

$A = 4 - 7 \Xi$ Hypernuclei Based on Interactions from Chiral EFT

Hoai Le, IAS-4 & IKP3, Forschungszentrum Jülich, Germany

Workshop on Chiral dynamics, Beijing, 15-19th November, 2021

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga (arXiv:2109.06648 [nucl-th] (2021))

Baryon-Baryon interactions in χ **EFT**

LO: H. Polinder et al., NPA 779 (2006). NLO: J. Haidenbauer et al., NPA 915 (2013)

- degrees of freedom: octet baryons $(N, \Lambda, \Sigma, \Xi)$, pseudoscalar mesons (π, K, η)
- based on Weinberg power counting as in the NN case

- exploit $SU(3)_f$ to fix BBM couplings and relate various LECs, allow $SU(3)_f$ breaking where it seems appropriate
- number of contact terms:

NN: 2 (LO) 7 (NLO)
YN: +3 (LO) + 11 (NLO)
YY: +1 (LO) + 4 (NLO)
$$\Rightarrow$$
 28 LECs for S=-2 at NLC

Constraints from S=-2 sector: ΞN

some data/ limits for EN (in)elastic cross sections (J.K. Ahn et al, PLB 633 (2006) 214)

$$\sigma_{\Xi^-p \to \Lambda\Lambda} = 4.3^{+6.3}_{-2.7}$$
 mb, at $p_{\Xi} = 500$ MeV/c

 $\sigma_{\Xi^- p \to \Xi^- p} < 24 \text{ mb}; \quad \sigma_{\Xi^- p \to \Lambda\Lambda} < 12 \text{ mb} \qquad (200 < p_{\Xi} < 800 \text{ MeV/c})$

 $\sigma_{\Xi^-N} = 12.7^{+3.5}_{-3.1}$ mb (400 < p_{Ξ} < 600 MeV/c) (S. Aoki et al., NPA 644 (1998))

 \rightarrow ΞN interaction can not be very strong

• events support Ξ -bound states:

$$\begin{split} \Xi^{-} - {}^{14}N({}^{15}_{\Xi^{-}}C): \quad B_{\Xi} &= 3.87(1.03) \pm 0.21(0.18) \text{ MeV} \quad (\text{KISO}) \quad \text{K. Nakazawa et al., PTEP 033D02 (2015)} \\ &= 4.96 \pm 0.77 \text{ MeV} \quad (\text{KINKA}) \text{ M. Yoshimoto et al., PTEP 073D02 (2021)} \\ &= 1.27 \pm 0.21 \text{ MeV} \quad (\text{IBUKI}) \text{ S.H. Hayakawa et al., PRL 126 (2021)} \end{split}$$

 \rightarrow Ξ^- is captured in nuclear 1p state

 $B_{\Xi} = 8.00 \pm 0.77$ (KINKA), 6.27 ± 0.27 (IRRAWADDY) (M.Yoshimoto et al., PTEP (2021)) s-shell Ξ - nuclear state

 $^{12}C(K^-, K^+) \stackrel{12}{=} Be$: T. Fukuda et al. PRC 58 (1998), P. Khaustov PRC 61 (2000)

T. Nagae et al., PoS (INPC2016) 038, AIP Conf. Proc 2130 (2019), $B_{\Xi} \approx 9$ MeV (and 2 MeV)

 \rightarrow Ξ single particle potential $U_{\Xi} \approx -14$ MeV ($U_{\Lambda} \approx -30$ MeV)

Constraints from S=-2 sector: $\Lambda\Lambda$

• $\Lambda\Lambda$ hypernuclei: ${}^{6}_{\Lambda\Lambda}$ He (Nagara), ${}^{10}_{\Lambda\Lambda}$ Be (Demachi-Yanagi), ${}^{11}_{\Lambda\Lambda}$ Be (Hida)

 $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} ({}_{\Lambda\Lambda}^{6} \text{He}) - 2B_{\Lambda} ({}_{\Lambda}^{5} \text{He}) = 0.67 \pm 0.17 \text{ MeV}$ (K. Nakazawa et al., NPA 835 (2010))

 \rightarrow $\Lambda\Lambda$ interaction is weakly attractive

YY interaction at NLO J. Haidenbauer et al., NPA 954 (2016) 273, EPJA 55 (2019) 23

