Nucleon-level Effective Theory of $\mu \rightarrow e$ Conversion

Evan Rule | 10th International Workshop on Chiral Dynamics| November 17, 2021

ER, Haxton, and McElvain, arXiv:2109.13503 Haxton, ER, McElvain, and Ramsey-Musolf, arXiv:21xx.xxxxx Cirigliano, Fuyuto, Ramsey-Musolf, ER, arXiv:21xx.xxxxx

Background

$$
B(\mu^{-} + (A, Z) \to e^{-} + (A, Z)) \equiv \frac{\Gamma(\mu^{-} + (A, Z) \to e^{-} + (A, Z))}{\Gamma(\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1))}
$$

- Charged-lepton flavor violation can test BSM physics at scales beyond the reach of direct searches
- Next generation experiments Mu2e and COMET can improve current limits by four orders of magnitude[†], probing scales $\lesssim 10^4$ TeV
- Experiments take place on atomic nucleus ²⁷Al
- Low-energy, highly-exclusive process

How much information about underlying CLFV operators can be extracted from observations of $\mu \to e$ conversion in nuclei?

†: Mu2e Collaboration, R. J. Abrams et al., arXiv:1211.7019 COMET Collaboration, Y. G. Cui et al

Why a Nucleon-level Effective Theory?

- CLFV operators must be reduced to the nucleon scale as these are the degrees of freedom employed in manybody nuclear methods
- Factors the CLFV leptonic physics from the nuclear physics
- Familiar form to other semileptonic processes: β decay and standard muon capture.
- Approximate forms for lepton wave functions are crucial

Muon Wave Functions

- Captured muons quickly cascade to $1s$ orbital of the nuclear Coulomb field
- Non-relativistic
- Muon wave function varies slowly over the scale of the nucleus: $a_0^{\mu} \approx 20$ fm, $r_N^{RMS} \approx 3.1~{\rm fm}$
- We replace full muon wave function with an average value $\left|\phi_{1s}^{\text{Zeff}}(\vec{0})\right|$
- Resulting errors in decay rate are $\lesssim 1\%$ for 27 Al

Electron Wave Functions

- Outgoing electron has $E_e \approx m_\mu$ and is ultra-relativistic
- Electron wave function resembles a plane wave but is distorted by the Coulomb field of the nucleus
- We borrow from high-energy electron scattering studies and replace $e^{i\vec{q}\cdot\vec{x}} \rightarrow \frac{q_{\text{eff}}}{q} e^{i\vec{q}_{\text{eff}}\cdot\vec{x}}$ \boldsymbol{q}
- $\vec{q}_{eff} = \vec{q} V_C(0)\hat{q}$
- All Dirac spinor currents of electron and muon wave functions can be reduced in terms of Pauli spinors

Nucleon-level Operators

- Available Hermitian operators: 1_L , 1_N , $i\dot{q}$, v_N , σ_L , σ_N
- We identify 16 independent operators through first order in $\vec{\nu}_N$

$$
\mathcal{L}_{\text{eff}} = \sqrt{2} G_F \sum_{\tau=0,1} \sum_{i=1}^{16} \tilde{c}_i^{\tau} \mathcal{O}_i t^{\tau}
$$

