The N/D study on the singularity structure of πN scattering amplitudes

Qu-Zhi Li

in collaboration with Han-Qing Zheng

Peking University

November 17, 2021

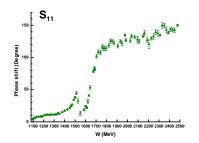
Talk given at CD 2021, IHEP, Beijing (online)

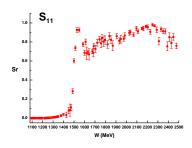
CONTENTS

- Introduction
- 2 The Production Representation
- N/D Calculations
- 4 Virtual Poles and Essential Singularities
- Summary

PION-NUCLEON SCATTERINGS

- The πN scattering \to one of the most fundamental and important processes in nuclear or hadron physics
- Decades of researching
- Various experiments and phenomena ($L_{2I~2J}$ convention, $W=\sqrt{s},~S_r=1-\eta^2$)[SAID: WI 08]





THEORETICAL DISCUSSIONS

- Problems to study
 - Low energy properties: $\pi N \sigma$ -term, subthreshold expansions [C. Ditsche et. al. 2012 JHEP][Hoferichter et. al. 2016 Phys.Rept.]
 - Intermediate resonances: $\Delta(1232), N^*(890), N^*(1440), N^*(1535) \cdots$
- Methods
 - Perturbative calculation
 - Lattice QCD
 - Dispersion relations

The Production (PKU) Representation

The factorized S matrix and the separable singularities:

$$S^{phy.} = \prod_{i} S^{R_i} \cdot S^{cut} \ . \tag{1}$$

 S^{cut} : no longer contains any pole:

$$S^{cut} = e^{2i\rho f(s)},$$

$$\rho(s) = \frac{\sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}}{s}$$

$$f(s) = \frac{s}{\pi} \int_{L} \frac{\text{Im}_{L} f(s')}{s'(s' - s)} + \frac{s}{\pi} \int_{R'} \frac{\text{Im}_{R} f(s')}{s'(s' - s)}.$$
(2)

Subtraction constant can be determined!

Mandelstam Analyticity(Polynomial boundedness of scattering amplitudes)

[Z. Y. Zhou and H.Z., NPA, 2006]

$$f(0) = 0$$
 . (3)

Phase shift components

$$\operatorname{Im}_{L,R}f(s) = -\frac{1}{2\rho(s)}\log|S^{phy}(s)|, \ S^{phy} = 1 + 2i\rho T.$$
 (4)

The eq.(4) may be modified in πN scatterings . [QuZhi Li et al., 2021, ArXive:2102.00977] The phase is additive, $\delta(s)=\sum_i \delta_{R_i}+\delta_{b.g.}$.

$$\delta_{b.g.}(s) = \rho(s)f(s) . (5)$$

The left hand cut \rightarrow (empirically) negative phase shift (proved in quantum mechanical potential scatterings)

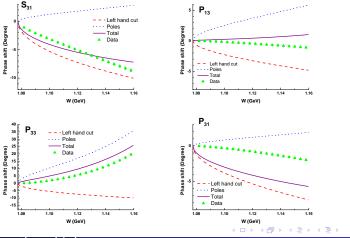
[T. Regge 1958 Nuovo Cimento]

- contributions of poles
 - ullet bound states o negative phase shift
 - ullet virtual states (usually hidden !) o positive phase shift
 - resonances \rightarrow positive phase shift

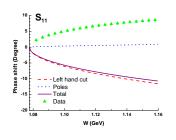
Tree Level Phase Shift results

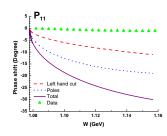
[Y. F. Wang, D. L. Yao, H.Q. Zheng, EPJC 2018]

 $L_{2I~2J}$ convention, $W=\sqrt{s}$, data: green triangles [SAID: WI 08] Except S11 and P11 channel, other channels agree with data qualitatively:



FINDING S_{11} HIDDEN POLE





P_{11}

Adding a shadow pole, due to nucleon pole, gives positive phase shifts.

