Strangeness S = -3 and -4 baryon-baryon interactions in chiral effective field theory

Johann Haidenbauer

IAS & JCHP, Forschungszentrum Jülich, Germany

The 10th International workshop on Chiral Dynamics, IHEP, CAS, November 15-19, 2021

(Hoai Le, Ulf-G. Meißner, Andreas Nogga)

BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χ EFT à la Weinberg (1990) [up to NLO] (in complete analogy to the study of NN in χ EFT by E. Epelbaum et al.)

Advantages:

- Power counting systematic improvement by going to higher order
- Possibility to derive two- and three-baryon forces and external current operators in a consistent way
- degrees of freedom: octet baryons (N, Λ , Σ , Ξ), pseudoscalar mesons (π , K, η)
- pseudoscalar-meson exchanges
- contact terms represent unresolved short-distance dynamics)

- LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244
- NLO: J.H., N. Kaiser, U.-G. Meißner, A. Nogga, S. Petschauer, W. Weise, NPA 915 (2013) 24

Contact terms for BB

 $\mathsf{LO:} \ \mathcal{L}^{(0)} = \tilde{C}_1 \left\langle \bar{B}_a \left(\Gamma_i B \right)_a \bar{B}_b \left(\Gamma_i B \right)_b \right\rangle + \tilde{C}_2 \left\langle \bar{B}_a \bar{B}_b \left(\Gamma_i B \right)_b \left(\Gamma_i B \right)_a \right\rangle + \dots$

NLO: $\mathcal{L}^{(2)} = C_1 \left(\left\langle (\partial^{\mu} \bar{B})_a (\Gamma_i B)_a (\partial_{\mu} \bar{B})_b (\Gamma_i B)_b \right\rangle + \left\langle \bar{B}_a (\Gamma_i \partial^{\mu} B)_a \bar{B}_b (\Gamma_i \partial_{\mu} B)_b \right\rangle \right) + \dots + C_1^{\chi} \left\langle \bar{B}_a \bar{B}_b (\Gamma_i B)_b (\Gamma_i B)_a \chi \right\rangle + \dots$

$$B = \begin{pmatrix} \frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^+ & p \\ \Sigma^- & \frac{-\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ -\Xi^- & \Xi^0 & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}$$

$$\chi = 2B_0 \begin{pmatrix} m_u & 0 & 0 \\ 0 & m_d & 0 \\ 0 & 0 & m_s \end{pmatrix} \approx \begin{pmatrix} m_\pi^2 & 0 & 0 \\ 0 & m_\pi^2 & 0 \\ 0 & 0 & 2m_K^2 - m_\pi^2 \end{pmatrix}$$

a, *b* ... Dirac indices of the particles $\Gamma_1 = 1$, $\Gamma_2 = \gamma^{\mu}$, $\Gamma_3 = \sigma^{\mu\nu}$, $\Gamma_4 = \gamma^{\mu}\gamma_5$, $\Gamma_5 = \gamma_5$ \tilde{C}_i , C_i , C_i^{χ} ... low-energy constants (LECs)

(need to be fixed by a fit to NN, YN, ... data)

(S. Petschauer and N. Kaiser, NPA 916 (2013) 1)

<ロト <回 > < 回 > < 回 > < 回 > <

U(3) content

SU(3) structure for scattering of two octet baryons \rightarrow

 $\mathbf{8}\otimes\mathbf{8}=\mathbf{1}\oplus\mathbf{8}_{a}\oplus\mathbf{8}_{s}\oplus\mathbf{10}^{*}\oplus\mathbf{10}\oplus\mathbf{27}$

BB interaction can be given in terms of LECs corresponding to the *SU*(3)_{*t*} irreducible representations: C^1 , C^{8_a} , C^{8_s} , C^{10^*} , C^{10} , C^{27}