 $\mathcal{O}_1 = 1_L 1_N$ $\mathcal{O}'_2=1_L\,i\hat{q}\cdot\vec{v}_N$ $\mathcal{O}_3 = 1_L \hat{i} \hat{q} \cdot [\vec{v}_N \times \vec{\sigma}_N]$ $\mathcal{O}_4 = \vec{\sigma}_L \cdot \vec{\sigma}_N$ $\mathcal{O}_5 = \vec{\sigma}_L \cdot (i\hat{q} \times \vec{v}_N)$ $\mathcal{O}_6 = i \hat{q} \cdot \vec{\sigma}_L \, i \hat{q} \cdot \vec{\sigma}_N$ $\mathcal{O}_7 = 1_L \vec{v}_N \cdot \vec{\sigma}_N$ $\mathcal{O}_8 = \vec{\sigma}_L \cdot \vec{v}_N$ $\mathcal{O}_9 = \vec{\sigma}_L \cdot (i \hat{q} \times \vec{\sigma}_N)$ $\mathcal{O}_{10} = 1_L \, i\hat{q} \cdot \vec{\sigma}_N$ $\mathcal{O}_{11} = i\hat{q} \cdot \vec{\sigma}_L 1_N$ $\mathcal{O}_{12} = \vec{\sigma}_L \cdot [\vec{v}_N \times \vec{\sigma}_N]$ $\mathcal{O}'_{13} = \vec{\sigma}_L \cdot (i\hat{q} \times [\vec{v}_N \times \vec{\sigma}_N])$ $\mathcal{O}_{14} = i \hat{q} \cdot \vec{\sigma}_L \ \vec{v}_N \cdot \vec{\sigma}_N$ $\mathcal{O}_{15} = i \hat{q} \cdot \vec{\sigma}_L \; i \hat{q} \cdot [\vec{v}_N \times \vec{\sigma}_N]$ $\mathcal{O}'_{16} = i \hat{q} \cdot \vec{\sigma}_L \, i \hat{q} \cdot \vec{v}_N$

$$
\tilde{R}_{\Phi''}^{\tau\tau'} = \tilde{c}_1^{\tau}\tilde{c}_1^{\tau'}{}^* + \tilde{c}_{11}^{\tau}\tilde{c}_{11}^{\tau'}
$$
\n
$$
\tilde{R}_{\Phi''}^{\tau\tau'} = \tilde{c}_3^{\tau}\tilde{c}_3^{\tau'}{}^* + (\tilde{c}_{12}^{\tau} - \tilde{c}_{15}^{\tau}) \left(\tilde{c}_{12}^{\tau' *} - \tilde{c}_{15}^{\tau'} \right)
$$
\n
$$
\tilde{R}_{\Phi''}^{\tau\tau'} = \tilde{c}_{12}^{\tau}\tilde{c}_{12}^{\tau'}{}^* + \tilde{c}_{13}^{\tau}\tilde{c}_{13}^{\tau'}
$$
\n
$$
\tilde{R}_{\Phi'}^{\tau\tau'} = \tilde{c}_{12}^{\tau}\tilde{c}_{12}^{\tau'}{}^* + \tilde{c}_{13}^{\tau}\tilde{c}_{13}^{\tau'}
$$
\n
$$
\tilde{R}_{\Phi'}^{\tau\tau'} = \tilde{c}_{12}^{\tau}\tilde{c}_{12}^{\tau'}{}^* + \tilde{c}_{13}^{\tau}\tilde{c}_{13}^{\tau'}
$$
\n
$$
\tilde{R}_{\Phi'}^{\tau\tau'} = \tilde{c}_4^{\tau}\tilde{c}_4^{\tau'} + \tilde{c}_9^{\tau}\tilde{c}_9^{\tau'}
$$
\n
$$
\tilde{R}_{\Phi'}^{\tau\tau'} = \tilde{c}_4^{\tau}\tilde{c}_4^{\tau'}{}^* + \tilde{c}_9^{\tau}\tilde{c}_9^{\tau'}
$$
\n
$$
\tilde{R}_{\Delta\Sigma'}^{\tau\tau'} = \text{Re}\left[\tilde{c}_5^{\tau}\tilde{c}_4^{\tau'}{}^* + \tilde{c}_8^{\tau}\tilde{c}_9^{\tau'}{}\right]
$$
\n
$$
\tilde{R}_{\Delta\Sigma'}^{\tau\tau'} = \text{Re}\left[\tilde{c}_5^{\tau}\tilde{c}_4^{\tau'}{}^* + \tilde{c}_8^{\tau}\tilde{c}_9^{\tau''}\right]
$$
\n
$$
\tilde{R}_{\Delta\Sigma'}^{\tau\tau'} = \text{Re}\left[\tilde{c}_5^{\tau
$$

