Nucleon-level Effective Theory of $\mu \rightarrow e$ Conversion

Evan Rule | 10th International Workshop on Chiral Dynamics | November 17, 2021

ER, Haxton, and McElvain, arXiv:2109.13503 Haxton, ER, McElvain, and Ramsey-Musolf, arXiv:21xx.xxxx Cirigliano, Fuyuto, Ramsey-Musolf, ER, arXiv:21xx.xxxx

Background

$$B(\mu^{-} + (A, Z) \to e^{-} + (A, Z)) \equiv \frac{\Gamma(\mu^{-} + (A, Z) \to e^{-} + (A, Z))}{\Gamma(\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1))}$$

- Charged-lepton flavor violation can test BSM physics at scales beyond the reach of direct searches
- Next generation experiments Mu2e and COMET can improve current limits by four orders of magnitude[†], probing scales $\lesssim 10^4$ TeV
- Experiments take place on atomic nucleus ²⁷Al
- Low-energy, highly-exclusive process

How much information about underlying CLFV operators can be extracted from observations of $\mu \rightarrow e$ conversion in nuclei?

†: Mu2e Collaboration, R. J. Abrams et al., arXiv:1211.7019 COMET Collaboration, Y. G. Cui et al

Why a Nucleon-level Effective Theory?

- CLFV operators must be reduced to the nucleon scale as these are the degrees of freedom employed in manybody nuclear methods
- Factors the CLFV leptonic physics from the nuclear physics
- Familiar form to other semileptonic processes:
 β decay and standard muon capture.
- Approximate forms for lepton wave functions are crucial

Muon Wave Functions

- Captured muons quickly cascade to 1s orbital of the nuclear Coulomb field
- Non-relativistic
- Muon wave function varies slowly over the scale of the nucleus: $a_0^{\mu} \approx 20$ fm, $r_N^{RMS} \approx 3.1$ fm
- We replace full muon wave function with an average value $|\phi_{1s}^{Z_{\text{eff}}}(\vec{0})|$
- Resulting errors in decay rate are $\lesssim 1\%$ for $^{27}{\rm Al}$

Electron Wave Functions

- Outgoing electron has $E_e \approx m_\mu$ and is ultra-relativistic
- Electron wave function resembles a plane wave but is distorted by the Coulomb field of the nucleus
- We borrow from high-energy electron scattering studies and replace $e^{i\vec{q}\cdot\vec{x}} \rightarrow \frac{q_{\rm eff}}{q}e^{i\vec{q}_{\rm eff}\cdot\vec{x}}$
- $\vec{q}_{eff} = \vec{q} V_C(0)\hat{q}$
- All Dirac spinor currents of electron and muon wave functions can be reduced in terms of Pauli spinors

Nucleon-level Operators

- Available Hermitian operators: 1_L , 1_N , $i\hat{q}$, \vec{v}_N , $\vec{\sigma}_L$, $\vec{\sigma}_N$
- We identify 16 independent operators through first order in \vec{v}_N

$$\mathcal{L}_{\rm eff} = \sqrt{2}G_F \sum_{\tau=0,1} \sum_{i=1}^{16} \tilde{c}_i^{\tau} \mathcal{O}_i t^{\tau}$$

 $\mathcal{O}_1 = 1_L \ 1_N$ $\mathcal{O}_2' = \mathbb{1}_L \ i\hat{q} \cdot \vec{v}_N$ $\mathcal{O}_3 = \mathbb{1}_L \ i\hat{q} \cdot [\vec{v}_N \times \vec{\sigma}_N]$ $\mathcal{O}_4 = \vec{\sigma}_L \cdot \vec{\sigma}_N$ $\mathcal{O}_5 = \vec{\sigma}_L \cdot (i\hat{q} \times \vec{v}_N)$ $\mathcal{O}_6 = i\hat{q} \cdot \vec{\sigma}_L \ i\hat{q} \cdot \vec{\sigma}_N$ $\mathcal{O}_7 = \mathbb{1}_L \ \vec{v}_N \cdot \vec{\sigma}_N$ $\mathcal{O}_8 = \vec{\sigma}_L \cdot \vec{v}_N$ $\mathcal{O}_9 = \vec{\sigma}_L \cdot (i\hat{q} \times \vec{\sigma}_N)$ $\mathcal{O}_{10} = 1_L \ i\hat{q} \cdot \vec{\sigma}_N$ $\mathcal{O}_{11} = i\hat{q} \cdot \vec{\sigma}_L \ \mathbf{1}_N$ $\mathcal{O}_{12} = \vec{\sigma}_L \cdot \left[\vec{v}_N \times \vec{\sigma}_N \right]$ $\mathcal{O}'_{13} = \vec{\sigma}_L \cdot (i\hat{q} \times [\vec{v}_N \times \vec{\sigma}_N])$ $\mathcal{O}_{14} = i\hat{q}\cdot\vec{\sigma}_L \ \vec{v}_N\cdot\vec{\sigma}_N$ $\mathcal{O}_{15} = i\hat{q} \cdot \vec{\sigma}_L \ i\hat{q} \cdot [\vec{v}_N \times \vec{\sigma}_N]$ $\mathcal{O}_{16}' = i\hat{q} \cdot \vec{\sigma}_L \ i\hat{q} \cdot \vec{v}_N$