	Channel	Isospin	$V_{{}^{3}S_{1},{}^{1}P_{1},}$	Isospin	$V_{1_{S_0}, {}^{3}P_0, {}^{3}P_1, {}^{3}P_2, \dots}$
<i>S</i> = 0	$NN \rightarrow NN$	0	<i>C</i> ^{10*}	1	C ²⁷
<i>S</i> = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{2}\left(C^{8_a}+C^{10^*}\right)$	$\frac{1}{2}$	$\frac{1}{10} \left(9C^{27} + C^{8_s}\right)$
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{2}\left(-C^{8a}+C^{10^*}\right)$	$\frac{1}{2}$	$rac{3}{10}\left(-C^{27}+C^{8s} ight)$
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{2}\left(C^{8a}+C^{10^*}\right)$	$\frac{1}{2}$	$\frac{1}{10} \left(C^{27} + 9C^{8_s} \right)$
	$\Sigma N \rightarrow \Sigma N$	32	<i>C</i> ¹⁰	32	C ²⁷
<i>S</i> = -3	$\Xi \Lambda \to \Xi \Lambda$	$\frac{1}{2}$	$\frac{1}{2}(C^{8_a}+C^{10})$	$\frac{1}{2}$	$\frac{1}{10} \left(9C^{27} + C^{8s}\right)$
	$\Xi\Lambda\to\Xi\Sigma$	$\frac{1}{2}$	$\frac{1}{2}\left(-C^{8a}+C^{10} ight)$	$\frac{1}{2}$	$\frac{3}{10}\left(-C^{27}+C^{8s}\right)$
	$\Xi\Sigma\to\Xi\Sigma$	$\frac{1}{2}$	$\frac{1}{2}(C^{8_a}+C^{10})$	$\frac{1}{2}$	$\frac{1}{10}(C^{27}+9C^{8s})$
	$\Xi\Sigma\to\Xi\Sigma$	32	C^{10^*}	32	C ²⁷
S = -4	$\Xi\Xi ightarrow \Xi\Xi$	0	C ¹⁰	1	C ²⁷

10 and 10* representations interchange their roles when going from the S = 0, -1 to the S = -3, -4 channels

contact interaction up to NLC

V

SU(3) structure + breaking of SU(3) symmetry

(S. Petschauer, N. Kaiser, NPA 916 (2013) 1)

Contact interaction - partial-wave projected

$$V({}^{1}S_{0}) = \tilde{C}_{1}{}_{S_{0}} + C_{1}{}_{S_{0}}(p^{2} + p'^{2}) + C_{1}{}_{S_{0}}(m_{K}^{2} - m_{\pi}^{2})$$

$$V({}^{3}S_{1}) = \tilde{C}_{3}{}_{S_{1}} + C_{3}{}_{S_{1}}(p^{2} + p'^{2}) + C_{3}{}_{S_{1}}(m_{K}^{2} - m_{\pi}^{2})$$

$$V(\alpha) = C_{\alpha} p p' \qquad \alpha \triangleq {}^{1}P_{1}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$$

$$V({}^{3}D_{1} \leftrightarrow {}^{3}S_{1}) = C_{3}{}_{S_{1}-{}^{3}D_{1}} p'^{2}, C_{3}{}_{S_{1}-{}^{3}D_{1}} p^{2}$$

$$V({}^{1}P_{1} \leftrightarrow {}^{3}P_{1}) = C_{1}{}_{P_{1}-{}^{3}P_{1}} p p'$$

SU(3) symmetry \Rightarrow number of contact terms: LO: 2(NN) + 3(YN) + 1(YY) NLO: 7(NN) + 11(YN) + 4(YY) $(6 + 6 \text{ for } {}^{1}S_{0} + {}^{3}S_{1} \text{ partial waves})$

SU(3) symmetry breaking contact terms C_i^{χ} : for S = 0 to S = -4: 6 LECs for ¹S₀ and 6 LECs for ³S₁ \rightarrow cannot be determined from presently available data

(we assume $C_i^{\chi} = 0$, unless data require the opposite)

코어 세 코어 ---

Coupled channels Lippmann-Schwinger Equation

$$T^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) = V^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) + \sum_{\rho'',\nu''} \int_0^\infty \frac{dp''\rho''^2}{(2\pi)^3} V^{\nu'\nu'',J}_{\rho'\rho''}(\rho',\rho'') \frac{2\mu_{\rho''}}{p^2 - \rho''^2 + i\eta} T^{\nu''\nu,J}_{\rho''\rho}(\rho'',\rho)$$

 $\rho', \ \rho = \Lambda N, \ \Sigma N \quad (\Lambda\Lambda, \ \Xi N, \ \Lambda \Sigma, \ \Sigma \Sigma) \quad (\Xi\Lambda, \ \Xi \Sigma)$

