## Baryon masses and currents in $\mathrm{SU}(3) \mathrm{BChPT} \times 1 / \mathrm{Nc}$

PLB 781 (2018) 719-722<br>PRD 97, 054010 (2018)<br>PRD 101, 054026 (2020)

## Ishara Fernando

In Collaboration with<br>José Goity

Chiral Dynamics (CD) 2021
November 17, 2021

This work was supported by
National Science Foundation PHY-1307413 and No. PHY-1613951 Department of Energy Contract No. DE-AC05060R23ं177,

## Outline

1) Motivation for the $\mathrm{BChPT} x 1 / \mathrm{Nc}$ expansion
2) Introduction to the BChPT $x 1 / \mathrm{Nc}$ expansion (combined) approach
3) Baryon masses
4) Baryon sigma terms
5) Vector currents
6) Axial-vector currents
7) Summary

Non relativistic version of the BChPT or HBChPT is based on the expansion in terms of the inverse baryon mass

Derivative expansion for both mesons and baryons
become an expansion in powers of $\left(k / \Lambda_{\chi}\right)$
The issue of experiencing a slower rate of convergence compared to the Goldstone Boson Sector

$$
\begin{aligned}
p_{\mu} & =m_{\mathcal{B}} v_{\mu}+k_{\mu} \\
\frac{1}{p^{2}-m_{\mathcal{B}}^{2}} & \rightarrow \frac{1}{2 m_{\mathcal{B}}} \frac{1}{(v . k)}+\mathcal{O}\left(1 / m_{\mathcal{B}}^{2}\right)
\end{aligned}
$$

Solution : Inclusion of the decuplet baryons in one-loop corrections to physical observables, has been showing a great improvement!

These improvements are due to cancellations between octet and decuplet contributions in loops

On the other hand, studying the baryons in the large Nc limit of QCD emerges a dynamical symmetry called "spin-flavor symmetry" which requires the possibility of having degenerate baryon multiplets of higher spin in the intermediate state/s.

## Gervais \& Sakita; Dashen \& Manohar



Since, $\pi N$ amplitude is $\mathcal{O}\left(N_{c}^{0}\right)$
$A=-i \frac{k^{i} k^{j}}{k_{0}} \frac{N_{c}{ }^{2} g^{2}}{f_{\pi}^{2}}\left[X^{i a}, X^{i b}\right] \Rightarrow\left[X^{i a}, X^{i b}\right] \leqslant \mathcal{O}\left(1 / N_{c}\right)$


At large Nc, QCD has contracted spin-flavor
symmetry $S U_{c}\left(2 N_{f}\right)$ in baryon sector

$$
X_{0}^{i a}=\lim _{N_{c} \rightarrow \infty} \frac{G^{i a}}{N_{c}}
$$

This symmetry is broken at sub-leading orders in $1 / \mathbf{N c}$
This spin-flavor symmetry requires the existence of degenerate baryon multiplets with different spins (a dynamical symmetry) : leads to the consideration of both octet and decuplet contributions in the intermediate state

$$
L(\text { Lagrangian })=L_{L O}+L_{N L O}+L_{N N L O}+L_{N N N L O}+\ldots
$$



## Spin-flavor Symmetry + Chiral Symmetry

imposes constraints in the Chiral Lagrangian


## Combined approach

Combining the HBChPT with $1 / \mathrm{Nc}$ provides a well behaved expansion in the low energy phenomenology (because one cannot expand them independently in low energy)

Link between the Chiral and $1 / \mathrm{Nc}$ expansion

$$
\xi-\operatorname{expansion}: \mathcal{O}\left(1 / N_{c}\right)=\mathcal{O}(p)=\mathcal{O}(\xi)
$$

## Chiral Symmetry + Spin-flavor Symmetry



Intermediate Octet and Decuplet baryon contributions are included

$$
\xi-\text { expansion : } \mathcal{O}\left(1 / N_{c}\right)=\mathcal{O}(p)=\mathcal{O}(\xi)
$$

$$
\begin{aligned}
I_{1-\text { loop }}\left(Q, M_{\pi}\right) & =\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\vec{k}^{2}}{k^{2}-M_{\pi}^{2}+i \epsilon} \frac{1}{k^{0}-Q+i \epsilon} \\
& =\frac{i}{16 \pi^{2}}\left\{Q\left(\left(3 M_{\pi}^{2}-2 Q^{2}\right)\left(\lambda_{\epsilon}-\log \frac{M_{\pi}^{2}}{\mu^{2}}\right)+\left(5 M_{\pi}^{2}-4 Q^{2}\right)\right)\right. \\
& \left.+2 \pi\left(M_{\pi}^{2}-Q^{2}\right)^{3 / 2}+4\left(Q^{2}-M_{\pi}^{2}\right)^{3 / 2} \tanh ^{-1} \frac{Q}{\sqrt{Q^{2}-M_{\pi}^{2}}}\right\},
\end{aligned}
$$