CLFV Decay Rate	\n $\omega = \frac{G_F^2}{\pi} \frac{q_{\text{eff}}^2}{1 + \frac{q}{M_T}} \phi_{1s}^{Z_{\text{eff}}}(\vec{0}) ^2 \sum_{\tau=0,1} \sum_{\tau'=0,1} \left\{ \left[\tilde{R}_M^{\tau \tau'} W_M^{\tau \tau'}(q_{\text{eff}}) + \tilde{R}_{\Sigma''}^{\tau \tau'} W_{\Sigma''}^{\tau \tau'}(q_{\text{eff}}) + \tilde{R}_{\Sigma'}^{\tau \tau'} W_{\Sigma'}^{\tau \tau'}(q_{\text{eff}}) \right] + \frac{q_{\text{eff}}^2}{m_N^2} \left[\tilde{R}_{\Phi''}^{\tau \tau'} W_{\Phi''}^{\tau \tau'}(q_{\text{eff}}) + \tilde{R}_{\Phi'}^{\tau \tau'} W_{\Phi''}^{\tau \tau'}(q_{\text{eff}}) + \tilde{R}_{\Delta}^{\tau \tau'} W_{\Delta}^{\tau \tau'}(q_{\text{eff}}) \right]$ \n
Factorization of leptonic and nuclear physics	\n $-\frac{2q_{\text{eff}}}{m_N} \left[\tilde{R}_{\Phi''M}^{\tau \tau'} W_{\Phi''M}^{\tau \tau'}(q_{\text{eff}}) + \tilde{R}_{\Delta \Sigma'}^{\tau \tau'} W_{\Delta}^{\tau \tau'} W_{\Delta}^{\tau \tau'}(q_{\text{eff}}) \right]$ \n
Vectorization of leptonic and nuclear physics	\n $-\frac{2q_{\text{eff}}}{m_N} \left[\tilde{R}_{\Phi''M}^{\tau \tau'} W_{\Phi''M}^{\tau \tau'}(q_{\text{eff}}) + \tilde{R}_{\Delta \Sigma'}^{\tau \tau'} W_{\Delta}^{\tau \tau'}(q_{\text{eff}}) \right]$ \n
Vectorization of leptonic and nuclear physics	\n $-\frac{2q_{\text{eff}}}{m_N} \left[\tilde{R}_{\Phi''M}^{\tau \tau'} W_{\Phi''M}^{\tau \tau'}(q_{\text{eff}}) + \tilde{R}_{\Delta \Sigma'}^{\tau \tau'} W_{\Delta}^{\tau \tau'}(q_{\text{$

dials"

Limits on LECs

- Using our expression for the decay rate, we can constrain LECs using existing and future branching ratio limits for various nuclei
- We can also estimate the energy scale probed by each operator
- Assume only one operator is responsible for CLFV
- Coming soon: Mathematica script to compute $B(\mu \to e)$ in terms of \tilde{c}_i^{τ} for a selection of nuclear targets

†: P. Wintz, Proc. 1st Int. Symp. on Lepton and Baryon Number Violation

Connecting to ChPT

- Match to HBChPT, then to LEFT and SMEFT
- Analogous matching has been carried out for WIMP dark matter effective theory

- Leading coherent contact interaction matches to c_1^0 and c_{11}^0
- Form factors are absorbed in the LECs of our theory
- Two-nucleon diagram may be averaged to an effective one-body operator

Bartolotta & Ramsey-Musolf, *Phys. Rev. C* **98**, 015208 Cirigliano, Fuyuto, Ramsey-Musolf, ER, arXiv:21xx.xxxxx

November 17, 2021 | Chiral Dynamics 2021 | Evan Rule **1998** | Evan Rule 9 | Contract 17, 2021 | Chiral Dynamics 2021 | Evan Rule 9 | Contract 17, 2021 | Chiral Dynamics 2021 | Evan Rule 9 | Contract 17, 2021 | Chiral Dynam