LS equation is solved for particle channels (in momentum space) (SU(3) symmetry is broken by mass difference of baryons: $\mu_{\rho} = M_{B_1} M_{B_2} / (M_{B_1} + M_{B_2})$)

Coulomb interaction is included via the Vincent-Phatak method

The potential in the LS equation is cut off with the regulator function:

$$V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) o f^{\wedge}(
ho') V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) f^{\wedge}(
ho); \quad f^{\wedge}(
ho) = e^{-(
ho/\Lambda)^4}$$

consider values $\Lambda = 500 - 650$ MeV [guided by NN, achieved χ^2]

ideally the regulator (Λ) dependence should be absorbed completely by the LECs in practice there is a residual regulator dependence (shown by bands below)

- tells us something about the convergence
- tells us something about the size of higher-order contributions

YN integrated cross sections

NLO13 ... all S-wave LECs are fixed from a fit directly to available Y/N data NLO19 ... consider constraints from the *NN* interaction within (broken) SU(3) symmetry

NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24 NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91 Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

Breaking of SU(3) symmetry

J.H., U.-G. Meißner, S. Petschauer, EPJA 51 (2015) 17: one can determine \tilde{C}^{27} , C_1^{27} from a combined fit to pp and $\Sigma^+ p$ $C_1^{\chi} < 0 \Rightarrow$ increasing repulsion for $S = 0 \rightarrow S = -1 \rightarrow S = -2$

Selected results for S = -2: $\equiv N$ scattering

LO : H. Polinder, J.H., U.-G. Meißner, PLB 653 (2007) 29 NLO16: J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273 NLO19: J.H., U.-G. Meißner, EPJA 55 (2019) 23

NLO16 versus NLO19: differences in the SU(3) breaking in the ${}^{3}S_{1} \cdot {}^{3}D_{1}$ partial wave in-medium properties: $U_{\Xi} \approx +20$ MeV versus $U_{\Xi} \approx -5$ MeV (empirical: $U_{\Xi} \approx -15$ MeV)

Breaking of SU(3) symmetry: S=-3,-4

Johann Haidenbauer Baryon-baryon interactions

Two-body momentum correlations (Fig.: K. Morita)

How HIC Can Tell Us Interaction?

HIC at Relativistic Energies@RHIC, LHC

Production of Quark-Gluon Plasma

Crossover Transition Into Hadron Particle Abundance – Thermal Eq.

Incl. Rare Particles

Measuring Pair Correlation \rightarrow Constrain Pairwise Interaction $C_{AB}(Q) = \frac{N_{AB}^{\text{pair}}(Q)}{N_A N_B(Q)} = \begin{cases} 1 & \text{No Correlation} \\ \text{others Interaction} \\ \text{Interference etc} \end{cases}$

Two-particle correlation function

Koonin-Pratt formalism (consider only correlations in S-waves)

Correlation function for identical particles ($\Lambda\Lambda$, $\Xi^-\Xi^-$, ...)

$$C(k) \simeq 1 - \frac{1}{2} \exp(-4k^2 R^2) + \frac{1}{2} \int_0^\infty 4\pi r^2 \, dr \, S_{12}(\mathbf{r}) \left[|\psi(k,r)|^2 - |j_0(kr)|^2 \right]$$

Correlation function for non-identical particles ($\Lambda p, \Xi^- p, \Lambda \Xi^-, ...$)

$$C(k) \simeq 1 + \int_0^\infty 4\pi r^2 \, dr \, S_{12}(\mathbf{r}) \left[|\psi(k,r)|^2 - |j_0(kr)|^2 \right]$$

Boundary condition for wave function:

$$\psi(k,r) \rightarrow \frac{e^{-i\delta}}{kr}\sin(kr+\delta) = \frac{1}{2ikr}\left[e^{ikr} - e^{-2i\delta}e^{-ikr}\right] \quad (r \rightarrow \infty)$$

 S_{12} ... source function, which describes the space-time distribution of emitted particles \rightarrow assume a spherical Gaussian shape for S_{12} with source radius R:

$$S_{12}(\mathbf{r}) = \exp(-r^2/4R^2)/(2\sqrt{\pi}R)^3$$

 $\Psi^{(-)}(\mathbf{r}, \mathbf{k})$... wave function in the outgoing state; k ... center-of-mass momentum