Contains both scales: therefore cannot be expanded independently

$$
Q=\delta m_{n}-p^{0}, \lambda_{\epsilon}=\frac{1}{\epsilon}-\gamma+\log 4 \pi
$$

## Building blocks :

Goldstone bosons: pions, kaons, eta

$$
u=\exp \left(\frac{i \Pi_{\leftrightarrow}}{2 F_{\pi}}\right) \text { Meson Fields : } \pi^{a} T^{a}
$$

$\Rightarrow$ Baryons with spin $1 / 2,3 / 2, \ldots, N c / 2$

$$
\mathrm{B}=\left(\begin{array}{c}
N \\
\Delta \\
\cdot \\
\cdot \\
\cdot
\end{array}\right)
$$

Degrees of freedom : Hadrons
$\Rightarrow$ Leading order (Spin-flavor symmetry + chiral symmetry )

$$
L_{B}=B^{\dagger}\left(i D_{0}+g_{A}^{\circ} u^{i a} G^{i a}-\frac{C_{H F}}{N_{c}} \vec{S}^{2}-\frac{c_{1}}{\Lambda} \hat{\chi}_{+}\right) B
$$

the axial coupling is at $\mathrm{LO} \stackrel{\circ}{g}_{A}=\frac{6}{5} g_{A}$, being $g_{A}=1.2732(23)$

$$
\left(\frac{1}{2}\left(u^{\dagger}\left(i \partial_{0}+r_{0}\right) u+u\left(i \partial_{0}+l_{0}\right) u^{\dagger}\right)\right)
$$

$$
\begin{aligned}
\hat{\chi}_{+} & \equiv \tilde{\chi}_{+}+N_{c} \chi_{+}^{0} \\
\chi & =2 B_{0}(s+i p), \\
\chi_{ \pm} & =u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u, \\
\chi_{ \pm}^{0} & =\left\langle\chi_{ \pm}\right\rangle, \\
\tilde{\chi}_{ \pm} & \equiv \chi_{ \pm}^{a} T^{a}, \text { where } \chi_{ \pm}^{a} \equiv \frac{1}{2}\left\langle\lambda^{a} \chi_{ \pm}\right\rangle
\end{aligned}
$$

Baryon Masses to $\mathcal{O}\left(\xi^{2}\right)$ in SU(2)

$$
m_{\mathbf{B}}=N_{c} M_{0}+\frac{C_{H F}}{N_{c}} \hat{S}^{2}+c_{1} M_{\pi}^{2}+\delta m_{\mathbf{B}}^{1-\mathrm{loop}+C T}
$$

A. Calle-Cordon \& J.L. Goity (PHYSICAL REVIEW D 87, 016019 (2013))


Baryon Masses to $\mathcal{O}\left(\xi^{3}\right)$ in $\mathbf{S U ( 3 )}$
I. P. FERNANDO and J.L. GOITY ( PHYS. REV. D 97, 054010 (2018) )

$$
\left.\begin{array}{rl}
\mathcal{L}_{B} & =\mathbf{B}^{\dagger}\left(i D_{0}+\stackrel{\circ}{g}_{A} u^{i a} G^{i a}-\frac{C_{H F}}{N_{c}} \hat{S}^{2}-\frac{1}{2 \Lambda} c_{2} \hat{\chi}_{+}+\frac{c_{3}}{N_{c} \Lambda^{3}} \hat{\chi}_{+}^{2}\right. \\
& \left.+\frac{h_{1}}{N_{c}^{3}} \hat{S}^{4}+\frac{h_{2}}{N_{c}^{2} \Lambda} \hat{\chi}_{+} \hat{S}^{2}+\frac{h_{3}}{N_{c} \Lambda} \chi_{+}^{0} \hat{S}^{2}+\frac{h_{4}}{N_{c} \Lambda} \chi_{+}^{a}\left\{S^{i}, G^{i a}\right\}+\alpha \hat{Q}+\beta \hat{Q}^{2}\right) \mathbf{B}
\end{array} \begin{array}{c}
\hat{\chi}_{+}=N_{c} \chi_{+}^{0}+\tilde{\chi}_{+} \\
\chi_{+}^{0} \rightarrow 4 B_{0} m^{0} \\
\tilde{\chi}_{+}^{a} \rightarrow 8 B_{0} \delta^{a 8} m^{8} \\
\hat{\chi}_{+} \rightarrow 4 B_{0}\left(m^{8} T^{8}+N_{c} m^{0}\right)
\end{array}\right)
$$

