
Fast & rigorous constraints on chiral three-
nucleon forces from few-body observables

Daniel Phillips

Research supported by the DOE Office of Science, 
the NSF MPS Division and Office of Advanced 
Cyberinfrastructure, The Swedish Research 

Council, and the ERC Horizons Initiative

with Sarah Wesolowski, Isak Svensson, Andreas Ekström, Christian Forssén, Dick Furnstahl, and Jordan Melendez

arXiv:2104.04441 and Phys. Rev. C (in press)

https://arxiv.org/abs/2104.04441


The importance of the three-nucleon force in 
Chiral Effective Field Theory 

In EFTs three-body forces inevitably arise because degrees of freedom are integrated out

In 𝝌EFT without an explicit Δ(1232) three-nucleon forces (3NFs) appear at O(Q3) (NNLO)

Depends on two parameters, cD and cE, once πN low-energy constants (LECs) are fixed

This 3NF has small but important effects in light nuclei and helps drive saturation in heavier 
systems and symmetric nuclear matter

Goal here: estimate cD and cE from few-nucleon data including 𝝌EFT truncation error

van Kolck (1994); Epelbaum et al. (2002)

cD cE



Few-nucleon physics implementation
No-Core Shell Model calculations of A=3 and A=4 bound-state observables

Binding energy of 3H, 4He, Charge radius of 4He, β-decay half-life of 3H, aka “GT matrix element”

Fully converged for A=4 with , Nmax=18 due to use of relatively soft interaction

New fit to np and pp scattering data for 0≤Elab≤290 MeV.  Truncation error included

πN LECs fixed at central values of Roy-Steiner analysis of Siemens et al.

ℏω = 36 MeV



3N error model

Assume ci’s are Gaussian random variables with mean zero ⇒ 

Q is not obvious: we will actually make it a parameter and sample it. We will also sample , the 
mean-square value of the higher-order coefficients

 and Q are also constrained by information from the lower-order calculations

As a first go we will take the uncertainties in the different observables to be uncorrelated
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 then also affected by that information. Starts as weakly informative Beta distribution.pr(Q |a, I)

NaturalnessTruncation errors r = yexp − yth



Emulation using Eigenvector Continuation
We use Eigenvector Continuation to emulate few-nucleon 
observables 

Emulator is built in 11-dimensional parameter space:  
includes cD and cE and 9 NN parameters at NNLO: “ ” 

Solve  at NEC points in 
parameter space

Project  onto subspace spanned by these NEC wave 
functions; solve generalized eigenvalue problem in subspace

Eigenvector at  obtained as linear combination of NEC 

vectors in subspace. Denote coefficients of linear 
combination by 

Observables at  then reconstructed from  and 
projection of observable to subspace

⃗a
⃗a NN

H( ⃗a ) |ψ( ⃗a )⟩ = E( ⃗a ) |ψ( ⃗a )⟩

H( ⃗a )

⃗a

β( ⃗a )

⃗a β( ⃗a )

Frame et al., Phys. Rev. Lett. 121, 032501 (2018); König et al., Phys. Lett. B 810, 135814 (2020) 



Emulation results

First EC emulation of transition matrix 
element 

Eigenvector continuation with NEC=50 
training points is very accurate for all 
observables considered.
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We obtain the 13-d posterior pr( ⃗a NN, cD, cE, c̄, Q |D, I)

Result for NN parameters not noticeably updated by four 3N 
data we consider

Marginalizing over NN parameters then includes NN 
uncertainties in other posteriors

Marginalizing over  and Q incorporates truncation errorc̄

cD and cE are strongly correlated (ρ≈0.96 for this interaction)

Both are natural: cD’s central value very close to zero

Not Gaussian! t-distribution with ν=2.6 degrees of freedom
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The role of truncation errors & different data

Truncation errors 
essential to get 
consistency 

Constraints other 
than GT matrix 
element essentially 
degenerate

Posterior almost 
obtained with just 
fT1/2 and E(4He)



Results for Q, c̄

 starts as a weakly informative Beta distribution

Can use information on size of c3 (NNLO-NLO shift) to 
update Q posterior (and  posterior too)

But then we sample the likelihood (times the prior) allowing 
size of theory errors (i.e.  and Q) to vary

Q and  then include information on how far NNLO result is 
from experiment

 natural; 

pr(Q | ⃗a , I)

c̄

c̄

c̄

c̄ Q = 0.33(6)



Posterior predictive distribution

 Chiral Effective Field Theory can 
describe all these data at NNLO 
[O(Q3)] once truncation errors 

are accounted for

These are also t-distributions



Linear models with variance estimation: time for t
This problem is linear in cD and cE in the region that matters for the final posterior

So posterior for cD and cE would be Gaussian if we kept  and Q fixed

By sampling  and Q we end up doing “variance estimation” in our statistical model

If  we have (approximately):

Since  is linear in  marginalizing over  then yields a t-distribution

c̄

c̄
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Summary and Outlook
Part of an ongoing effort to develop, apply, and evaluate Bayesian statistical methods for EFTs of nuclei

Truncation errors are included in extraction of cD and cE from few-nucleon observables

Parameters of statistical model of truncation errors estimated simultaneously: , 

The LECs cD and cE are strongly correlated. Joint pdf best represented by a multivariate t distribution

For 3NF parameter estimation you should not only use observables that are related by universality

Impact of NN uncertainties in the posterior is small; that of πN uncertainties remains to be assessed

Future work: comparing 𝝌EFT Hamiltonians with different regulators and with Δ(1232) degrees of freedom; 
different assumptions for correlations of theory uncertainties

Extending the results is straightforward via open-source Python package fit3bf

Q = 0.33(6) c̄ ∈ [0.87,1.44]
See also: K. Kravvaris et al., Phys. Rev. C (2020)

Lupu, Barnea, Gazit, arXiv:1508.05654

See also: P. Maris et al., Phys. Rev. C (2021)

https://github.com/buqeye/fast-few-%20body-bayesing.

