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Motivation

Asymmetry between matter and antimatter
Origin of matter from baryogenesis presumes C- and CP-violation [Sakharov 1967]

In SM: violation from weak interaction is not sufficient to create observed asymmetry

Search for new sources of CP-violation:
Mostly neglected since 1960’s: T-odd P-even (TOPE) operators in strong interactions
Consider an eigenstate of C, we focus on the η meson
↪→ Can investigate CP-violation in absence of weak interaction

Ideal stage to investigate TOPE forces:
η → π0π+π−

η′ → ηπ+π−
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}
Dalitz plots sensitive to mirror symmetry breaking



Dispersive Framework
Evaluate three-particle decay in dispersive (Khuri-Treiman) framework:
Model independent and non-perturbative re-summation of final state interactions, based on

1 Unitarity (∼ probability conservation) gives rise to optical theorem:

Tfi − T ∗
if = i

∑
n

∫
dΠn(2π)4δ4(∑

i,n
pi − kn

)
TniTnf

∗

disc


p1

p2

q1

q2

Tfi

 =

p1

p2

q1

q2

Tni T ∗
nf

k1 k1

k2 k2

2 Analyticity (∼ causality)
Dispersion relations: reconstruct whole amplitude with knowledge about discontinuity

Idea: derive 2 → 2 scattering amplitude and analytically continue to realm of 1 → 3 decay
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η → π0π+π−
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Amplitude Decomposition

η → π+π−π0 breaks G-parity; in the Standard Model consider transition with ∆I = 1

For C-violating parts consider C = −(−1)∆I , i.e. need even total isospin [Gardner, Shi 2020]

M(s, t, u) = ξMC
1 (s, t, u)

[Colangelo et al. 2018; Albaladejo et al. 2017; Guo et al. 2017; ...]

M(s, t, u) = ξMC
1 (s, t, u) +M ̸C

0 (s, t, u) +M ̸C
2 (s, t, u)

Bose symmetry: odd (even) ππ-isospin must have odd (even) partial wave

Reconstruction theorem: expand for fixed two-body isospin and partial wave

MC
1 (s, t, u) = F0(s) + (s − u)F1(t) + (s − t)F1(u) + F2(t) + F2(u)−

2
3
F2(s)

M̸C
0 (s, t, u) = (t − u)G1(s) + (u − s)G1(t) + (s − t)G1(u)

M ̸C
2 (s, t, u) = 2(u − t)H1(s) + (u − s)H1(t) + (s − t)H1(u)−H2(t) +H2(u)

C-even terms are symmetric and C-odd ones antisymmetric under t ↔ u

Note: FI , GI and HI are completely independent
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Dispersive Solution
Single variable amplitudes A ∈ {F ,G,H} obey discontinuity relation

discAI(s) = 2i θ(s − 4M2
π)
[
AI(s) + ÂI(s)

]
sin δI(s) e−iδI(s)

Homogeneous solution

AI(s) = P(s) ΩI(s), ΩI(s) = exp

(
s
π

∫ ∞

4M2
π

δI(x)
x(x − s)

dx

)
Inhomogeneities defined via partial wave (include left-hand cut contribution)

aI(s) = AI(s) + ÂI(s)

Full solution
AI(s) = ΩI(s)

(
Pn−1(s) +

sn

π

∫ ∞

4M2
π

dx
xn

sin δI(x) ÂI(s)
|ΩI(x)| (x − s)

)

Subtraction polynomial Pn−1 fixed by asymptotics imposed on AI and δI and by data

6 / 15



Dispersive Solution
Single variable amplitudes A ∈ {F ,G,H} obey discontinuity relation

discAI(s) = 2i θ(s − 4M2
π)
[
AI(s) + ÂI(s)
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Dalitz Plot
Regression to Dalitz plot [KLOE-2, 2016]

The SM amplitude MC
1 :

Minimal subtraction scheme 3 dof: χ2
red ≈ 1.054

Observables agree with current literature
1 Taylor invariants [Colangelo et al. 2018]

2 BR(η → 3π0)/BR(η → π0π+π−) [PDG 2020]

3 Dalitz plot parameters [Colangelo et al. 2018, PDG 2020]

=⇒ subtraction scheme justified, apply also to M ̸C
0,2

The BSM amplitude M = ξMC
1 + M̸C

0 +M ̸C
2 :

Fix M ̸C
0,2 by just one complex normalization each

Full amplitude 7 dof: χ2
red ≈ 1.048

Upper limit on TOPE effects in per mille level
All C- and CP-violating signals vanish within 1-2σ
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BSM Couplings
Effective BSM operators