$$
\begin{aligned}
m_{B} & =M_{0}+\frac{C_{H F}}{N_{c}} \hat{S}^{2}-\frac{c_{1}}{\Lambda} 2 B_{0}\left(\sqrt{3} m_{8} Y+N_{c} m_{0}\right)-\frac{c_{2}}{\Lambda} 4 B_{0} m_{0} \\
& -\frac{c_{3}}{N_{c} \Lambda^{3}}\left(4 B_{0}\left(\sqrt{3} m_{8} Y+N_{c} m_{0}\right)\right)^{2} \\
& -\frac{h_{1}}{N_{c}^{2} \Lambda} \hat{S}^{4}-\frac{h_{2}}{N_{c} \Lambda} 4 B_{0}\left(\sqrt{3} m_{8} Y+N_{c} m_{0}\right) \hat{S}^{2}-\frac{h_{3}}{N_{c} \Lambda} 4 B_{0} m_{0} \hat{S}^{2} \\
& -\frac{h_{4}}{N_{c} \Lambda} \frac{4 B_{0} m_{8}}{\sqrt{3}}\left(3 \hat{I}^{2}-\hat{S}^{2}-\frac{1}{12} N_{c}\left(N_{c}+6\right)\right. \\
& \left.+\frac{1}{2}\left(N_{c}+3\right) Y-\frac{3}{4} Y^{2}\right)+\delta m_{B}^{\text {loop }},
\end{aligned}
$$

$$
\delta m_{B}^{1-\text { loop }}=i \frac{\mathscr{g}_{A}^{2}}{F_{\pi}^{2}} \frac{1}{d-1} \sum_{n} G^{i a} \mathcal{P}_{n} G^{i a} \underbrace{I_{1-\text { loop }}\left(\delta m_{n}-p^{0}, M_{\pi}\right)}
$$

$$
\Delta_{G M O} \equiv 3 m_{\Lambda}+m_{\Sigma}-2\left(m_{N}+m_{\Xi}\right)
$$

The breaking to the GMO relation is only coming through the loop corrections and it behaves like $1 / \mathrm{Nc}$ in the strict large Nc limit

$$
\begin{aligned}
\Delta_{\mathrm{GMO}}= & -\left(\frac{\stackrel{\circ}{g_{A}}}{4 \pi F_{\pi}}\right)^{2}\left(\frac{2 \pi}{3}\left(M_{K}^{3}-\frac{1}{4} M_{\pi}^{3}-\frac{2}{\sqrt{3}}\left(M_{K}^{2}-\frac{1}{4} M_{\pi}^{2}\right)^{\frac{3}{2}}\right)\right. \\
\text { hrough } & \left.+\frac{C_{\mathrm{HF}}}{2 N_{c}}\left(4 M_{K}^{2} \log \left(\frac{4 M_{K}^{2}-M_{\pi}^{2}}{3 M_{K}^{2}}\right)-M_{\pi}^{2} \log \left(\frac{4 M_{K}^{2}-\frac{1}{3} M_{\pi}^{2}}{3 M_{\pi}^{2}}\right)\right)\right) \\
& +\mathcal{O}\left(1 / N_{c}^{3}\right)
\end{aligned}
$$

TABLE II. Results for LECs: the ratio ${ }^{\circ}{ }_{A} / F_{\pi}=0.0122 \mathrm{MeV}^{-1}$ is fixed by using $\Delta_{\text {GMO }}$. The first row is the fit to LQCD octet and decuplet baryon masses [48] including results for $M_{\pi} \leq 303 \mathrm{MeV}$ ( $\mathrm{dof}=50$ ), and second row is the fit including also the physical masses ( $\operatorname{dof}=58$ ). Throughout the $\mu=\Lambda=m_{\rho}$.