$$\begin{split} \tilde{R}_{M}^{\tau\tau'} &= \tilde{c}_{1}^{\tau} \tilde{c}_{1}^{\tau'*} + \tilde{c}_{11}^{\tau} \tilde{c}_{11}^{\tau'*} \\ \tilde{R}_{\Phi^{\prime\prime}}^{\tau\tau'} &= \tilde{c}_{3}^{\tau} \tilde{c}_{3}^{\tau'*} - (\tilde{c}_{12}^{\tau} - \tilde{c}_{15}^{\tau}) \left(\tilde{c}_{12}^{\tau'*} - \tilde{c}_{15}^{\tau'*} \right) \\ \tilde{R}_{\Phi^{\prime\prime}M}^{\tau\tau'} &= \operatorname{Re} \left[\tilde{c}_{3}^{\tau} \tilde{c}_{1}^{\tau'*} - (\tilde{c}_{12}^{\tau} - \tilde{c}_{15}^{\tau}) \tilde{c}_{11}^{\tau'*} \right] \\ \tilde{R}_{\Phi^{\prime\prime}M}^{\tau\tau'} &= \tilde{c}_{12}^{\tau} \tilde{c}_{12}^{\tau'*} + \tilde{c}_{13}^{\tau} \tilde{c}_{13}^{\tau'*} \\ \tilde{R}_{\Delta^{\tau'}}^{\tau\tau'} &= \tilde{c}_{12}^{\tau} \tilde{c}_{12}^{\tau'*} + \tilde{c}_{3}^{\tau} \tilde{c}_{13}^{\tau'*} \\ \tilde{R}_{\Delta^{\tau'}}^{\tau\tau'} &= \tilde{c}_{12}^{\tau} \tilde{c}_{12}^{\tau'*} + \tilde{c}_{3}^{\tau} \tilde{c}_{13}^{\tau'*} \\ \tilde{R}_{\Delta^{\tau'}}^{\tau'} &= \tilde{c}_{12}^{\tau} \tilde{c}_{13}^{\tau'*} + \tilde{c}_{3}^{\tau} \tilde{c}_{13}^{\tau'*} \\ \tilde{R}_{\Delta^{\tau'}}^{\tau'*} &= \tilde{c}_{12}^{\tau} \tilde{c}_{13}^{\tau'*} + \tilde{c}_{3}^{\tau} \tilde{c}_{13}^{\tau'*} \\ \tilde{R}_{\Delta^{\tau'}}^{\tau'*} &= \tilde{c}_{12}^{\tau} \tilde{c}_{13}^{\tau'*} + \tilde{c}_{3}^{\tau} \tilde{c}_{13}^{\tau'*} \\ \tilde{R}_{\Delta^{\tau'}}^{\tau'} &= \tilde{c}_{12}^{\tau} \tilde{c}_{13}^{\tau'*} + \tilde{c}_{3}^{\tau} \tilde{c}_{13}^{\tau'*} \\ \tilde{R}_{\Delta^{\tau'}}^{\tau'*} &= \tilde{c}_{12}^{\tau'} \tilde{c}_{13}^{\tau'*} + \tilde{c}_{3}^{\tau'} \tilde{c}_{13}^$$

