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NUCLEAR ASPECTS OF STRONG CP VIOLATION



Electric Dipole Moments (EDMs)

• EDMs are great probes for CP violation

T→ -T

CPT Theorem: T Violation         CP Violation

• SM sources are phase of the CKM matrix and QCD ҧ𝜃 term

• BSM CP-odd sources
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Too small!

Focus of this talk

Address it at the 
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Electric Dipole Moments (EDMs)



Effective CP-odd Lagrangians

E

Integrating out the heavy fields

Chiral symmetry

Higher order diagrams



Hierarchy of CPV nuclear forces

CP-even potential

LO

LO

LO

N2LO

CP-odd potential

C. Maekawa et al ’11



QCD theta term

• General quark mass Lagrangian

G. ‘t Hooft ‘76

V. Baluni ‘79

• Can be included in   PT as:

R. Crewther et al ‘79



QCD theta term

• EDMs are great probes for CP violation

Strong proton-neutron 

mass splitting
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QCD theta term

• EDMs are great probes for CP violation

J. De Vries et al ‘15
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EDMs of Light nuclei

• Chiral Lagrangian

At LO, OPE is enough? 

Does short-range interaction play a role in LO?

J. Bsaisou et al’15

• He EDM in terms of LECs

• LEC values

• He EDM Jack Dragos et al ‘19

Jack Dragos et al ‘19

J. De Vries et al ‘15

J. Bsaisou et al ‘15



CP-even Chiral Lagrangian

N2LO

LO LO

A. Nogga et al’05



Lippmann-Schwinger (LS) Equation

• LS equation for wave function

• LS equation for T-matrix:



Cut-off Regulator ()

• To solve LS equation numerically we need to introduce a regulator

• Physics should not depend on the regulator!



S-matrix Parameterization

• Uncoupled channel {}:      

• coupled channel {1, 2}:      

• Short Summary

LO

+                                + 

NLO

only S-channel



CP-even Phase Shifts : 3S1-3D1

+

NDA Works
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CP-even Phase Shifts : 3S1-3D1

NDA Works



CP-even Phase Shifts : 3P0

NDA Fails!



Why NDA fails?

• Consider OPE potential in position basis

→ Attractive tensor force leads to cut-off dependence

+                                + 

LO LO (promoted)

• Solution : promote N2LO contact potential to LO. A. Nogga et al’05



CP-even Phase Shifts : 3P0

+

NDA Fails!



CP-odd chiral Potentials

• Cp-odd potential is given by

LO

N2LO

Is ഥ𝑪𝟎 indeed next-to-next-to-leading order? 



T-matrix  and S-matrix

• T-matrix:

• S-matrix:

CP-even calculation

Bsaisou et al. ’19

A Gnech et al. ’20

Paul Froese et al. ’21



CP-odd Phase Shifts : j=1

NDA Works!



CP-odd Phase Shifts : j=0

NDA Fails!

J de Vries, A Gnech, S Shain ’21



Why NDA fails?

 = 400-600 MeV

• There is no sign of convergence.

• In practice one uses higher order chiral wavefunctions 

with limited range in .



Why NDA fails?

• There is no sign of convergence.

• In practice one uses higher order chiral wavefunctions 

with limited range in .

• Solution: Promote N2LO contact term to LO

LO LO (promoted)

+

• Topology of the diagram 

responsible for 

divergence in j=0

 = 400-600 MeV

gA

ҧ𝑔0

𝐶s (
1𝑆0) 𝐶p (

3𝑃0)



CP-odd Phase Shifts : j=0
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CP-odd Phase Shifts : j=0

NDA Fails!+

J de Vries, A Gnech, S Shain ’21



How to deal with ҧ𝐶0 ?

• Best way is to fit with the measurement of 

→ This is at present not possible!

1. Lattice QCD calculation for NN→NN, in non-zero ҧ𝜃 background.

→ Major challenge is to overcome signal-to-noise ratio = 0 for j =1 

J. Dragos et al’19



How to deal with ҧ𝐶0 ?

2. Charge-symmetry-breaking (CSB) process: NN→NN

Simplest process where CSB data is available : not sensitive to C0

Interested case:                                CSB data can be used to extract C0

WASA-at COSY collab: P. Adlarson et al’14

V. Baru et al ’14

U. van Kolck et al ’00



More CP-odd operators

Another LO CP-odd chiral Lagrangian (leads to iso-vector potential),

Similar to ҧ𝑔0 : j = 1  there is no regulator dependence

j = 0  same regulator dependence as ഥ𝒈0 (upto an isospin factor)

J = 0 a LO counter term is needed, 

 ҧ𝐶1 at LO should be included in the EDM calculations of 3He, 199Hg, 225Ra

Work in progress

= 0 for j =1 



P-odd operators

P-odd chiral Lagrangian,

j = 0, 1  there are no regulator dependence

D. B. Kaplan et al’94

Value of h determined from P-odd np → d can be 

used in p-odd observables

D. Blyth et al’18



Axions

The QCD Lagrangian

SM

LEFT

C. Abel et al. ’20

Ciaran A J O’Hare et al ’20

Strong CP problem



Axions

The QCD Lagrangian

Axion [UPQ(1)]SM

LEFT

By choosing ‘correct’ vacuum expectation value for axion, we can cancel the theta-term

Peccei et al. ’77



Axions

We can remove these by: 

We do not want terms in the fom:

But we also have terms like: Thus 3 ~ a

Since, we can expect axion-(SM CP-even terms) 

If Peccei-Quinn mechanism exists, we expect CP-odd couplings

which we can check experimentally! 



Axion-SM couplings

CP-odd axion-SM terms

Functions of dim-6 couplings, fa (ma)

Preliminary

Electron, proton, neutron, …

Effect of CPV axion couplings

Put two test masses in orbit around the Earth

Measure the difference in their acceleration.
J E Moody , F Wilczek ’84

J Berge et al. ’18

G L smith et al. ’00

C D Hoyle et al. ’04

E Hardy et al. ’17

Ciaran A J O’Hare et al. ’20



Axion-SM couplings

CP-odd axion-SM terms

Functions of dim-6 couplings, fa (ma)

Preliminary

Electron, proton, neutron, …

EDM limits still gives the most 

stringent constrains 

J Berge et al. ’18

G L smith et al. ’00
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E Hardy et al. ’17

Ciaran A J O’Hare et al. ’20

Effect of CPV axion couplings

Put two test masses in orbit around the Earth

Measure the difference in their acceleration.
J E Moody , F Wilczek ’84

B Graner et al. ’16

C D panda et al. ’19



Axion-SM couplings

CP-odd axion-SM terms

Functions of dim-6 couplings, fa (ma)

Preliminary

Electron, proton, neutron, …

EDM limits still gives the most 

stringent constrains 

Effect of CPV axion couplings

Put two test masses in orbit around the Earth

Measure the difference in their acceleration.
J E Moody , F Wilczek ’84

Joel Berge et al. ’18

Ciaran A J O’Hare et al. ’20



• Nuclear EDMs are excellent probes for CP-violation.

• Nuclear EDMs can be written as linear combination of low energy constants: 

• For j=0 channel, nucleon-nucleon effects becomes important and should        

not be neglected as currently done in the literature.

• We done the calculations with intrinsic nucleon-nucleon                             

effects. 

• Proposed some strategies to obtain  LEC ҧ𝐶0 : CSB deuteron scattering.

• We created list of all CPV axion-(hadrons, mesons, leptons) interactions  

using dim-6 LEFT operators.

• EDM limits are more stringent than macroscopic experiments

Summary

Our work: Phys. Rev. C 103, L012501