| $\chi_{\text {dof }}^{2}$ | $m_{0}[\mathrm{MeV}]$ | $C_{\mathrm{HF}}[\mathrm{MeV}]$ | $c_{1}$ | $c_{2}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 0.47 | $221(26)$ | $215(46)$ | $-1.49(1)$ | $-0.83(5)$ | $0.03(3)$ | $0.61(8)$ | $0.59(1)$ |
| 0.64 | $191(5)$ | $242(20)$ | $-1.47(1)$ | $-0.99(3)$ | $0.01(1)$ | $0.73(3)$ | $0.56(1)$ |








LQCD baryon masses : C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, and G. Koutsou. Phys. Rev., D90:074501, (2014)

$$
\sigma_{f \mathbf{B}}\left(m_{f}\right)=m_{f} \frac{\partial}{\partial m_{f}} m_{\mathbf{B}}=\frac{m_{f}}{2 m_{\mathbf{B}}}\langle\mathbf{B}| \bar{q}_{f} q_{f}|\mathbf{B}\rangle
$$

1) The value of the pion-Nucleon sigma term ranges from 45 MeV to 64 MeV
$\underline{\text { Eur. Phys. J. C (2018) 78:569 John Ellis, Natsumi Nagata, Keith A. Olive }}$

2) There is a long lasting "puzzle" associated with a combination of baryon masses (in $\mathrm{SU}(3)$ ) in the iso-spin symmetric limit, to obtain the pion-Nucleon sigma term, assuming the contribution by strange quark mass to the nucleon mass is negligible (OZI).
3) The connection between the pion-Nucleon sigma term and size of the correction to the Gell-Mann-Okubo relation

Baryon matrix elements of scalar quark densities give us the information on the amount of baryon mass originating from the quark masses

Feynman-Hellman theorem

$$
\sigma_{i}(B)=m_{i} \frac{\partial}{\partial m_{i}} m_{B}
$$

Baryon mass dependencies on quark masses

$$
\sigma_{\pi N}=\hat{\sigma}+2 \frac{\hat{m}}{m_{s}} \sigma_{s}
$$

$\sigma_{\pi N} \equiv \frac{\hat{m}}{2 m_{N}}\langle N| \bar{u} u+\bar{d} d|N\rangle$

$$
\begin{gathered}
\hat{\sigma}=\frac{\hat{m}}{2 m_{N}}\langle N| \bar{u} u+\bar{d} d-2 \bar{s} s|N\rangle . \\
\sigma_{\pi N} \sim \hat{\sigma} \\
\sigma_{s}=\frac{m_{s}}{2 m_{N}}\langle N| \bar{s} s|N\rangle \\
\left|\sigma_{s}\right| \lesssim 50 \mathrm{MeV}
\end{gathered}
$$

$$
\sigma_{\pi N}=\hat{\sigma}+2 \frac{\hat{m}}{m_{s}} \sigma_{s}
$$

$$
\begin{gathered}
\hat{\sigma} \equiv \sqrt{3} \frac{\hat{m}}{m_{8}} \sigma_{8} \\
\sigma_{8}=\frac{1}{3}\left(2 m_{N}-m_{\Sigma}-m_{\Xi}\right)
\end{gathered}
$$

## $\sim 26 \mathrm{MeV}$

$$
\hat{\sigma}=\frac{\hat{m}}{m_{s}-\hat{m}}\left(m_{\Xi}+m_{\Sigma}-2 m_{N}\right)
$$

$$
\begin{aligned}
m_{3} & =m_{u}-m_{d} \\
m_{8} & =\frac{1}{\sqrt{3}}\left(\hat{m}-m_{s}\right)
\end{aligned}
$$

There is a (hidden) large correction $\sim 44 \mathrm{MeV}$ from non-analytic contributions from baryon self-energies

$$
\begin{gathered}
\sigma_{8}=\frac{1}{2 m_{N}}\langle N| \bar{u} u+\bar{d} d-2 \bar{s} s|N\rangle \quad \Delta \sigma_{8} \equiv \sigma_{8}-\frac{1}{3}\left(2 m_{N}-m_{\Sigma}-m_{\Xi}\right) \\
\Delta \sigma_{8}=\sigma_{8}-\frac{1}{9}\left(\frac{5 N_{c}-3}{2} m_{N}-\left(2 N_{c}-3\right) m_{\Sigma}-\frac{N_{c}+3}{2} m_{\Xi}\right) \\
\Delta_{G M O} \equiv 3 m_{\Lambda}+m_{\Sigma}-2\left(m_{N}+m_{\Xi}\right) \sim 25 \mathrm{MeV}
\end{gathered}
$$