イロト 不得 とくほと くほとう

Results for S = -2: ΞN

ALICE Collaboration: *p*-Pb at 5.02 TeV (PRL 123 (2019) 112002) $R = 1.427 \text{ fm}; \lambda = 0.513$ pp at 13 TeV (Nature 588 (2020) 232)

イロト イポト イヨト イヨト

ъ

 $R = 1.02 \text{ fm}; \lambda = 1$

source radius: basically determined from fit to measured *pp* correlation function (R = 1.427 fm for data from p-Pb collisions and R = 1.18 fm for data from pp)

$$C_{\rm th}(k) = \frac{1}{4}C_{1_{S_0}}(k) + \frac{3}{4}C_{3_{S_1}}(k)$$

$$C(k) = (a+bk)(1+\lambda(C_{\rm th}(k)-1))$$

a, b, λ ... additional parameters that need to be determined

Results for S = -3: $\Lambda \Xi^-$

Emma Chizzali (ALICE Collaboration) at SQM 2021 (May 2021): pp at 13 TeV

 $R = 1.03 \text{ fm}; \lambda = 0.36$

LO potential (J.H., U.-G. Meißner, PLB 684 (2010) 275): produces a bound state \rightarrow not supported by measurement

LO rel. chiral EFT potential (Z.-W. Liu et al., PRC 103 (2021) 025201): likewise too attractive

NLO19:

 $a_{\rm S} = -0.99 \cdots -0.89$ fm, $r_{\rm S} = 4.63 \cdots 5.77$ fm; $a_t = -0.42 \cdots -1.66$ fm, $r_t = 6.33 \cdots 1.49$ fm NLO16: $a_{\rm S} = -0.99 \cdots -0.89$ fm, $r_{\rm S} = 4.63 \cdots 5.77$ fm; $a_t = 0.026 \cdots -0.12$ fm, $r_t = 32.0 \cdots 702$ fm

イロト 不得 とくき とくきとう

Results for S = -4: $\Xi^-\Xi^-$

Moe Isshiki (STAR Collaboration) at SQM 2021 (arXiv:2109.10953): Au+Au at 200 GeV only preliminary results: $R = 2.5 - 5 \text{ fm}; \lambda = ??$ use for calculation: $R = 2.5 \text{ fm}; \lambda = 1$ $a_s = -7.04 \text{ fm}$ (no SU(3) breaking) -1.71 fm (moderate SU(3) breaking) -0.71 fm (strong SU(3) breaking)

Summary

Baryon-baryon interaction constructed within chiral EFT

- Approach is based on a modified Weinberg power counting, analogous to applications for NN scattering
- The potential (contact terms, pseudoscalar-meson exchanges) is derived imposing SU(3)_f constraints + SU(3)_f breaking
- S = -1: Excellent results at next-to-leading order (NLO) Λp , ΣN low-energy data are reproduced with a quality comparable to phenomenological models
- S = -2: $\Lambda\Lambda$, ΞN results in agreement with empirical constraints
- moderately attractive Ξ -nuclear interaction (U_{Ξ}) can be achieved
- predictions for Ξ hypernuclei in talk by Hoai Le

Baryon-baryon two-body momentum correlation functions

- S = -2 ($\equiv N$): predictions of our $\equiv N$ NLO interactions are in agreement with data from the ALICE Collaboration
- S = -3 and -4: measurements (ALICE, STAR) are just becoming available so far only qualitative conclusions can be drawn