- fulfil all the constraints from S=-2 sector (see J. Haidenbauer talk)
- study $^{6}_{\Lambda\Lambda}$ He, $^{5}_{\Lambda\Lambda}$ He and $^{4}_{\Lambda\Lambda}$ H using LO and NLO (HL et al., EPJA 57 (2021) 217)
- $\overset{6}{\longrightarrow} \overset{6}{\Lambda\Lambda} He \text{ is fairly well described with NLO; } \overset{5}{\Lambda\Lambda} He \text{ is predicted to be bound}$
- Kohno et al., use Ξ s.p. potential obtained with NLO to study finite systems: Ξ⁻-¹⁴N, Ξ⁻-¹²C (M. Kohno PRC 100 (2019), M. Kohno, K. Miyagawa., arXiv:2107.03784)

reasonable agreement with experiment can be obtained

	a _{AA}	$a_{\Xi^0 n}({}^1S_0)$	$U_{\Xi}(p_{\Xi}=0)$
NLO(500)	-0.62	-1.30 - <i>i</i> 0.07	-5.5
NLO(550)	-0.61	-2.05 - <i>i</i> 0.27	-3.8
NLO(600)	-0.66	-1.95 - <i>i</i> 0.25	-4.3
NLO(650)	-0.70	-1.41 - <i>i</i> 0.09	-4.1

 $a_{\Lambda\Lambda} = -$ 1.2 ± 0.6 fm (A. Gasparyan PRC 85 (2012)) $U_{\Xi}^{\rm c} \approx -$ 14 MeV

Possible lightest Ξ hypernucleus?

variational Gaussian expansion method using ESC08c and HAL QCD

E. Hiyama et al., PRL 124 (2020) 092501

- $\Xi N \Lambda \Sigma \Sigma \Sigma$, $\Lambda \Lambda \Xi N$ coupling effects are renormalized into $V_{\Xi N \Xi N}$
- Nijmegen ESC08c leads to $NN\Xi(J^{\pi}, T) = (3/2^+, 1/2)$; $NNN\Xi(1^+, 0), (0^+, 1)(1^+, 1)$ bound states
 - HAL QCD predicts a loosely bound $(1^+, 0)$ state in $NN\Sigma$

Faddeev equation for $NN\Xi$ with modern ΞN potentials

K. Miyagawa and M. Kohno FBS 65 (2021)

- original ΞN potentials are employed to obtain $T_{\Xi N,\Xi N}$
- no bound states are obtained with chiral NLO or HAL QCD

Our aim:

- study predictions of chiral interactions for $A = 4 7 \Xi$ systems using Jacobi NCSM
 - ▶ input Hamiltonian: chiral NN (N⁴LO⁺(450)) and S=-2 NLO potentials
 - $\Xi N \Lambda \Sigma \Sigma \Sigma$ transition in S=-2 is explicitly considered
 - $\Lambda\Lambda \Xi N(^{11}S_0)$ coupling is effectively incorporated by re-adjusting the strength of $V_{\Xi N \Xi N}$

ΞN phase shifts predicted by modern interactions **J**ÜLICH

5

Ξ N phase shifts predicted by modern interactions

- ${}^{11}S_0$ is rather attractive in NLO and HAL QCD, but repulsive in ESC08c
 - ${}^{33}S_1$ is strongly attractive in ESC08c (lead to a ΞN bound state), it is only moderately (weakly) attractive in NLO (HAL QCD)

Jacobi No-Core Shell Model (J-NCSM)

• an expansion of the wavefunction in a many-body HO basis depending on Jacobi coordinates

$$\mathbf{p}_{12} = \frac{m_2}{m_1 + m_2} \mathbf{k}_1 - \frac{m_1}{m_1 + m_2} \mathbf{k}_2$$

$$\mathbf{p}_3 = \frac{m_2 + m_1}{m_1 + m_2 + m_3} \mathbf{k}_3 - \frac{m_3}{m_1 + m_2 + m_3} (\mathbf{k}_2 + \mathbf{k}_2)$$

$$\vdots$$

$$\mathbf{p}_A = \frac{\sum_{i=1}^{A-1} m_i}{\sum_{i=1}^{A} m_i} \mathbf{k}_A - \frac{m_A}{\sum_{i=1}^{A} m_i} \sum_{i=1}^{A-1} \mathbf{k}_i$$

$$\mathbf{p}_A = \frac{\sum_{i=1}^{A-1} m_i}{\sum_{i=1}^{A} m_i} \mathbf{k}_A - \frac{m_A}{\sum_{i=1}^{A} m_i} \sum_{i=1}^{A-1} \mathbf{k}_i$$