S_{11}

Assuming exist a resonance, fitting data to give the position

Up to $O(p^3)$, position of the resonance:

$$\sqrt{s} = (0.895 - 0.164i) \, GeV$$

$N^*(890)$ pole in N/D method

QuZhi Li et al., 2021, ArXive:2102.00977

$$T(s) = N(s)/D(s) . (7)$$

where:

D(s) only contains right hand cut:

$$\operatorname{Im}_{R}[D(s)] = -\rho(s)N(s) ;$$

• N(s) contains left hand cut and poles(bound states): $\operatorname{Im}_L[N(s)] = \operatorname{Im}_L[T(s)]D(s)$.

According to dispersion relation:

$$D(s) = 1 - \frac{s - s_0}{\pi} \int_R \frac{\rho(s')N(s')}{(s' - s)(s' - s_0)} ds' ,$$

$$N(s) = N(s_0) + \frac{s - s_0}{\pi} \int_L \frac{D(s')\operatorname{Im}_L[T(s')]}{(s' - s)(s' - s_0)} ds' .$$
(8)

 $\operatorname{Im}_L T$ as an input.

$$N(s) = N(s_0) + \tilde{B}(s, s_0) + \frac{s - s_0}{\pi} \int_R \frac{B(s, s')\rho(s')N(s')}{(s' - s_0)(s - s')} ds'$$
 (9)

$$\tilde{B}(s,s') = \frac{s-s'}{\pi} \int_{L} \frac{\operatorname{Im}_{L} T(\tilde{s})}{(\tilde{s}-s)(\tilde{s}-s')} d\tilde{s}$$

Analytic continuation:

$$D^{\text{II}}(s) = D(s) + 2i\rho N(s) , \quad N^{\text{II}}(s) = N(s) ,$$
 (10)

4□ > 4□ > 4□ > 4□ > 4□ > 4□

A toy model calculation

$$N(s) = \sum_{i} \frac{\gamma_i}{s - s_i} \,, \tag{11}$$

$$D(s) = 1 - \frac{s - s_0}{\pi} \int_R \frac{\rho(s')N(s')}{(s' - s)(s' - s_0)} ds' .$$
 (12)

	Case I	Case II
s_1	0	$-m_N^2$
γ_1 (GeV ²)	0.79	1.34
$\sqrt{s_{pole}}(GeV)$	0.810 - 0.125i	0.788 - 0.185i

Table: Subthreshold pole locations using input Eq. (11).

.

A toy model calculation

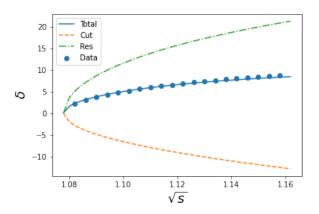


Figure: fit to the S_{11} channel phase shift data, taking $Case \ II$ as an example

$\mathcal{O}(p^2)$ calculation

The cut structure of πN partial wave amplitudes:

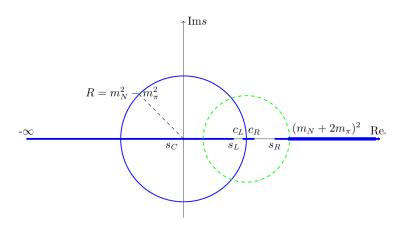


Figure: green dashed circle: χ PT range of application. circular cut: t-channel box diagram;sigmet cut (c_L , c_R):u-channel nucleon exchange.

$\mathcal{O}(p^2)$ calculation

Partial wave projection of $\chi {\rm PT}$ amplitudes encounter a severe problem at s=0,

$$T[\mathcal{O}(p^n)](s \to 0) \sim Cs^{-n-1/2} , \qquad (13)$$

Violating Froissart bound: $T(s) \sim O(s^{-1})$ (up to some logarithmic corrections).

General argument gives instead

$$T \sim s^{-\alpha_{\Delta(0)}} \tag{14}$$

 $\alpha_{\Delta}(0) (\simeq 0)$: the intercept parameter of the Regge trajectory of $\Delta(1232)$. An N/D calculation is nevertheless still doable and gives position:

$$\sqrt{s} = 1.01 \pm 0.19i \,\text{GeV} \,\,,$$
 (15)

of $\mathcal{O}(p^2)$ chiral lagrangian with reasonable range of LECs.

