

Overview of TMD Studies

Chiral Dynamics 2021 @ Beijing, China Nov. 15th-19th, 2021

Tianbo Liu (对天博)

Key Laboratory of Particle Physics and Particle Irradiation (MOE) Institute of Frontier and Interdisciplinary Science, Shandong University

Nucleon Spin Structure

Proton spin puzzle

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s \sim 0.3$$

Spin decomposition

$$J = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

JAM Collaboration, PR D 93, 074005 (2016).

JAM17: $\Delta \Sigma = 0.36 \pm 0.09$

JAM Collaboration, PRL 119, 132001 (2017).

Quark spin only contributes a small fraction to the nucleon spin.

J. Ashman et al., PLB 206, 364 (1988); NP B328, 1 (1989).

Gluon spin from LQCD: $S_g = 0.251(47)(16)$ 50% of total proton spin

Y.-B. Yang et al. (χQCD Collaboration), PRL 118, 102001 (2017).

Access to $L_{q/g}$

It is necessary to have transverse information.

3D imaging of the nucleon.

Unified View of Nucleon Structure

Light-front wave function $\Psi(x_i, k_{Ti})$ **GTMD** $F(x, \Delta_T, k_T)$ Wigner distribution $\rho(x, b_T, k_T)$ Generalized Transverse Momentum Dependent *5D* $\int d^2kT$ $\int d^2k_T$ GPD $H(x, \xi, t)$ IPD $H(x, \xi, b_T)$ TMD $f(x, k_T)$ *3D* $\int dx$ $\int d^2k_T$ t = 0 $\int dx$ Form factor F(t)Charge density ρ (b_T) 1D PDF f(x) $\int dx$ $\int db_T$ t = 0Charge g

Access TMDs through Hard Processes

- Partonic scattering amplitude
- Fragmentation amplitude
- Distribution amplitude

Tianbo Liu

Lepton-Hadron Deep Inelastic Scattering

Inclusive DIS at a large momentum transfer $Q \gg \Lambda_{\rm QCD}$

- dominated by the scattering of the lepton off an active quark/parton
- not sensitive to the dynamics at a hadronic scale ~ 1/fm
- collinear factorization: $\sigma \propto H(Q) \otimes \phi_{a/P}(x,\mu^2)$
- overall corrections suppressed by $1/Q^n$

QCD factorization

- provides the probe to "see" quarks, gluons and their dynamics indirectly
- predictive power relies on
- precision of the probe
- universality of $\phi_{a/P}(x,\mu^2)$

Semi-inclusive Deep Inelastic Scattering

Semi-inclusive DIS: a final state hadron (P_h) is identified

- enable us to explore the emergence of color neutral hadrons from colored quarks/gluons
- flavor dependence by selecting different types of observed hadrons: pions, kaons, ...
- a large momentum transfer *Q* provides a short-distance probe
- an additional and adjustable momentum scale P_{h_T}

Tianbo Liu 6

SIDIS Kinematic Regions

Sketch of kinematic regions of the produced hadron

ルダス (青岛 SHANDONG UNIVERSITY, OINGDAC

SIDIS in Trento Convention

SIDIS differential cross section

18 structure functions $F(x_B, z, Q^2, P_{hT})$, (one photon exchange approximation)

$$\frac{\mathrm{d}^6 \sigma}{\mathrm{d} x_B \mathrm{d} y \mathrm{d} z \mathrm{d} P_{hT}^2 \mathrm{d} \phi_h \mathrm{d} \phi_S}$$

[Trento conventions, PRD70,117504 (2004)]

$$= \frac{\alpha^2}{x_B y Q^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x_B} \right) \\ \times \left\{ F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h} \cos2\phi_h + \lambda_e \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h \right. \\ \left. + S_L \left[\sqrt{2\epsilon(1+\epsilon)} F_{UL}^{\sin\phi_h} \sin\phi_h + \epsilon F_{UL}^{\sin2\phi_h} \sin2\phi_h \right] + \lambda_e S_L \left[\sqrt{1-\epsilon^2} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} F_{LL}^{\cos\phi_h} \cos\phi_h \right] \right. \\ \left. + S_T \left[\left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \epsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \sin(\phi_h - \phi_S) + \epsilon F_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) \right. \\ \left. + \epsilon F_{UT}^{\sin(3\phi_h - \phi_S)} \sin(3\phi_h - \phi_S) \right. \right. \\ \left. + \sqrt{2\epsilon(1-\epsilon)} F_{LT}^{\cos(\phi_h - \phi_S)} \cos(\phi_h - \phi_S) \right. \\ \left. + \lambda_e S_T \left[\sqrt{1-\epsilon^2} F_{LT}^{\cos(\phi_h - \phi_S)} \cos(\phi_h - \phi_S) \right. \\ \left. + \sqrt{2\epsilon(1-\epsilon)} F_{LT}^{\cos\phi_S} \cos\phi_S + \sqrt{2\epsilon(1-\epsilon)} F_{LT}^{\cos(2\phi_h - \phi_S)} \cos(2\phi_h - \phi_S) \right] \right\}$$

Leading Twist TMDs

			Quark Polarization	
		J	L	T
Nucleon Polarization	C	f ₁ • unpolarized		h_1^{\perp} $ \bullet$ Boer-Mulders
	L		g₁L helicity	h _{1L}
	Т	f_{1T}^{\perp} \bullet $ \bullet$ Sivers	g _{1T} trans-helicity (worm-gear)	$\begin{array}{cccc} h_1 & & & & & \\ & & & & \\ & & & & \\ h_{1T} & & & & \\ & & & & \\ & & & & \\ & & & & $

Longitudinal double spin asymmetry

No strong dependence on transverse momentum or azimuthal angle is observed.