$$\begin{array}{l} \text{CLFV Decay Rate} \qquad \omega = \frac{G_F^2}{\pi} \; \frac{q_{\text{eff}}^2}{1 + \frac{q}{M_T}} \; |\phi_{1s}^{Z_{\text{eff}}}(\vec{0})|^2 \; \sum_{\tau=0,1} \sum_{\tau'=0,1} \left\{ \begin{array}{c} \left[\tilde{R}_M^{\tau\tau'} \; W_M^{\tau\tau'}(q_{\text{eff}}) + \tilde{R}_{\Sigma'}^{\tau\tau'} \; W_{\Sigma''}^{\tau\tau'}(q_{\text{eff}}) + \tilde{R}_{\Sigma'}^{\tau\tau'} \; W_{\Sigma''}^{\tau\tau'}(q_{\text{eff}}) \right] \\ + \frac{q_{\text{eff}}^2}{m_N^2} \left[\tilde{R}_{\Phi''}^{\tau\tau'} \; W_{\Phi''}^{\tau\tau'}(q_{\text{eff}}) + \tilde{R}_{\Delta}^{\tau\tau'} \; W_{\Delta}^{\tau\tau'}(q_{\text{eff}}) \right] \\ - \frac{2q_{\text{eff}}}{m_N} \left[\tilde{R}_{\Phi''M}^{\tau\tau'} \; W_{\Phi''M}^{\tau\tau'}(q_{\text{eff}}) + \tilde{R}_{\Delta\Sigma'}^{\tau\tau'} \; W_{\Delta\Sigma'}^{\tau\tau'}(q_{\text{eff}}) \right] \\ \end{array} \right\} \\ \left\{ \begin{array}{c} \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'}(q_{\text{eff}}) \right] \\ \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'}(q_{\text{eff}}) \right] \\ \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau\tau'} \; \mathcal{R}_{t}^{\tau'} \; \mathcal{R}_{t}^{\tau'} \; \mathcal{R}_{t}^{\tau'} \; \mathcal{R}_{t}^{\tau'} \; \mathcal{R}$$

•

•

Limits on LECs

- Using our expression for the decay rate, we can constrain LECs using existing and future branching ratio limits for various nuclei
- We can also estimate the energy scale probed by each operator
- Assume only one operator is responsible for CLFV
- Coming soon: Mathematica script to compute $B(\mu \rightarrow e)$ in terms of \tilde{c}_i^{τ} for a selection of nuclear targets

	$AI\left(B<10^{-17}\right)$		Ti $\left(B < 6.1 imes 10^{-13} ight)^{\dagger}$	
Coupling	LEC Limit	~ Scale Probed	LEC Limit	~ Scale Probed
$ ilde{c}_1^0$, $ ilde{c}_{11}^0$	3.994E-10	10,000 TeV	7.380E-8	900 TeV
$ ilde{c}_1^1$, $ ilde{c}_{11}^1$	1.238E-8	2,000 TeV	1.316E-6	200 TeV
$ ilde{c}_3^0$, $ ilde{c}_{15}^0$	1.608E-8	2,000 TeV	3.801E-6	100 TeV
$ ilde{ extsf{C}}_3^1$, $ ilde{ extsf{C}}_{15}^1$	1.860E-7	1,000 TeV	7.344E-6	100 TeV
${ ilde {\cal C}}_4^0$	1.418E-8	2,000 TeV	1.504E-5	60 TeV
$ ilde{c}_4^1$	1.713E-8	2,000 TeV	1.718E-5	60 TeV
${ ilde c}_5^0, { ilde c}_8^0$	7.774E-8	1,000 TeV	5.802E-5	30 TeV
$ ilde{c}_5^1$, $ ilde{c}_8^1$	1.164E-7	1,000 TeV	6.521E-5	30 TeV
$ ilde{c}_6^0$, $ ilde{c}_{10}^0$	1.954E-8	2,000 TeV	1.794E-5	60 TeV
$ ilde{c}_6^1$, $ ilde{c}_{10}^1$	2.151E-8	2,000 TeV	1.999E-5	60 TeV
\tilde{c}_9^0	2.061E-8	2,000 TeV	2.758E-5	50 TeV
\tilde{c}_9^1	2.833E-8	1,000 TeV	3.360E-5	40 TeV
${ ilde {\cal C}}^0_{12}$	1.608E-8	2,000 TeV	3.797E-6	100 TeV
$ ilde{c}_{12}^1$	1.388E-7	700 TeV	7.342E-6	100 TeV
$ ilde{c}^0_{13}$	1.787E-6	200 TeV	8.422E-5	30 TeV
\tilde{c}_{13}^1	2.085E-7	500 TeV	3.718E-4	10 TeV

