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QCD phase diagram

[Kim and Yi: Adv. High Energy Phys. 2011 (2011)]

Ï QCD vacuum: confinement and spontaneous chiral symmetry
breaking

→ Hadron degrees of freedom

Ï Finite temperatures: lattice QCD and heavy-ion collisions suggest
crossover to quark-gluon phase around Tc ∼ 155MeV
[Bazavov et al., HotQCD Collaboration, Phys. Rev. D 90 (2014)]

Ï Finite densities: liquid-gas phase transition at T = 0MeV and
µc = 923MeV

Ï At very high densities perturbative QCD results imply quark and
gluon d.o.f.
[Fukushima and Hatsuda, Repts. Prog. Phys. 74 (2011)]

→ Transition from nuclear matter to color superconductor still
unknown
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QCD phase diagram

[Kim and Yi: Adv. High Energy Phys. 2011 (2011)]

Ï For µ, 0 lattice QCD unavailable because of sign problem

Ï Perturbative approaches such as ChEFT only valid up to n . 2n0
[Holt, Rho and Weise, Phys. Rept. 621 (2016)]

Ï Calculations using Nambu & Jona-Lasinio (NJL) and PNJL models
suggest chiral first-order phase transition
[Rößner et al., Nucl. Phys. A 814 (2008)]

Ï But: thermodynamics strongly influenced by fluctuations not
included in mean-field analyses
[Drews and Weise, Prog.Part.Nucl.Phys. 93 (2017)]

Ï Measurements of heavy neutron stars M ∼ 2M¯ make first-order
phase transition unlikely
[Cromartie et al., Nature Astron. 4 (2019)]
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Chiral nucleon-meson model

Ï Effect of fluctuations on the first-order phase transition in dense baryonic matter?

Ï SU(2)L ×SU(2)R theory of fermion doublet Ψ= (p,n)
[Floerchinger and Wetterich, Nucl. Phys. A 890–891 (2012)]

Ï Interacting via chiral boson field φ= (σ,π)

L = Ψ̄
[
γµ∂µ+g(σ+ iγ5τ ·π)

]
Ψ+ 1

2

(
∂µσ∂µσ+∂µπ ·∂µπ

)
+U (σ,π)+∆L

Ï Potential depends on chiral invariant, χ≡ 1
2φ

†φ= 1
2

(
σ2 +π2

)
(expanded around v.e.v. χ0), and explicit symmetry

breaking

U (σ,π) =
4∑

n=1

an

n!

(
χ−χ0

)n −m2
πfπ

(
σ− fπ

)
Ï Short distance dynamics modeled by massive vector fields vµ and wµ

→ Time-independent, homogeneous background fields

∆L =−Ψ† [
gv v +gw τ3 w

]
Ψ− 1

2
m2

v

(
v2 +w2

)
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Mean-field thermodynamics

Ï Introduce T and µp/n and determine the grand canonical potential in mean-field (MF) approximation

ΩMF =ΩF
(
T ,µp ,µn;〈σ〉,v ,w

)+U
(〈σ〉,〈π〉 = 0

)− 1
2

m2
v

(
v2 +w2

)
Ï Assume no pion condensation 〈π〉 = 0

Ï Fermionic part with E =
√

p2 +M2(σ) and dynamical nucleon mass M(σ) = g〈σ〉

ΩF =−2
∑

i=p,n

∫
d3p

(2π)3

[
E + p2

3E

∑
r=±1

nF (E − rµ̄i)

]

with

nF (E ∓ µ̄i) =
[

exp

(
E ∓ µ̄i

T

)
+1

]−1

µ̄p/n =µp/n −gvv ∓gww

Ï Grand canonical potential at minimum yields thermodynamic observables

P =−ΩMF s =−∂ΩMF

∂T
ni =−∂ΩMF

∂µi
ε=−P + ∑

i=p,n
µini +Ts
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Vacuum fluctuations

