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[he importance of the three-nucleon force In
Chiral Effective Field [ heory

In EFTs three-body forces inevitably arise because degrees of freedom are integrated out

In YEFT without an explicit A(1232) three-nucleon forces (3NFs) appear at O(Q3) (NNLO)

CD CE
Depends on two parameters, cp and cg,once TTN low-energy constants (LECs) are fixed

van Kolck (1994); Epelbaum et al. (2002)

This 3NF has small but important effects in light nuclei and helps drive saturation in heavier
systems and symmetric nuclear matter

Goal here: estimate cp and ce from few-nucleon data including YEFT truncation error




-ew-nucleon physics iImplementation

No-Core Shell Model calculations of A=3 and A=4 bound-state observables

Binding energy of 3H, He, Charge radius of 4He, B-decay half-life of 3H, aka “GT matrix element”
Fully converged for A=4 with hw = 36 MeV, Nmax=18 due to use of relatively soft interaction
New fit to np and pp scattering data for 0<E..; <290 MeV. Truncation error included

TTIN LEGCs fixed at central values of Roy-Steiner analysis of Siemens et al.

LO NLO (NNLO)pp4 Experiment Adopted uncertainty
E(°H) [MeV] —5.65 —8.38 —8.52 —8.482 [40] 0.015
E(*He) [MeV]  —24.08 —-30.21 —28.19 —28.296 [41] 0.005
r(*He) [fm] 1.27 1.33 1.45 1.4552(62) [42] 0.0062

fT1/2 [s] 1127.3 1129.6(3.0) [43] 3.0




3N error model

Q is not obvious: we will actually make it a parameter and sample it.We will also sample ¢?, the
mean-square value of the higher-order coefficients

¢? and Q are also constrained by information from the lower-order calculations

As a first go we will take the uncertainties in the different observables to be uncorrelated
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Posterior and priors
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Can include NN in “fit” by expanding meaning of a to include NN parameters. Incorporate NN
information by using posterior from that analysis as a prior on @, the NN piece of @, here

pr(¢*| O, @, ) is taken to be an inverse-y? distribution. Information on the order-to-order shift
NNLO-NLO included there

pr(Q | a, I) then also affected by that information. Starts as weakly informative Beta distribution.



cmulation using Eigenvector Continuation

Frame et al., Phys. Rev. Lett. 121, 032501 (2018); Konig et al., Phys. Lett. B 810, 135814 (2020)

We use Eigenvector Continuation to emulate few-nucleon —~0.15:+
observables
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Emulator is built in |13-dimensional parameter space: a’ :
includes cp and ceand | | NN parameters at NNLO:“a " : S 7\ |-0.18+
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Project H('a ) onto subspace spanned by these Nec wave
functions; solve generalized eigenvalue problem in subspace
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Emulation results

First EC emulation of transition matrix
element

Eigenvector continuation with Nec=50
training points is very accurate for all
observables considered.
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Results for 3NF parameters

We obtain the |5-d posterior pr(‘a yy, ¢p, g, ¢, Q| D, I)

Result for NN parameters not noticeably updated by four 3N
data we consider

Marginalizing over NN parameters then includes NN
uncertainties in other posteriors

Marginalizing over ¢ and Q incorporates truncation error

cp and ce are strongly correlated (p~=0.96 for this interaction)

Both are natural: cp’s central value very close to zero

Not Gaussian! t-distribution with v=2.6 degrees of freedom
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The role of truncation errors & different data

i [No EFT Error]




The role of truncation errors & different data

" (No EFT Error , ‘ " [With EFT Error /
E(*He) c=1, Q=033 | E(*He)
'I
S
'é
0.0 |- 7
%
F
Z [b< H)
25
Z
9 V4
S "
%
%
%
%
%
%
//
1 051 4
7
(1o (7T
—2 —1 0 1 2 —2 —1 0 | 1 2




The role of truncation errors & different data

i [No EFT Error
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1 he role

of truncation errors & different data
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Results for Q, €

pr(Q| a,I) starts as a weakly informative Beta distribution

Can use information on size of c3 (NNLO-NLO shift) to

update Q posterior (and ¢ posterior too) - L ' pr'(a Q|ye;p7 3 |
I Prior ]

4r NNLO Shift |7

But then we sample the likelihood (times the prior) allowing |
size of theory errors (i.e. ¢ and Q) to vary 31

Posterior

Q and ¢ then include information on how far NNLO result is
from experiment 1F

¢ natural; O = 0.33(6) 0 | 0.5 | 1



Posterior predictive distribution

Chiral Effective Field Theory can

describe all these data at NNLO

[O(Q?3)] once truncation errors
are accounted for

These are also t-distributions




| Inear models with variance estimation: time for t

This problem is linear in ¢cp and cein the region that matters for the final posterior

So posterior for cp and ce would be Gaussian if we kept ¢ and Q fixed

By sampling ¢ and Q we end up doing “variance estimation” in our statistical model

if 77 = e2Q***D we have (approximately):

b 1 (yexp B yth(a)))z | nS2
pr(a |D,7") W exp ( > ) pr(7) « o eXp ( 2%)

Since y,,(‘@) is linear in ‘@ marginalizing over 7" then yields a t-distribution




Summary and Outlook

Part of an ongoing effort to develop, apply, and evaluate Bayesian statistical methods for EFTs of nuclei
See also: P. Maris et al., Phys. Rev. C (2021)

Truncation errors are included in extraction of cp and cg from few-nucleon observables
See also: K. Kravvaris et al., Phys. Rev. C (2020)

Parameters of statistical model of truncation errors estimated simultaneously: O = 0.33(6), ¢ € [0.87,1.44]
The LECs cp and ce are strongly correlated. Joint pdf best represented by a multivariate t distribution

For 3NF parameter estimation you should not only use observables that are related by universality

Lupu, Barnea, Gazit, arXiv:1508.05654

Impact of NN uncertainties in the posterior is small; that of TTN uncertainties remains to be assessed

Future work: comparing yEFT Hamiltonians with different regulators and with A(1232) degrees of freedom;

different assumptions for correlations of theory uncertainties

Extending the results is straightforward via open-source Python package fit3bf



https://github.com/buqeye/fast-few-%20body-bayesing.