A dynamic model calculation

$$\operatorname{disc} T(s) = \operatorname{disc} T^{(1)}(s) + \operatorname{disc} T^{\rho}(s) + \operatorname{disc} \left[\frac{a+bs}{\sqrt{s}}\right]. \tag{16}$$



Figure: The l.h.c. by t-channel ρ exchange(circular arc)and u-channel N exchange(line segment from c_L to c_R).

$$\sqrt{s} = 0.90 - 0.20i \text{GeV}$$
 (17)

一 (日)(何)(日)(日) 日)

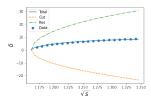


Figure: Phase shift decomposition

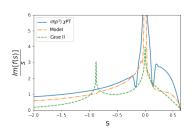


Figure: Comparison among different "spectral" functions. The singular behaviours of T(s) at s=0 are $\mathcal{O}(s^{-5/2})$, $\mathcal{O}(s^{-1/2})$ and $\mathcal{O}(s^0)$ for $\mathcal{O}(p^2)$ χ PT , model Eq. (16) and Case II, respectively.

$$f(s) = \frac{s}{\pi} \int_{L} \frac{\text{Im}_{L} f(s')}{s'(s'-s)} ds', \quad \delta_{b.g.} = \rho(s) f(s)$$
 (18)

• $\operatorname{Im}_{\mathbf{L}} f(s)/s > 0$ for $s \in (-\infty, s_L) \Rightarrow \delta_{b.q.} < 0$.

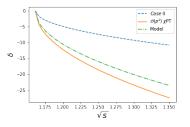


Figure: Different inputs give cuts' contributions.

Three different calculations tell us the existence of $N^{\!*}(890)$ doesn't depend on the details of model .

[Li QZ, HZ, arXiv:2108.03734]

The virtual states was found firstly in S_{11} channel. u channel nucleon pole exchange contributes a cut $\in [c_L, c_R]$, with $c_L = \frac{(m_N^2 - m_\pi^2)^2}{m^2}$ and $c_R = m_N^2 + 2m_\pi^2$.

$$s \to c_L: \qquad T(s) \to -\frac{g^2 m_N^4}{16\pi F^2 (4m_N^2 - m_\pi^2)} \ln \frac{s - c_L}{c_L - c_R} ,$$

$$s \to c_R: \qquad T(s) \to \frac{g^2 m_N^2 (m_N^2 + 2m_\pi^2)}{\pi F^2 (4m_N^2 - m_\pi^2)} \ln \frac{c_R - c_L}{s - c_R} , \qquad (19)$$

$$s \to c_L, \quad S \simeq A_{c_L} + B_{c_L} \ln \frac{s - c_L}{c_L - c_R} ,$$

$$s \to c_R, \quad S \simeq A_{c_R} + B_{c_R} \ln \frac{s - c_R}{c_R - c_L} ,$$

$$(20)$$

- $S(c_L), S(c_R) \to -\infty$ which are exact (correct to any order of chiral expansions)
- S = +1 at s_L and s_R by definition.
- S(s) is real when $s \in (s_L, c_L) \cup (c_R, s_R)$

Figure: the value of S-matrix at: s_L , c_L , c_R and s_R .

 \Rightarrow There have to be two S matrix zeros:

$$v_L = c_L - (c_R - c_L)e^{-A_{c_L}/B_{c_L}},$$

$$v_R = c_R + (c_R - c_L)e^{-A_{c_R}/B_{c_R}}.$$
(21)

4 1 1 4 1 1 4 2 1 4 2 1 2 1 9 9 9

The u channel nucleon pole term is contained in invariant amplitude $B^I(s,u)$ (I: total isospin):

$$-\frac{m_N^2 g^2}{F^2} \frac{1}{u - m_N^2} \in B^{1/2}(s, u) , \quad \frac{2m_N^2 g^2}{F^2} \frac{1}{u - m_N^2} \in B^{3/2}(s, u) .$$
 (22)

- m_N , g and F denote the nucleon mass,axial vector coupling constant,and pion decay constant.
- the sign and even the value of these parameters are immune of chiral corrections.