Ï Vacuum term in fermionic contribution

δΩvac =−4
∫

d3p
(2π)3 E

→ Neglected in mean-field analyses

Ï Can be computed via dimensional regularisation
[Skokov et al., Phys. Rev. D 82 (2010)]

δΩvac = M4

8π2

(
2

4−d
+ 3

2
−γE − ln

M2

4πΛ2

)

Ï Extended mean-field theory (EMF)

ΩEMF ≡ΩMF − (gσ)4

4π2 ln
gσ
Λ

Ï Minimization of ΩEMF /ΩMF leads to coupled differential equations

→ Solved at given temperature and chemical potentials
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Parameter fixing
Ï In vacuum:

Ï Pressure vanishes at its minimum at 〈σ〉vac = fπ
Ï MN = 939MeV

Ï Nuclear phenomenology:

Ï E/A (n0) =−16MeV
Ï S(n0) = 32MeV
Ï Nuclear liquid-gas phase transition with empirical critical parameters [Elliot et al., Phys. Rev. C 87 (2013)]

Ï Nuclear surface tension Σ, Landau mass M∗
L and compression modulus K
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Functional renormalisation group

Γk=kUV [Φ]

Γk=0[Φ] = Γ[Φ]
. . .

Ï Other soft degrees of freedom (such as chiral boson and nucleon
loops)

→ Use non-perturbative functional renormalization group (FRG)
approach

Ï Initialize effective action Γk [Φ] at kUV ∼ 4πfπ

Ï Evolution k → 0 governed by Wetterich’s flow equation
[Wetterich, Phys. Lett. B 301 (1993)]

k
∂Γk [Φ]

∂k
= 1

2
Tr

[
k
∂Rk

∂k
·
(
Γ(2)

k [Φ]+Rk

)−1
]
= 1

2

→ Γk [Φ] contains all fluctuations p2 ≥ k2 through regulator Rk (p)

Ï Need truncation to include only relevant operators
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Functional renormalisation group

Ï Chiral nucleon-meson model
[Drews and Weise: Prog. Part. Nucl. Phys. 93 (2017)]

Γk =
∫ 1/T

0
dx4

∫
d3x

{
Ψ̄

[
γµ∂µ+g(σ+ iγ5τ ·π)

]
Ψ+Ψ† (

µ−gv v −gw τ3 w
)
Ψ+ 1

2

(
∂µσ∂µσ+∂µπ ·∂µπ

)
+Uk (T ,µp ,µn;σ,π,v ,w)

}
Ï Effective potential

Uk =U (0)
k (χ)−m2

πfπ(σ− fπ)− 1
2

m2
v (v2 +w2)

Ï Chirally symmetric potential

U (0)
k (χ) =

4∑
n=0

an(k )

n!

(
χ−χ0

)n

Ï Flow equation leads to set of coupled differential equations for the coefficients an(k )
Ï Determine grand canonical potential

ΩFRG(T ,µp ,µn) =Uk=0(T ,µp ,µn; σ̄, v̄ ,w̄)
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Symmetric nuclear matter

Ï 〈σ〉(µ) compared to 〈σ〉(µ= 0) = 〈σ〉vac = fπ serves as chiral order parameter

Ï Results for symmetric nuclear matter:

Ï Mean-field: unphysical first-order phase transition at n ' 1.5n0

Ï Extended mean-field: vacuum contribution stabilizes order parameter

Ï FRG: further stabilization through additional fluctuations
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Pure neutron matter

Ï Similar results for pure neutron matter

→ Smooth crossover at large densities

Ï Model adjusted to low-density properties, potential expanded around χ0 = 1/2 f2
π

→ For small 〈σ〉/fπ model no longer applicable

Ï In FRG stays around 40% until n ∼ 6n0 (central densities in heavy neutron stars!)
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Results

Ï Good agreement with pure neutron matter E/A from ChEFT calculations
[Drischler, Hebeler and Schwenk, Phys. Rev. Lett. 122 (2019)]