Backup slides

Johann Haidenbauer Baryon-baryon interactions

ヘロト 人間 とくほとく ほとう

æ

U(3) content in the S = -2 sector

	Channel	Isospin	V
$^{1}S_{0}$	$\equiv N \rightarrow \equiv N$	0	C^{8_a}
	$\equiv N \rightarrow \equiv N$	1	$rac{1}{3}\left(\mathcal{C}^{10} + \mathcal{C}^{10^*} + \mathcal{C}^{8_a} ight)$
	$\equiv N \rightarrow \Sigma \Lambda$	1	$\frac{\sqrt{6}}{6}\left(C^{10}-C^{10^*}\right)$
	$\equiv N \rightarrow \Sigma \Sigma$	1	$\frac{\sqrt{2}}{6}\left(C^{10}+C^{10^*}-2C^{8_a}\right)$
	$\Sigma\Lambda\to\Sigma\Lambda$	1	$\frac{1}{2}\left(C^{10}+C^{10^*}\right)$
	$\Sigma\Lambda\to\Sigma\Sigma$	1	$\frac{\sqrt{3}}{6} \left(C^{10} - C^{10^*} \right)$
	$\Sigma\Sigma\to\Sigma\Sigma$	1	$\frac{1}{6}\left(C^{10}+C^{10^*}+4C^{8_a}\right)$
$^{3}S_{1}$	$\Lambda\Lambda \to \Lambda\Lambda$	0	$\frac{1}{40} \left(27C^{27} + 8C^{8_s} + 5C^1 \right)$
	$\Lambda\Lambda \to \Xi N$	0	$\frac{-1}{40}(18C^{27}-8C^{8s}-10C^{1})$
	$\Lambda\Lambda o \Sigma\Sigma$	0	$\frac{\sqrt{3}}{40}\left(-3C^{27}+8C^{8_{s}}-5C^{1} ight)$
	$\equiv N \rightarrow \equiv N$	0	$\frac{1}{40}(12C^{27}+8C^{8_s}+20C^1)$
	$\equiv N \rightarrow \Sigma \Sigma$	0	$rac{\sqrt{3}}{40}\left(2C^{27}+8C^{8_s}-10C^{1} ight)$
	$\Sigma\Sigma \to \Sigma\Sigma$	0	$\frac{1}{40} \left(C^{27} + 24C^{8_s} + 15C^1 \right)$
	$\equiv N \rightarrow \equiv N$	1	$\frac{1}{5}(2C^{27}+3C^{8_s})$
	$\equiv N \rightarrow \Sigma \Lambda$	1	$\frac{\sqrt{6}}{5} \left(C^{27} - C^{8_s} \right)$
	$\Sigma\Lambda \to \Sigma\Lambda$	1	$\frac{1}{5}(3C^{27}+2C^{8_s})$
	$\Sigma\Sigma \to \Sigma\Sigma$	2	Č ²⁷

Johann Haidenbauer B

∃ 𝒫𝔄𝔄

BB interaction up to NLO

Pseudoscalar-meson exchange

$$\begin{array}{lll} V^{OBE}_{B_1B_2 \to B_1'B_2'} & = & -f_{B_1B_1'P}f_{B_2B_2'P}\frac{\left(\vec{\sigma}_1 \cdot \vec{q}\right)\left(\vec{\sigma}_2 \cdot \vec{q}\right)}{\vec{q}^2 + m_P^2}, & \vec{q} = \vec{p}' - \vec{p} \\ V^{TBE}_{B_1B_2 \to B_1'B_2'} & = & \ldots \end{array}$$

 $f_{B_1B'_1P}$... coupling constants fulfil standard SU(3) relations m_P ... mass of the exchanged pseudoscalar meson SU(3) symmetry breaking due to the mass splitting of the ps mesons (m_{π} = 138.0 MeV, m_{K} = 495.7 MeV, m_{η} = 547.3 MeV)

Contact interaction - partial-wave projected

$$\begin{split} V({}^{1}S_{0}) &= \tilde{C}_{1}{}_{S_{0}} + C_{1}{}_{S_{0}}(p^{2} + p'^{2}) + C_{1}^{\chi}{}_{S_{0}}(m_{K}^{2} - m_{\pi}^{2}) \\ V({}^{3}S_{1}) &= \tilde{C}_{3}{}_{S_{1}} + C_{3}{}_{S_{1}}(p^{2} + p'^{2}) + C_{3}^{\chi}{}_{S_{1}}(m_{K}^{2} - m_{\pi}^{2}) \\ V(\alpha) &= C_{\alpha} \rho p' \qquad \alpha \triangleq^{1}P_{1}, \ {}^{3}P_{0}, \ {}^{3}P_{1}, \ {}^{3}P_{2} \\ V({}^{3}D_{1} \leftrightarrow {}^{3}S_{1}) &= C_{3}{}_{S_{1}-3}{}_{D_{1}}p'^{2}, \ C_{3}{}_{S_{1}-3}{}_{D_{1}}p^{2} \\ V({}^{1}P_{1} \leftrightarrow {}^{3}P_{1}) &= C_{1}{}_{P_{1}-3}{}_{P_{1}}\rho p' \end{split}$$

イロト 不同 トイヨト イヨト