^{s}(t) &= \operatorname{Im} F_{i}^{(s,K\bar{K})}(t) + \operatorname{Im} F_{i}^{(s,\rho\pi)}(t) + \sum_{V=\omega,\phi,s_{1},\dots} \pi a_{i}^{V} \delta(M_{V}^{2}-t) \\ &+ \sum_{V=r_{s1},\dots} \operatorname{Im} F_{i}^{(s,V_{i})}(t) , \\ \operatorname{Im} F_{i}^{v}(t) &= \operatorname{Im} F_{i}^{(v,2\pi)}(t) + \sum_{V=v_{1},\dots} \pi a_{i}^{V} \delta(M_{V}^{2}-t) \\ &+ \sum_{V=r_{v1},\dots} \operatorname{Im} F_{i}^{(v,V_{i})}(t) , \end{split}$$

• Then NFFs can be written as

$$F_{i}(t) = \frac{a_{i}^{V}}{M_{V}^{2} - t} \quad \text{for Im} F_{i}^{(s,K\bar{K})}(t), \text{ Im} F_{i}^{(s,\rho\pi)}(t), \pi a_{i}^{V} \delta(M_{V}^{2} - t)$$
$$F_{i}(t) = \frac{a_{i}^{V}}{M_{V}^{2} - t - iM_{V}\Gamma_{V}} \quad \text{for Im} F_{i}^{(s,V_{r_{s}})}(t), \text{ Im} F_{i}^{(v,V_{r_{v}})}(t)$$

Fitting procedure

• Definition of χ^2

$$\chi_{1}^{2} = \sum_{i} \sum_{k} \frac{(n_{k}C_{i} - C(t_{i}, \theta_{i}, \vec{p}))^{2}}{(\sigma_{i} + \nu_{i})^{2}}$$
$$\chi_{2}^{2} = \sum_{i,j} \sum_{k} (n_{k}C_{i} - C(t_{i}, \theta_{i}, \vec{p}))[V^{-1}]_{ij}(n_{k}C_{j} - C(t_{j}, \theta_{j}, \vec{p}))$$
$$V_{ij} = \sigma_{i}\sigma_{j}\delta_{ij} + \nu_{i}\nu_{j}$$

• Theoretical constraints are imposed in a soft way (implemented as additive terms to the total χ^2)

$$\chi^2_{\text{add.}} = p \left[x - \langle x \rangle \right]^2 \exp \left(p \left[x - \langle x \rangle \right]^2 \right)$$

Two-pion continuum

• Two-pion contribution to isovector spectral functions

M. Hoferichter, et al. EPJA52, 331(2016)

$$\operatorname{Im} G_{E}^{v}(t) = \frac{q_{t}^{*}}{m\sqrt{t}} F_{\pi}^{V}(t)^{*} f_{+}^{1}(t) \theta \left(t - 4M_{\pi}^{2}\right) ,$$

$$\operatorname{Im} G_{M}^{v}(t) = \frac{q_{t}^{3}}{\sqrt{2t}} F_{\pi}^{V}(t)^{*} f_{-}^{1}(t) \theta \left(t - 4M_{\pi}^{2}\right) ,$$

$$q_{t} = \sqrt{t/4 - M_{\pi}^{2}}$$

$$q_t = \sqrt{t/4} - M_{\pi}^2$$

- Pion FFs F_{π} : from $\pi\pi$ scattering phase shift

- P-wave $\pi\pi \to N\bar{N} f^1_+$: from analytic continuation of πN data
- Substantially different with the single ρ meson approximation

_ 3

A visible enhancement on the left shoulder of ρ is found. $t_c = 3.98m_{\pi}^2$ very close to threshold

 \mathbf{YHI}

Parametrization of NFFs

- Continuum contributions (not fitted to data)
 - $\pi\pi$ based on precise analysis of pion-nucleon scattering M. Hoferichter, *et al.* EPJA52, 331(2016)
 - $K\bar{K}$ from an analytic continuation of kaon-nucleon scattering data H.-W. Hammer, *et al.* PRC60, 045205(1999)
 - $\rho\pi$ from investigation of the Bonn-Jülich N-N interaction model U.-G.Meißner, *et al.* PLB633, 507(2006)

Two-photon-exchange correction

• Leading TPE contribution I.T. Lorenz, et al. PRD91, 014023(2015)

$$\frac{d\sigma_{\rm corr}}{d\Omega} = \frac{d\sigma_{1\gamma}}{d\Omega} (1 + \delta_{2\gamma} + \dots) , \ \delta_{2\gamma} \underbrace{\approx}_{\mathcal{O}(\alpha)} \frac{2\text{Re}(\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}_{2\gamma})}{|\mathcal{M}_{1\gamma}|^2}$$