## Sigma Terms (Results)

$$
m_{B}=M_{0}+\frac{C_{H F}}{N_{c}} \hat{S}^{2}-\frac{c_{1}}{\Lambda} 2 B_{0}\left(\sqrt{3} m_{8} Y+N_{C} m_{0}\right)-\frac{c_{2}}{\Lambda} 4 B_{0} m_{0}
$$

$$
-\frac{c_{3}}{N_{c} \Lambda^{3}}\left(4 B_{0}\left(\sqrt{3} m_{8} Y+N_{c} m_{0}\right)\right)^{2}
$$

$$
\begin{aligned}
\mathcal{L}_{B} & =\mathbf{B}^{\dagger}\left(i D_{0}+\dot{g}_{A} A^{i a} G^{i a}-\frac{C_{H F}}{N_{c}} \hat{S}^{2}-\frac{1}{2 \Lambda} c_{2} \hat{\chi}_{+}+\frac{c_{3}}{N_{c} \Lambda^{3}} \hat{X}_{+}^{2}\right. \\
& +\frac{h_{1}}{N_{c}^{3}} \hat{S}^{4}+\frac{h_{2}}{N_{c}^{2} \Lambda} \hat{\chi}+\hat{S}^{2}+\frac{h_{3}}{N_{c} \Lambda} \chi_{+}^{0} \hat{S}^{2}+\frac{h_{4}}{N_{c} \Lambda} \chi_{+}^{a}\left\{S^{i}, G^{i a}\right\} \\
& \left.+\alpha \hat{Q}+\beta \hat{Q}^{2}\right) \mathbf{B},
\end{aligned}
$$

$$
-\frac{h_{1}}{N_{c}^{2} \Lambda} \hat{S}^{4}-\frac{h_{2}}{N_{c} \Lambda} 4 B_{0}\left(\sqrt{3} m_{8} Y+N_{c} m_{0}\right) \hat{S}^{2}-\frac{h_{3}}{N_{c} \Lambda} 4 B_{0} m_{0} \hat{S}^{2}
$$

$$
-\frac{h_{4}}{N_{c} \Lambda} \frac{4 B_{0} m_{8}}{\sqrt{3}}\left(3 \hat{I}^{2}-\hat{S}^{2}-\frac{1}{12} N_{c}\left(N_{c}+6\right)\right.
$$

$$
\left.+\frac{1}{2}\left(N_{c}+3\right) Y-\frac{3}{4} Y^{2}\right)+\delta m_{B}^{\text {loop }},
$$

|  | $\begin{aligned} & \frac{\stackrel{\circ}{g}_{A}}{F_{\pi}} \end{aligned}$ | $\frac{M_{0}}{N_{c}}$ | $C_{H F}$ | $c_{1}$ | $c_{2}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $\alpha$ | $\beta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fit | $\mathrm{MeV}^{-1}$ | MeV | MeV |  |  |  |  |  | MeV | MeV |
| 1 | 0.0126(2) | 364(1) | 166(23) | $-1.48(4)$ | 0 | 0 | 0.67(9) | 0.56(2) | $-1.63(24)$ | 2.16(22) |
| 2 | 0.0126(3) | 213(1) | 179(20) | -1.49 (4) | $-1.02(5)$ | $-0.018(20)$ | 0.69(7) | 0.56(2) | $-1.62(24)$ | 2.14(22) |
| 3 | 0.0126* | 262(30) | 147(52) | -1.55 (3) | -0.67 (8) | 0 | 0.64(3) | 0.63(3) | -1.63 * | $2.14 *$ |
|  | $\Delta_{G M O}^{\text {phys }}$ | $\sigma_{8 N}$ | $\Delta \sigma_{8 N}$ | $\hat{\sigma}_{N}$ | $\sigma_{\pi N}$ | $\sigma_{s N}$ | $\sigma_{8 \Delta}$ | $\Delta \sigma_{8 \Delta}$ | $\hat{\sigma}_{\Delta}$ |  |
|  | MeV |  |
| 1 | 25.6(1.1) | $-583(24)$ | -382 (13) | $70(3)(6)$ | - | - | -496(46) | -348 (16) | 59(5)(6) |  |
| 2 | 25.5(1.5) | $-582(55)$ | -381 (20) | $70(7)(6)$ | $69(8)(6)$ | -3(32) | -511(52) | $-352(22)$ | 60(10)(6) |  |
| 3 | 25.8* | -615(80) | $-384(2)$ | $74(1)(6)$ | 65(15)(6) | -121(15) | -469(26) | $350(27)$ | 56(4)(6) |  |