Bishara, F., Brod, J., Grinstein, B., and Zupan, J., arXiv:1708.02678

Backup Slides

Relation to $\mu \rightarrow e + \gamma$

$$
\Gamma^{\mu}_{\mu \to e} = \frac{1}{\Lambda^2} (q^2 \gamma^\mu - q^\mu q) \left[\tilde{f}_R^{\mu \to e} (q^2) + i \tilde{f}_A^{\mu \to e} (q^2) \gamma_5 \right] + i \frac{m_\mu}{\Lambda^2} \sigma^{\mu \nu} q_\nu \left[\tilde{f}_M^{\mu \to e} (q^2) + i \tilde{f}_E^{\mu \to e} (q^2) \gamma_5 \right]
$$

On-shell photon $\mu \to e + \gamma$

- \hat{f}_R , \hat{f}_A cannot contribute
- Constrained by MEG experiment
- MEG-II will improve limit by order of magnitude

Virtual photon-mediated $\mu \rightarrow e$ in Nuclei

- All four form factors can contribute
- Even more strict limits on CLFV EM couplings than MEG-II, assuming no cancellation between form factors

Nuclear Response Operators

- Two nuclear charges 1_N , $\vec{v}_N \cdot \vec{\sigma}_N$ and three nuclear currents \vec{v}_N , $\vec{\sigma}_N$, $\vec{v}_N \times \vec{\sigma}_N$ should yield 11 multipole operators
- Nearly-exact P and CP of nuclear ground state permit only six of these operators to contribute to elastic $\mu \rightarrow e$ conversion

$$
M_{JM;\tau}(q) \equiv \sum_{i=1}^{A} M_{JM}(q\vec{x}_i) t^{\tau}(i)
$$

\n
$$
\Delta_{JM;\tau}(q) \equiv \sum_{i=1}^{A} \vec{M}_{JJ}^M(q\vec{x}_i) \cdot \frac{1}{q} \vec{\nabla}_i t^{\tau}(i)
$$

\n
$$
\sum'_{JM;\tau}(q) \equiv -i \sum_{i=1}^{A} \left\{ \frac{1}{q} \vec{\nabla}_i \times \vec{M}_{JJ}^M(q\vec{x}_i) \right\} \cdot \vec{\sigma}(i) t^{\tau}(i)
$$

\n
$$
\sum'_{JM;\tau}(q) \equiv \sum_{i=1}^{A} \left\{ \frac{1}{q} \vec{\nabla}_i \times \vec{M}_{JJ}^M(q\vec{x}_i) \right\} \cdot \vec{\sigma}(i) t^{\tau}(i)
$$

\n
$$
\tilde{\Phi}'_{JM;\tau}(q) \equiv \sum_{i=1}^{A} \left\{ \frac{1}{q} \vec{\nabla}_i M_{JM}(q\vec{x}_i) \right\} \cdot \vec{\sigma}(i) t^{\tau}(i)
$$

\n
$$
\tilde{\Phi}'_{JM;\tau}(q) \equiv \sum_{i=1}^{A} \left[\left(\frac{1}{q} \vec{\nabla}_i \times \vec{M}_{JJ}^M(q\vec{x}_i) \right) \cdot \left(\vec{\sigma}(i) \times \frac{1}{q} \vec{\nabla}_i \right) + \frac{1}{2} \vec{M}_{JJ}^M(q\vec{x}_i) \cdot \vec{\sigma}(i) \right] t^{\tau}(i)
$$

\n
$$
\Phi''_{JM;\tau}(q) \equiv i \sum_{i=1}^{A} \left(\frac{1}{q} \vec{\nabla}_i M_{JM}(q\vec{x}_i) \right) \cdot \left(\vec{\sigma}(i) \times \frac{1}{q} \vec{\nabla}_i \right) t^{\tau}(i)
$$