- One-photon amplitude $\mathcal{M}_{1\gamma} = -\frac{e^2}{q^2} \bar{u}_e(p_3) \gamma_\mu u_e(p_1) \bar{u}_N(p_4) \Gamma^\nu u_N(p_2)$
- Two-photon amplitude $\mathcal{M}_{2\gamma}^{\text{box}} = -ie^4 \int \frac{d^4k}{(2\pi)^4} L_{\mu\nu}^{\text{box}} (H_N^{\mu\nu} + H_\Delta^{\mu\nu}) D(k) D(q-k)$

$$\begin{split} L_{\mu\nu}^{\text{box}} &= \bar{u}_e(p_3)\gamma_{\mu}S_F(p_1 - k, m_e)\gamma_{\nu}u_e(p_1) \\ H_N^{\mu\nu} &= \bar{u}_N(p_4)\Gamma^{\mu}(q - k)S_F(p_2 + k, m_N)\Gamma^{\nu}(k)u_N(p_2) \\ H_{\Delta}^{\mu\nu} &= \bar{u}_N(p_4)(p_4)\Gamma_{\gamma\Delta\to N}^{\mu\alpha}(p_2 + k, q - k)S_{\alpha\beta} \\ &\times (p_2 + k)\Gamma_{\gamma N\to \Delta}^{\beta\nu}(p_2 + k, k)u_N(p_2), \end{split}$$

Values of the proton charge radius

• Historical DR determination

Ref.	r_E^p [fm]	r^p_M [fm]
G. H \ddot{o} hler et al. 1976	0.836 ± 0.025	0.843 ± 0.025
P. Mergell et al. 1995	0.847 ± 0.008	0.836 ± 0.008
HW. Hammer et al. 2003	0.848*	0.857^{*}
M. A. Belushkin et al. 2006	$0.844\substack{+0.008\\-0.004}$	0.854 ± 0.005
I. T. Lorenz et al. 2012	0.84 ± 0.01	$0.86\substack{+0.02\\-0.03}$
I. T. Lorenz et al. 2014	$0.840\substack{+0.015\\-0.012}$	$0.848\substack{+0.06 \\ -0.05}$
Lin et al. 2021	$0.838^{+0.005+0.004}_{-0.004-0.003}$	$0.847 \pm 0.004 \pm 0.004$

Here * means that no error analysis has been performed.

Parameters of best fit

• Best fit

V_s	m_V	Γ	a_1^V	a_2^V	V_v	m_V	Γ	a_1^V	a_2^V
ω	0.783	0	0.701	0.338	v_1	1.050	0	0.782	-0.132
ϕ	1.019	0	-0.526	-0.997	v_2	1.323	0	-4.873	-0.645
s_1	1.031	0	0.422	-2.827	v_3	1.368	0	3.518	-0.987
s_2	1.120	0	0.122	3.655	v_4	1.462	0	2.243	-3.813
s_3	1.827	0	0.955	-1.122	v_5	1.532	0	-1.422	3.668
r_{s1}	1.903	0.973	-2.653	-1.753	r_{v1}	2.256	0.239	2.552	-1.217
r_{s2}	1.914	0.541	-3.069	2.017	r_{v2}	2.253	0.245	-1.947	0.551
r_{s3}	1.879	0.895	4.953	0.501	r_{v3}	2.220	0.362	-0.985	1.061

YHL

HISKP

Bootstrap vs Bayesian in PRad fits

• Bayesian theorem

Bootstrap vs Bayesian in PRad fits

• Comparing with bootstrap sampling

Method	r_E^p [fm]	r_M^p [fm]
Bayesian normal	0.828 ± 0.011	0.843 ± 0.004
Bayesian uniform	0.828 ± 0.011	0.843 ± 0.004
Bootstrap	0.828 ± 0.012	0.843 ± 0.005

From "puzzle" to precision

• Some discussions $\frac{H}{C}$

H.-W. Hammer, *et al.* SciBull65, 257(2020) C. Peset, *et al.* 2106.00695

$$\begin{split} (\Delta E_L)_{\text{measured}} &= E_1 + E_2 C(r_p^2) + \mathcal{O}(m_r \alpha^6), \quad C(r_p^2) = c_1 + c_2 r_p^2 + \mathcal{O}(\alpha^2) \\ \delta_{\text{TPE}} \text{ encoded in coefficients } E_1, \ E_2, \ \text{and } C \sim \mathcal{O}(m_l) \\ \left(\frac{d\sigma}{d\Omega}\right)_{\text{measured}} &= \frac{d\sigma_{\text{Mott}}}{d\Omega} \frac{1}{1 + \tau_p} \left(G_E^2 + \frac{\tau_p}{\varepsilon} G_M^2\right) (1 + \delta_{\text{TPE}}) + \mathcal{O}(\alpha^2) \\ \langle r_p^2 \rangle, \ \delta_{\text{TPE}}, \ \text{higher moments}(\langle r_p^n \rangle) \ \text{ and polarizabilities} \\ \text{interwinded together when goes to the higher order corrections.} \\ \text{Only when the theory and experiment are at the same order of accuracy} \end{split}$$

can the same $\langle r_p^2 \rangle$ be obtained.

Precision is the issue that really matters in the proton charge radius problem.