- explicit removal of c.m. motion
- all particles are active (no inert core) employ microscopic BB interactions
- converge slowly require soft interactions (use techniques e.g., Vlow_k, SRG)
- basis functions are split into two orthogonal sets:

$$= |\mathcal{N}JT, \alpha_{A-2} \underbrace{\alpha_{Y_1Y_2}}_{|\Lambda\Sigma\rangle, |\Sigma\Sigma\rangle} n_{\lambda}\lambda; ((l_{Y_1Y_2}S_{Y_1Y_2})J_{Y_1Y_2}(\lambda J_{A-2})I_{\lambda})J, ((t_{Y_1}t_{Y_2})T_{Y_1Y_2}T_{A-2})T) \equiv |\alpha^{*(Y_1Y_2)})$$

$$= |\mathcal{N}JT, \alpha_{A-1}n_{\Xi}l_{\Xi}t_{\Xi}; (J_{A-1}(l_{\Xi}s)I_{\Xi})J, (T_{A-1}t_{\Xi})T) \equiv |\alpha^{*(\Xi)}\rangle$$

$$(JJ-coupling)$$

• basis truncation:

 Y_1

$$\mathcal{N} = \mathcal{N}_{A-2} + N_{Y_1Y_2} + 2n_{\lambda} + \lambda = \mathcal{N}_{A-1} + 2n_{\Xi} + \lambda_{\Xi} \le \mathcal{N}_{max} \Rightarrow E_b = E_b(\omega, \mathcal{N}_{max})$$

require $\mathcal{N}_{max} \to \infty$ extrapolation

(HL et al. arXiv:2008.11565, arXiv:2103.08395)

Dependence of energies on SRG

• apply SRG evolution to $N^4LO^+(450)$ and S=-2 NLO(500) to speed up convergence:

 $\lambda_{NN} = 1.6 \,\mathrm{fm}^{-1}, \ 1.4 \le \lambda_{YY} \le 3.0 \,\mathrm{fm}^{-1}$

estimate effect of the omitted SRG-induced 3BFs

	ΔB^{SRG}_{Ξ}	$\Delta B^{SRG}_{\Lambda\Lambda}$	ΔB^{SRG}_{A}
	[keV]	[keV]	$[\mathrm{keV}]$
A=4	190 ± 30	-	740 ± 2
A=5	460 ± 140	80 ± 40	1501 ± 20
A=6	_	100 ± 17	_

- effect of SRG evolution on B_{Ξ} is moderately large, however, $\Delta B_{\Xi}^{SRG} \ll B_{\Xi}$
- SRG dependence will not affect conclusions on the existence of bound states

suppressed by isospin symmetry

Results for A=4-7

	NLO(500)		others	
	$B_{\Xi} [\mathrm{MeV}]$	$\Gamma \; [{\rm MeV}]$	$B_{\Xi} [\mathrm{MeV}]$	$\Gamma \; [{\rm MeV}]$
$\frac{4}{\Xi}\mathrm{H}(1^+,0)$	0.48 ± 0.01	0.74	$0.36(16)(26)^{(1)}$	0.06 ⁽¹⁾
			$10.20^{(2)}$	$0.89^{(2)}$
$\frac{4}{\Xi}n(0^+,1)$	0.71 ± 0.08	0.2	$3.55^{(2)}$	0.43 ⁽²⁾
$\frac{4}{\Xi}n(1^+,1)$	0.64 ± 0.11	0.01	$10.11^{(2)}$	$0.03^{(2)}$
$\frac{4}{\Xi}\mathrm{H}(0^+,0)$	-	-	_	_
$\frac{5}{\Xi}\mathrm{H}(\frac{1}{2}^+,\frac{1}{2})$	2.16 ± 0.10	0.19	1.7 ⁽³⁾	0.2 ⁽³⁾
			$2.0^{(4)}$	0.45 ⁽⁴⁾
$\frac{7}{\Xi}\mathrm{H}(\frac{1}{2}^+,\frac{3}{2})$	3.50 ± 0.39	0.2	$3.15^{(5)}$	0.02 ⁽⁵⁾
			$1.8^{(6)}$	$2.64^{(6)}$

 $\Gamma \simeq -2 \operatorname{Im} \langle \Psi_{B_{\Xi}} | T_{\Xi N - \Xi N} | \Psi_{B_{\Xi}} \rangle$

⁽¹⁾ HAL QCD (t/a=12)

⁽²⁾ Nijmegen ESC08cE.Hiyama et al., PRL 124 (2020)

⁽³⁾ K. Myint, Y. Akaishi PTPS 117 (1994)

⁽⁴⁾ E. Friedman, A. Gal PLB 820(2021)

⁽⁵⁾ HAL QCD (t/a=11)