Ï In chiral limit mπ→ 0 crossover turns into second-order phase transition

Ï Very similar behaviour in chiral quark-meson models (with Polyakov loop)

→ Mean-field chiral restoration avoided by vacuum fluctuations and in FRG
[Zacchi and Schaffner-Bielich, Phys. Rev. D 97 (2018)] [Gupta and Tiwari, Phys. Rev. D 85 (2012)]
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Summary

Ï Chiral SU(2)L ×SU(2)R nucleon-meson model reproduces empirical nuclear properties and liquid-gas phase transition

Ï Mean-field: chiral first-order phase transition at unphysical low densities

Ï Extended mean-field: included vacuum contribution

→ Chiral symmetry remains spontaneously broken up to higher densities

Ï Functional renormalisation group: even stronger stabilization against chiral restoration

Ï Similar results for chiral quark-meson models

→ Fluctuations convert first-order phase transitions to a crossover
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Parameters

Ï Extended mean-field:

mσ = 617.6MeV Gv = 5.88fm2 Gw = 0.97fm2 a3 = 2.16 ·10−1 MeV−2 a4 =−5.29 ·10−5 MeV−4

Ï Functional renormalisation group:
[Drews and Weise, Prog.Part.Nucl.Phys. 93 (2017)]

mσ = 770MeV Gv = 4.04fm2 Gw = 1.12fm2 a3 = 5.55 ·10−3MeV−2 a4 = 8.38 ·10−5 MeV−4

Ï Evolution k → 0 results in downward shift of sigma mass

mIR
σ =

√
U ′

k=0(χ0)+2χ0 U ′′
k=0(χ0) ' 0.6GeV

→ Pole in isoscalar s-wave ππ scattering amplitude mσ ' 0.44GeV
[Caprini, Colangelo and Leutwyler, Phys. Rev. Lett. 96 (2006)]

Ï Repulsive short-range nucleon-nucleon interaction Gv larger in EMF

→ Approach does not account for high-momentum fluctuation effects
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Phenomenology

Ï Empirical critical parameters of liquid-gas phase transition: [Elliot et al., Phys. Rev. C 87 (2013)]

Tcrit = 17.9±0.4MeV Pcrit = 0.31±0.07MeV/fm3 ncrit = 0.06±0.01fm−3

Ï EMF:

Tcrit = 17.5MeV Pcrit = 0.33MeV/fm3 ncrit = 0.06fm−3 µcrit = 908MeV

Ï Nuclear surface tension:

Σ=
∫ fπ

〈σ〉0

dσ
√

2ΩEMF (σ) = 1.1MeV/fm2

Ï Landau effective mass:

M∗
L =

√
p2

F + (g 〈σ〉0)2 =µ0 −Gv n0 = 0.79MN

Ï Compression modulus:

K = 9n

(
dn
dµ

)−1
∣∣∣∣∣∣
n=n0

= 282MeV

Fluctuations and phases in baryonic matter | Len Brandes 14/12



Chiral quark-meson model
Ï Isospin SU(2) doublet quark field, ψ= (u,d) replaces the nucleon

field Ψ

Ï Effective potential:

Uk =U (0)
k (χ)−cσ− 1

2
m2

v (v2 +w2)

U (0)
k=Λ =m2

Λχ+λχ2

→ Parameters fixed to reproduce mπ and fπ

Ï Liquid-gas transition in matter formed by constituent quarks

Ï Chiral first-order phase transition converted to smooth crossover by
fluctuations
[Tripolt et al. Phys. Rev. D 97 (2018)]
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Neutron stars

Ï Speed of sound c2
s = ∂P

∂ε

Ï Extended mean-field supports only M . 1.84M¯

→ Adding two orders to polynomial expansion of the potential gives M . 2.14M¯

Ï FRG can support M . 1.97M¯ (without additional parameters!)
[Drews and Weise, Prog. Part. Nucl. Phys. 93 (2017)]
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