X ̸C
0 ∼ g0(s − t)(t − u)(u − s) +O(p8)

X ̸C
2 ∼ g2(t − u) +O(p4)

Obtain couplings by a Taylor expansion of M ̸C
0 , M ̸C

2 :

g0 = (−3.3(3.6) + 6.7(12.6) i) GeV−6

g2 = (0.001(15)− 0.006(42) i) GeV−2

Relative deviation |g0/g2| ≈ 103 GeV−4 =⇒ fit compensates kinematic suppression of X ̸C
0

Dalitz-plot asymmetries in 10−4 (g0 in GeV−6, g2 in 103 GeV−2):

ALR = −0.943 Re g0 − 0.300 Im g0 − 2.493 Re g2 − 0.936 Im g2 = −7.6(4.7)

AQ = 0.479 Re g0 + 0.443 Im g0 + 0.536 Re g2 + 0.336 Im g2 = 4.1(4.3)

AS = −2.971 Re g0 − 0.850 Im g0 − 0.057 Re g2 − 0.043 Im g2 = 3.7(4.3)
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Generalization to η′ → π0π+π−

Can not repeating the high-precision analysis for η′ → π0π+π−

η′ → π0π+π− rare decay mode

Precise investigation of Dalitz plot [BESIII 2017] not possible yet... [Isken et al. 2021 (in preperation)]

What happens for an increased phase space (Mη → Mη′)?
Both decays are driven by same ∆I = 0, 2 operators

Assume same couplings g0 and g2 to predict C-odd amplitudes

M ̸C
0 dominates M ̸C

2 by 102

=⇒ TOPE forces in η′ → π0π+π− are more sensitive to isoscalar transitions
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η′ → ηπ+π−
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Amplitude Decomposition

η′ → ηπ+π− conserves G-parity; in the Standard Model consider transition with ∆I = 0

C-violating driven by isospin ∆I = 1C-violating driven by isospin ∆I = 1C-violating driven by isospin ∆I = 1

M(s, t, u) = MC
0 (s, t, u)

[Isken et al. 2017, Isken et al. 2021 (in preparation)]

M(s, t, u) = MC
0 (s, t, u) +M ̸C

1 (s, t, u)

Sensitive to a different class of BSM operators!Sensitive to a different class of BSM operators!

Reconstruction theorem: two different intermediate states
MC

0 (s, t, u) = Fππ(s) + Fηπ(t) + Fηπ(u)

M̸C
1 (s, t, u) = (t − u)Gππ(s) + Gηπ(t)− Gηπ(u)

Fππ, Fηπ and Gηπ in S-waves, Gππ in P-wave
Solution analogous to η → 3π
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Dalitz Plot

Regression to Dalitz plot [BESIII, 2018]

The SM amplitude MC
0 :

Minimal subtraction scheme fails to describe data
accurately
Need at least 4 dof: χ2

red ≈ 0.994

Apply same subtraction scheme for BSM amplitude:
Fix M ̸C

1 by two complex coefficients with the same phase
Full amplitude 7 dof: χ2

red ≈ 0.994
Upper limit on TOPE effects in per cent level
All C- and CP-violating signals vanish within < 1.5σ
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BSM Coupling

Effective BSM operator

X ̸C
1 ∼ g1 (t − u) (1 + s δg1) +O(p6)

Obtain coupling and s-dependent correction by a Taylor expansion of M̸C
1 :

g1 = (0.17(27)− 0.3(5.7) i) GeV−2

δg1 ≈ −4(99)GeV−2 imaginary part negligibly small

Dalitz-plot asymmetry in 10−3 (g1 and δg1 in GeV−2):

ALR = −31.0 Re g1
(
1 + 0.09 δg1

)
− 6.6 Im g1

(
1 + 0.10 δg1

)
= −2.3(1.7)
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Summary & Outlook
The dispersive framework for TOPE forces in η → π0π+π− and η′ → ηπ+π−

Based on fundamental principles of analyticity, unitarity and crossing
Derived C- and CP-odd contributions driven by ∆I = 0, 2 and ∆I = 1 transitions
Extracted effective BSM couplings g0, g2 and g1
Current experimental precision:

Upper limit on C-odd signals in the relative per mille and cent level
In both cases BSM signals vanish within 1-2σ

Future theoretical interest:
Amplitudes can be used to calculate/predict different TOPE processes
Couplings g0, g2 and g1 may be used to match future effective field theories

From experimental point of view:
JLab Eta Factory (JEF)
Rare Eta Decays with a TPC for Optical Photons (REDTOP)
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Thank you very much for your attention!
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