$$
\sigma_{\pi N}=69(10) \mathrm{MeV}
$$

Hadronic weak currents possess V-A Lorentz structure of the weak interactions


It is important to know these axial and vector couplings in order to extract the standard model parameters for flavor mixings

$$
J_{\mu}=V_{\mu}-A_{\mu}
$$

$$
V_{\mu}=V_{u d} \bar{u} \gamma_{\mu} d+V_{u s} \bar{u} \gamma_{\mu} s
$$

$$
A_{\mu}=V_{u d} \bar{u} \gamma_{\mu} \gamma_{5} d+V_{u s} \bar{u} \gamma_{\mu} \gamma_{5} s
$$

$$
\begin{aligned}
& \left\langle B_{2}\right| V_{\mu}\left|B_{1}\right\rangle=V_{C K M} \bar{u}_{B_{2}}\left(p_{2}\right)\left[f_{1}\left(q^{2}\right) \gamma_{\mu}+\frac{f_{2}\left(q^{2}\right)}{M_{B_{1}}} \sigma_{\mu \nu} q^{\nu}\right] u_{B_{1}}\left(p_{1}\right) \\
& \left\langle B_{2}\right| A_{\mu}\left|B_{1}\right\rangle=V_{C K M} \bar{u}_{B_{2}}\left(p_{2}\right)\left[g_{1}\left(q^{2}\right) \gamma_{\mu}+\frac{g_{2}\left(q^{2}\right)}{M_{B_{1}}} \sigma_{\mu \nu} q^{\nu}\right] \gamma_{5} u_{B_{1}}\left(p_{1}\right)
\end{aligned}
$$

$$
\mathcal{L}_{B}^{(2)}=\mathbf{B}^{\dagger}\left(\frac{c_{2}}{\Lambda} \chi_{+}^{0}+\frac{C_{1}^{A}}{N_{c}} u^{i a} S^{i} T^{a}+\frac{\kappa}{2 \Lambda} B_{+}^{i a} G^{i a}+\cdots\right) \mathbf{B}
$$

where the flavor $S U(3)$ electric and magnetic fields are denoted by $E_{+}$and $B_{+}$and given by $E_{+}^{i}=F_{+}^{0 i}$ and $B_{+}^{i}=\frac{1}{2} \epsilon^{i j k} F_{+}^{j k}$

$$
\begin{aligned}
\mathcal{L}_{B}^{(3)} & =\mathbf{B}^{\dagger}\left(\frac{g_{1}}{\Lambda^{2}} D_{i} E_{+i}^{a} T^{a}+\frac{\kappa_{1}}{2 \Lambda N_{c}} B_{+}^{i a} S^{i} T^{a}+\cdots\right) \mathbf{B} \\
\mathcal{L}_{B}^{(4)} & =\mathbf{B}^{\dagger}\left(\frac{1}{N_{c} \Lambda^{2}}\left(g_{2} D_{i} E_{+i}^{a} S^{j} G^{j a}+g_{3} D_{i} E_{+j}^{a}\left\{S^{i}, G^{j a}\right\}^{\ell=2}\right)+\frac{\kappa_{r}}{\Lambda^{3}} D^{2} B_{+}^{i a} G^{i a}\right. \\
& +\frac{1}{2 \Lambda^{3}}\left(\kappa_{2} \chi_{+}^{0} B_{+}^{i a} G^{i a}+i \kappa_{F} f^{a b c} \chi_{+}^{a} B_{+}^{i b} G^{i c}+\kappa_{D} d^{a b c} \chi_{+}^{a} B_{+}^{i b} G^{i c}+\kappa_{3} \chi_{+}^{a} B_{+}^{i a} S^{i}\right) \\
& \left.+\frac{1}{2 \Lambda N_{c}^{2}}\left(\kappa_{4} B_{+}^{i a}\left\{\hat{S}^{2}, G^{i a}\right\}+\kappa_{5} B_{+}^{i a} S^{i} S^{j} G^{j a}\right)+\cdots\right) \mathbf{B}
\end{aligned}
$$

The LECs $g_{1}$ and $g_{2}$ will be determined by charge radii
The term proportional to $g_{3}$ gives electric quadrupole moment for $\mathbf{1 0}_{\mathbf{B}}$ and $\mathbf{1 0}_{\mathrm{B}} \rightarrow \mathbf{8}_{\mathrm{B}}$ transitions.