The helicity partial wave amplitudes are read:

$$\begin{split} T_{++}^{I,J} &= 2m_N A_C^{I,J}(s) + (s - m_\pi^2 - m_N^2) B_C^{I,J}(s) \;, \\ T_{+-}^{I,J} &= -\frac{1}{\sqrt{s}} [(s - m_\pi^2 + m_N^2) A_S^{I,J}(s) + m_N (s + m_\pi^2 - m_N^2) B_S^{I,J}(s)]. \end{split}$$

The parity eigenstates can be obtained by the linear combinations:

$$T_{\pm}^{I,J} = T_{++}^{I,J} \pm T_{+-}^{I,J}$$
 (23)

Amplitudes $T_{\pm}^{I,J}$ are corresponding to orbital angular momentum $L=J\mp 1/2$ with $P=(-1)^{J\pm 1/2}$.

$$S_{\pm}^{I,J} = 1 + 2i\rho T_{\pm}^{I,J} \tag{24}$$

After partial wave projection,the pole term leads partial wave amplitudes to behave in the neighbourhood of $\it c_R$ like :

$$s \to c_R, \quad T_{\pm}^{1/2,J} \to \frac{g^2 m_N^2 (m_N^2 + 2m_{\pi}^2)}{16\pi F^2 (4m_N^2 - m_{\pi}^2)} \ln \frac{c_R - c_L}{s - c_R} \to \infty ,$$

$$s \to c_R, \quad T_{\pm}^{3/2,J} \to -\frac{g^2 m_N^2 (m_N^2 + 2m_{\pi}^2)}{8\pi F^2 (4m_N^2 - m_{\pi}^2)} \ln \frac{c_R - c_L}{s - c_R} \to -\infty .$$

$$(25)$$

As to $s \to c_L$:

•
$$T_{\pm}^{1/2,J} \to \mp (-1)^{J+1/2} \infty$$
.

•
$$T_{\pm}^{3/2,J} \to \pm (-1)^{J+1/2} \infty$$
.

Essential Singularities for πN scatterings

Following the same reasons mentioned above ,we can conclude that:

- $s \in (c_R, s_R)$, the $S^{1/2, J}_{\pm}$ must contain a zero.
- $s \in (s_L, c_L)$, $S_+^{1/2,J}$ and $S_-^{3/2,J}$ contain a zero for J=1/2, 5/2, 9/2, ..., while $S_-^{1/2,J}$ and $S_+^{3/2,J}$ contain a zero for J=3/2, 7/2, 11/2,

$$T_{+\pm}^{II}(s,t) = 8\pi \sum_{J=1/2} (2J+1) \left[\frac{T_{+}^{J}(s)}{S_{+}^{J}(s)} \pm \frac{T_{-}^{J}(s)}{S_{-}^{J}(s)} \right] d_{1/2,\pm 1/2}^{J}(\cos \theta)$$
 (26)

 $s=c_L,\,c_R$, accumulation of poles on sheet II. So essential singularities [A. Martin,1970] of T(s,t) on sheet II of s. That is valid to all orders of perturbation chiral expansions.

Summary

- $N^*(890)$ can be found in N/D calculation.
- Due to nucleon exchange of u-channel, there exist virtual poles in partial wave amplitudes.
- The virtual poles accumulate and form the essential singularities of $T^{II}(s,t)$.

S_{11} CHANNEL: LOWEST POTENTIAL-NATURE RESONANCE?

- ullet S_{11} channel o no s-channel intermediate states o potential nature interaction
- Square-well potential (μ : reduced mass)

$$U(r) = 2\mu V(r) = \begin{cases} -2\mu V_0 & (r \le L), \\ 0 & (r > L), \end{cases}$$

• Phase shift $(k' = (k^2 + 2\mu V_0)^{1/2})$

$$\delta_{\rm sw}(k) = \arctan\left[\frac{k\tan k'L - k'\tan kL}{k' + k\tan\left(kL\right)\tan\left(k'L\right)}\right]$$

- Fit result (20 data): L=0.829 fm and $V_0=144$ MeV, $\chi^2_{\rm SW}/{\rm d.o.f}=0.740$
- \bullet Pole position: $k=-346i~{\rm MeV}\to 0.872-0.316i~{\rm GeV}.$ Hidden pole fit $(0.861\pm0.053)-(0.130\pm0.075)i~{\rm GeV}$