HERMES Collaboration, Phys. Rev. D 99, 112001 (2019).

Beam spin asymmetry

First presented for K^{\pm}, p, \bar{p}

3D extraction for π^+

CLAS Collaboration, arXiv:2101.03544.

HERMES Collaboration, Phys. Lett. B 797, 134886 (2019).

ンダス (青岛) SHANDONG UNIVERSITY, QINGDAO

Longitudinal transverse double spin asymmetry

0.08 $x g_{1T}^{(1)}(x)$ u0.02 0.00 0.2 0.0 0.4 0.6 0.8 \boldsymbol{x} 0.00 -0.02d-0.080.8 0.4 0.6 0.2 \boldsymbol{x}

Global fit of worm-gear TMD

S. Bhattacharya, Z.B. Kang, A. Metz, G. Penn, D. Pitonyak, arXiv:2110.10253.

Periff, D. Piloffyak, arxiv.2110.1025

Transverse single spin asymmetries for ρ^0

COMPASS Collaboration, arXiv:2107.10099.

Tianbo Liu

Antiproton over proton multiplicity ratio

$$R_{p}(x, Q^{2}, z) = \frac{dM^{\bar{p}}(x, Q^{2}, z)/dz}{dM^{p}(x, Q^{2}, z)/dz}$$

$$= \frac{4.5(\bar{u} + \bar{d})D_{fav} + (5u + 5d + 2s + 2\bar{s})D_{unf}}{4.5(u + d)D_{fav} + (5\bar{u} + 5\bar{d} + 2s + 2\bar{s})D_{unf}}$$

$$R_{\rm p} > \frac{\bar{\rm u} + \bar{\rm d}}{{\rm u} + {\rm d}}$$

Below LO pQCD lower limit
Unexpected strong dependence
on v by LO pQCD

COMPASS Collaboration, Phys. Lett. B 807, 135600 (2020).

Challenge at large transverse momentum

Power correction

About an order of magnitude discrepancy

J.O. Gonzalez-Hernandez, T.C. Rogers, N. Sato, B. Wang, Phys. Rev. D 98, 114005 (2018).

T. Liu and J.W. Qiu, Phys. Rev. D 101, 014008 (2020).

Tianbo Liu

$\Lambda(\bar{\Lambda})$ polarization

Consistent with zero

COMPASS Collaboration, arXiv:2104.13585.

$\Lambda(\bar{\Lambda})$ polarization in e^+e^- annihilation

Belle Collaboration, Phys. Rev. Lett. 122, 042001 (2019).

$\Lambda(\bar{\Lambda})$ polarization in pp collision

[Figure by Ting Lin]

STAR Collaboration

Kinematics with Radiative Effects

[Figures from X. Chu at 2nd EIC YR workshop]

Kinematic experienced by the parton

Kinematic reconstructed from observed momenta

QED radiation will have significant impact due to kinematic shift, although α is small.

Tianbo Liu

19

Shandong university, Qingdac

Impact of QED Effects: PhT Distribution

T. Liu, W. Melnitchouk, J.W. Qiu, N. Sato, PRD2021 and JHEP2021.

Impact of QED Effects: Azimuthal Asymmetries

Collins asymmetry:

T. Liu, W. Melnitchouk, J.W. Qiu, N. Sato, PRD2021 and JHEP2021.

Multi-Hall SIDIS Program @ JLab-12

Hall A: Super BigBite SIDIS with 3He, high x, Q2

Hall A: SoLID

SIDIS with polarized 3He/NH,

10 8 $Q^2 (GeV^2)$ 2 0 0.2 0.3 0.5 0.1 0.4 0.6 X_B

Hall B: CLAS12

SIDIS with polarized H/D Comprehensive SIDIS program

Hall C: SHMS SIDIS with unpolarized H/D

SBS SIDIS Program

SuperBigbite Spectrometer

E12-09-018: 64 days neutron (³He) target

3D mapping example

Projected data of E12-09-018

CLAS12 SIDIS Program

E12-09-007, E12-09-008 E12-09-009, E12-07-107 NH₃ and ND₃ targets

C12-11-111, HDice target

Hall C SIDIS Program (typ. x/Q² ~ constant)

[R. Ent, DIS2016]

HMS + SHMS (or NPS) Accessible Phase Space for SIDIS

SoLID SIDIS Program

Solenoidal Large Intensity Device

- High luminosity $\sim 10^{37}$ cm⁻² s⁻¹
- Large acceptance, full azimuthal coverage
- In beam polarization: $\sim 60\%$ (3 He), $\sim 70\%$ (NH₃)
- 4D bins with high precision

E12-10-006: Transversely polarized ³He, 90 days.

E12-11-007: Longitudinally polarized ³He, 35 days.

E12-10-008: Transversely polarized NH₃, 120 days.

High statistics (example)

Electron-Ion Colliders

EicC

[Figure from EIC Yellow Report]

[Figure from EicC Whitepaper]

Tianbo Liu

Summary

- Lepton-hadron semi-inclusive deep inelastic scattering is a powerful process to extract TMDs.
- Many SIDIS measurements were presented in recent years
 - double spin asymmetries: LL, LT
 - beam spin asymmetry
 - target single spin asymmetry for ρ^0 production
 - multiplicity ratio of antiparticle and particle
 - •
- Complimentary processes, pp and e^+e^- , are also important for TMD studies
 - e.g., Λ polarization, ...
- Theoretical framework
 - power correction, radiative correction, ...
- Future experiments for precise measurement of TMDs
 - JLab12, EIC, EicC

Thank you!