- The term proportional to $\kappa_{r}$ gives contribution to magnetic radii

The renormalization of the magnetic moments is provided by LECs $\kappa_{D, F, 1, \cdots, 5}$

$$
f_{1}=f_{1}^{S U(3)}+\delta f_{1}
$$

## ONE LOOP CORRECTIONS



Ademollo-Gatto Theorem (AGT) is "satisfied" : The amplitude of vector currents in the $q^{2} \rightarrow 0$ limit are uniquely predicted up to first order in symmetry breaking.

## Baryon vector currents charges

At lowest order the charges are represented by the flavor generators $T^{a}$
One loop corrections are:

## $f_{1}=f_{1}^{S U(3)}+\delta f_{1}$

UV finite ; $Q^{2} \rightarrow 0$

- At $Q^{2} \rightarrow$ finite :

UV divergent terms renormalized via $g_{1}$ and $g_{2}$ in the Lagrangian

## Results

$\mathrm{SU}(3)$ breaking corrections to the $\Delta S=1$ vector charges.

|  |  |  | $\frac{\delta f_{1}}{f_{1}}$ |
| :--- | :---: | :---: | :---: |
| One-loop | (P.E.Shanahan etal) | experimentally not |  |
| enough precision |  |  |  |
| from semi-leptonic |  |  |  |
| hyperon decays to |  |  |  |
| determine |  |  |  |

$$
<r^{2}>=-\left.6 \frac{d f_{1}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2} \rightarrow 0}
$$

Only the following diagrams contribute

Charge operator for generic Nc

$$
\hat{Q}=T^{3}+\frac{1}{\sqrt{3}} T^{8}+\frac{3-N_{c}}{6 N_{c}} B
$$

Some important observations(at strict large Nc limit)

| loop contributions $T^{a}$ | $T^{3}$ | $T^{8}$ |
| :---: | :---: | :---: |
| Diagram A3 | $\mathcal{O}\left(N_{c}^{0}\right)$ | $\mathcal{O}\left(N_{c}^{0}\right)$ |
| Diagram B2 | $\mathcal{O}\left(1 / N_{c}\right)$ | $\mathcal{O}\left(N_{c}^{0}\right)$ |

- Dominant non-analytic contributions to the radii are proportional to $\log m_{q}$

$$
<r^{2}>=-\left.6 \frac{d f_{1}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2} \rightarrow 0}
$$



Contributions from Counter Terms (CT) Satisfies the following relation
$a \Lambda+p+\Sigma^{+}+\frac{1}{3}(a-4)\left(n+\Sigma^{0}+\Xi^{0}\right)+\Sigma^{-}+\Xi^{-}=0$
resulting from the electric charge being a U -spin singlet

| $\left\langle r^{2}\right\rangle\left[\mathrm{fm}^{2}\right]$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Full | CT | Exp |
| p | 0.707 | 0.596 | $0.7071(7)$ |
| n | -0.116 | -0.049 | $-0.116(2)$ |
| $\Lambda$ | -0.029 | -0.024 | $\ldots$ |
| $\Sigma^{+}$ | 0.742 | 0.596 | $\ldots$ |
| $\Sigma^{0}$ | 0.029 | 0.024 | $\ldots$ |
| $\Sigma^{-}$ | 0.683 | 0.548 | $0.608(156)$ |
| $\Xi^{0}$ | -0.016 | -0.049 | $\ldots$ |
| $\Xi^{-}$ | 0.633 | 0.548 | $\ldots$ |

proton radius used is the one resulting from the muonic Hydrogen Lamb shift

LO magnetic moment is given by,

$$
\frac{\kappa}{2 \Lambda} B_{+}^{i a} G^{i a}
$$ in the $\mathcal{O}\left(\xi^{2}\right)$ Lagrangian $e \frac{\kappa}{2 \Lambda}=\mu_{p}=2.7928 \mu_{N}$

LO magnetic moment operator $G^{i a}$ is proportional to the LO axial currents

## LO ratios of magnetic moments

Note that the experimentally available magnetic moment ratios and corresponding LO results shows that the combined approach can describe well these ratios at LO