⁽⁶⁾ Nijmegen ESC04d H. Fujioko APFB2021, March (2021)

• $\Xi^- p$ Coulomb interaction contributes roughly 200, 600 and 400 keV to $NN\Sigma$, $\frac{5}{\Xi}H$ and $\frac{7}{\Xi}H$

Results for A=4-7

	$\langle V^{S=-2} \rangle [\text{MeV}]$					E [MeV]
	$^{11}S_{0}$	$^{31}S_{0}$	$^{13}S_{1}$	$^{33}S_{1}$	total	
$\frac{4}{\Xi}\mathrm{H}(1^+,0)$	-1.95	0.02	-0.7	-2.31	-5.21	-8.97
$\frac{4}{\Xi}n(0^+,1)$	-0.6	0.25	-0.004	-0.74	-1.37	-9.07
$\frac{4}{\Xi}n(1^+,1)$	-0.02	0.16	-0.13	-1.14	-1.30	-9.0
$\frac{4}{\Xi}$ H(0 ⁺ ,0)	-0.002	0.08	-0.01	-0.006	-0.11	-6.94
$\frac{5}{\Xi}$ H(1/2 ⁺ , 1/2)	-0.96	0.94	-0.58	-3.63	-4.88	-31.43
$\frac{7}{\Xi}$ H(1/2 ⁺ , 3/2)	-1.23	1.79	-0.79	-6.74	-8.04	-33.22

 \rightarrow the attraction in ${}^{33}S_1$ is essential for the binding of A=4-7 Ξ -hypernuclei

9

Estimate partial-wave contributions

- Assumption: no particle conversion contributing
 - both core nucleons and Ξ are in s-wave states
- A=3 system:

$${}^{3}_{\Xi} \mathrm{H}(\frac{1}{2}^{+}, \frac{1}{2}): \tilde{V}_{\Xi N} \approx \frac{3}{16} V_{\Xi N}^{^{11}S_{0}} + \frac{9}{16} V_{\Xi N}^{^{31}S_{0}} + \frac{1}{16} V_{\Xi N}^{^{13}S_{1}} + \frac{3}{16} V_{\Xi N}^{^{33}S_{1}}$$
$${}^{3}_{\Xi} \mathrm{H}(\frac{3}{2}^{+}, \frac{1}{2}): \tilde{V}_{\Xi N} \approx \frac{1}{4} V_{\Xi N}^{^{13}S_{1}} + \frac{3}{4} V_{\Xi N}^{^{33}S_{1}}$$

• A=4 system:

$${}^{4}_{\Xi} H(1^{+},0): \ \tilde{V}_{\Xi N} \approx \frac{1}{6} V_{\Xi N}^{^{11}S_{0}} + \frac{1}{3} V_{\Xi N}^{^{13}S_{1}} + \frac{1}{2} V_{\Xi N}^{^{33}S_{1}}$$

$${}^{4}_{\Xi} H(0^{+},1): \ \tilde{V}_{\Xi N} \approx \frac{1}{6} V_{\Xi N}^{^{11}S_{0}} + \frac{1}{3} V_{\Xi N}^{^{31}S_{0}} + \frac{1}{2} V_{\Xi N}^{^{33}S_{1}}$$

$${}^{4}_{\Xi} H(1^{+},1): \ \tilde{V}_{\Xi N} \approx \frac{1}{6} V_{\Xi N}^{^{31}S_{0}} + \frac{1}{6} V_{\Xi N}^{^{13}S_{1}} + \frac{2}{3} V_{\Xi N}^{^{33}S_{1}}$$

$${}^{4}_{\Xi} H(0^{+},0): \ \tilde{V}_{\Xi N} \approx \frac{1}{2} V_{\Xi N}^{^{31}S_{0}} + \frac{1}{2} V_{\Xi N}^{^{13}S_{1}}$$

• A=5 system:

$${}_{\Xi}^{5} \mathrm{H}(\frac{1}{2}^{+}, \frac{1}{2}): \tilde{V}_{\Xi N} \approx \frac{1}{16} V_{\Xi N}^{11} + \frac{3}{16} V_{\Xi N}^{31} + \frac{3}{16} V_{\Xi N}^{13} + \frac{9}{16} V_{\Xi N}^{33} +$$

Estimate partial-wave contributions

- Assumption: no particle conversion contributing
 - both core nucleons and Ξ are in s-wave states