e Mu2e

†: P. Wintz, Proc. 1st Int. Symp. on Lepton and Baryon Number Violation

Connecting to ChPT

- Match to HBChPT, then to LEFT and SMEFT
- Analogous matching has been carried out for WIMP dark matter effective theory

- Leading coherent contact interaction matches to c₁⁰ and c₁₁⁰
- Form factors are absorbed in the LECs of our theory
- Two-nucleon diagram may be averaged to an effective one-body operator

Bartolotta & Ramsey-Musolf, *Phys. Rev. C* **98**, 015208 Cirigliano, Fuyuto, Ramsey-Musolf, ER, arXiv:21xx.xxxx

November 17, 2021 | Chiral Dynamics 2021 | Evan Rule

Bishara, F., Brod, J., Grinstein, B., and Zupan, J., arXiv:1708.02678

9

Backup Slides

Relation to $\mu \rightarrow e + \gamma$

On-shell photon $\mu \rightarrow e + \gamma$

- \tilde{f}_R , \tilde{f}_A cannot contribute
- Constrained by MEG experiment
- MEG-II will improve limit by order of magnitude

- All four form factors can contribute
- Even more strict limits on CLFV EM couplings than MEG-II, assuming no cancellation between form factors

Nuclear Response Operators

- Two nuclear charges $1_N, \vec{v}_N \cdot \vec{\sigma}_N$ and three nuclear currents $\vec{v}_N, \vec{\sigma}_N, \vec{v}_N \times \vec{\sigma}_N$ should yield 11 multipole operators
- Nearly-exact P and CP of nuclear ground state permit only six of these operators to contribute to elastic $\mu \rightarrow e$ conversion

$$M_{JM;\tau}(q) \equiv \sum_{i=1}^{A} M_{JM}(q\vec{x}_{i}) t^{\tau}(i)$$

$$\Delta_{JM;\tau}(q) \equiv \sum_{i=1}^{A} \vec{M}_{JJ}^{M}(q\vec{x}_{i}) \cdot \frac{1}{q} \vec{\nabla}_{i} t^{\tau}(i)$$

$$M_{JM}(q\vec{x}) = j_{J}(qx)Y_{JM}(\hat{x})$$

$$\vec{M}_{JL}^{M}(q\vec{x}) = j_{J}(qx)\vec{Y}_{JLM}(\hat{x})$$

$$\Sigma'_{JM;\tau}(q) \equiv -i\sum_{i=1}^{A} \left\{ \frac{1}{q} \vec{\nabla}_{i} \times \vec{M}_{JJ}^{M}(q\vec{x}_{i}) \right\} \cdot \vec{\sigma}(i) t^{\tau}(i)$$

$$\Sigma''_{JM;\tau}(q) \equiv \sum_{i=1}^{A} \left\{ \frac{1}{q} \vec{\nabla}_{i} M_{JM}(q\vec{x}_{i}) \right\} \cdot \vec{\sigma}(i) t^{\tau}(i)$$

$$\vec{\Phi}'_{JM;\tau}(q) \equiv \sum_{i=1}^{A} \left[\left(\frac{1}{q} \vec{\nabla}_{i} \times \vec{M}_{JJ}^{M}(q\vec{x}_{i}) \right) \cdot \left(\vec{\sigma}(i) \times \frac{1}{q} \vec{\nabla}_{i} \right) + \frac{1}{2} \vec{M}_{JJ}^{M}(q\vec{x}_{i}) \cdot \vec{\sigma}(i) \right] t^{\tau}(i)$$

$$\Phi''_{JM;\tau}(q) \equiv i\sum_{i=1}^{A} \left(\frac{1}{q} \vec{\nabla}_{i} M_{JM}(q\vec{x}_{i}) \right) \cdot \left(\vec{\sigma}(i) \times \frac{1}{q} \vec{\nabla}_{i} \right) t^{\tau}(i)$$