$(J_{core}, T_{core}, m^t_{\Xi})$	$\frac{4}{\Xi}H(1^+,0)$	$\frac{4}{\Xi}n(0^+,1)$	$\frac{4}{\Xi}n(1^+,1)$	$\frac{4}{\Xi}$ H(0 ⁺ ,0)	
$\left(\frac{1}{2},\frac{1}{2},-\frac{1}{2}\right)$	49.66	97.48	97.44	49.98	
$\left(rac{1}{2},rac{1}{2},rac{1}{2} ight)$	49.66	_	_	49.98	
$\left(rac{1}{2},rac{3}{2},rac{1}{2} ight)$	_	0.54	0.55	_	
$\left(\tfrac{1}{2}, \tfrac{3}{2}, -\tfrac{1}{2}\right)$	_	1.6	1.6	_	
others	0.16	0.17	0.22	0.02	

($(J_{core}, T_{core}, m^t_{\Xi})$	${}^5_{\Xi}\mathrm{H}({1\over2}^+,{1\over2})$	$(J_{core}, T_{core}, m_{\Xi}^t)$	$\frac{7}{\Xi}\mathrm{H}(\frac{1}{2}^+,\frac{3}{2})$
	$(0,0,-\tfrac{1}{2})$	96.03	$(0, 1, -\frac{1}{2})$	94.44
	$(0,0,rac{1}{2})$	1.1	$(0,2,-rac{1}{2})$	0.7
	$(0,1,rac{1}{2})$	2.1	$(0,2,rac{1}{2})$	2.8
	others	0.3	others	1.13

Probabilities (%) of finding nucleons with certain (J_{core}, T_{core}) and a Ξ (m_{Ξ}^{t}) in the A=4-7 wavefunctions

Summary

we studied A=4-7 Ξ hypernuclei using J-NCSM and NLO(500) ΞN potential

- found 3 loosely bound states $(1^+,0)$, $(0^+,1)$, $(1^+,1)$ in $NN\Xi$ ${}_{\Xi}^{5}H(1/2^+,1/2)$, ${}_{\Xi}^{7}H(1/2^+,3/2)$ are more tightly bound
 - these bindings are predominantly due to the attraction of ΞN potential in ${}^{33}S_1$ channel
 - all bound states are predicted to have very small decay widths

future works: study dependence of B_{Ξ} on chiral cutoff. Include SRG-induced 3BF

experimental confirmation?

- $NN\Xi$ could be produced in heavy ion collisions or in ${}^{4}\text{He}(K^{-}, K^{+})$ reaction
- $\frac{7}{2}$ H is expected to be produced and studied in 7 Li(K^{-} , K^{+}) reaction at J-PARC (H. Fujioka et al., FBS 69(2021))
- production of $\frac{5}{\Xi}$ H? $\bar{p} p \rightarrow \Xi^- \bar{\Xi}^+$ $\downarrow \rightarrow {}^4\text{He} \rightarrow {}^5_{\Xi}\text{H}$ $\rightarrow \bar{\Xi}^+ \Xi^*(1530), \text{ then } \Xi^*(1530) \rightarrow \Xi^- + \pi^+$ $\downarrow \rightarrow {}^4\text{He} \rightarrow {}^5_{\Xi}\text{H}$

Thank you for the attention!

Results for A=4-7

	$ \Xi N angle$					
	$ ^{11}S_0 angle$	$ ^{31}S_0 angle$	$ ^{13}S_1 angle$	$ ^{33}S_1 angle$	$J \ge 2$	total
$\frac{4}{\Xi}\mathrm{H}(1^+,0)$	12.88	0.18	25.91	35.72	24.80	99.49
$\frac{4}{\Xi}n(0^+,1)$	8.24	13.32	0.23	23.29	54.73	99.81
$\frac{4}{\Xi}n(1^+,1)$	0.14	9.22	9.83	33.08	47.56	99.83
$\frac{4}{\Xi}\mathrm{H}(0^+,0)$	0.02	11.87	14.65	0.11	73.33	99.98
$\frac{5}{\Xi}$ H(1/2 ⁺ , 1/2)	4.82	12.18	14.37	35.53	32.59	99.49
$\frac{7}{\Xi}$ H(1/2 ⁺ , 3/2)	3.71	12.92	11.11	38.36	32.94	99.04

Probabilities (%) of finding a pair $|\Xi N\rangle$ in different partial-wave states

Extrapolation of the results

extract converged binding energy

$$\mathcal{N} = \mathcal{N}_{A-2} + N_{Y_1Y_2} + 2n_{\lambda} + \lambda = \mathcal{N}_{A-1} + 2n_{\Xi} + \lambda_{\Xi} \leq \mathcal{N}_{max} \quad \Rightarrow E_b = E_b(\omega, \mathcal{N}_{max})$$