NLO effects stem from quark masses and spin symmetry breaking
$\operatorname{SU}(3)$ breaking corrections $\mathcal{O}\left(\left(m_{s}-\hat{m}\right) N_{c}\right)$
spin symmetry breaking corrections $\mathcal{O}\left(1 / N_{c}\right)$

|  | Exp | LO |
| :--- | :---: | :---: |
| $p / n$ | -1.46 | -1.5 |
| $\Sigma^{+} / \Sigma^{-}$ | -2.12 | -3 |
| $\Lambda / \Sigma^{+}$ | -0.25 | $-\frac{1}{3}$ |
| $p / \Sigma^{+}$ | 1.14 | 1 |
| $\Xi^{0} / \Xi^{-}$ | 1.92 | 2 |
| $p / \Xi^{0}$ | -2.23 | -1.5 |
| $\Delta^{++} / \Delta^{+}$ | $1.4(2.8)$ | 2 |
| $\Omega^{-} / \Delta^{+}$ | -0.75 | -1 |
| $p / \Delta^{+}$ | 1.03 | 1 |
| $p /\left(\Delta^{+} p\right)$ | 0.78 | $\frac{3}{2 \sqrt{2}}$ |
| $p /\left(\Sigma^{* 0} \Lambda\right)$ | 1.02 | $\sqrt{\frac{3}{2}}$ |
| $p /\left(\Sigma^{*+} \Sigma^{+}\right)$ | -0.88 | $-\frac{3}{2 \sqrt{2}}$ |

As an input proton and neutron magnetic moments giving the following relation between LECs

|  |  |  | $\begin{aligned} & \kappa_{1}=-19.662+6.926 \kappa-0.833\left(\kappa_{4}+\frac{\kappa_{5}}{2}\right)+2.550 \kappa_{D} \\ & \kappa_{3}=-5.136+1.648 \kappa-0.218\left(\kappa_{4}+\frac{\kappa_{5}}{2}\right)+\kappa_{D} \end{aligned}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEC $\times \frac{m_{N}}{\Lambda}$ | LO | NNLO |  | $\mu_{L O}$ | $\mu_{N N L O}$ | $\mu_{\text {Exp }}$ |  | $\mu_{L O}$ | $\mu_{N N L O}$ | $\mu_{E x p}$ |
| $\kappa$ | 2.80 | 2.887 | p | 2.691 | Input | $2.792847356(23)$ | $\Delta^{++}$ | 5.381 | 5.962 | $3.7-7.5$ |
| $\kappa_{1}$ | 0 | 3.29 | n | -1.794 | Input | $-1.9130427(5)$ | $\Delta^{+}$ | 2.691 | 3.049 | $2.7(3.6)$ |
| $\kappa_{2}$ | 0 | 0.00 | $\Sigma^{+}$ | 2.691 | 2.367 | 2.458(10) | $\Delta^{0}$ | 0 | 0.136 | .. |
| $\kappa_{D}$ | 0 | 0.397 | $\Sigma^{0}$ | 0.897 | 0.869 | $\ldots$ | $\Delta^{-}$ | -2.691 | $-2.777$ | ... |
| $\kappa_{F}$ | 0 |  | $\Sigma^{-}$ | -0.897 | -0.629 | -1.160(25) | $\Sigma^{*+}$ | 2.691 | 3.151 |  |
| $\kappa_{3}$ | 0 | 0.53 | $\Lambda$ | -0.897 | -0.611 | -0.613(4) | $\Sigma^{* 0}$ | 0 | 0.343 | $\ldots$ |
| $\kappa_{4}$ | 0 | -2.85 | $\Xi^{0}$ | -1.794 | $-1.275$ | -1.250(14) | $\Sigma^{*-}$ | -2.691 | $-2.465$ |  |
| $\kappa_{5}$ | 0 | 1.05 | $\Xi^{-}$ | -0.897 | $-0.652$ | $-0.6507(25)$ | $\Xi^{* 0}$ | 0 | 0.490 | $\ldots$ |
|  |  |  | $\Delta^{+} p$ | 2.537 | 3.65 | 3.58(10) | $\Xi^{*-}$ | -2.691 | $-2.208$ |  |
|  |  |  | $\Sigma^{0} \Lambda$ | 1.553 | 1.57 | 1.61(8) |  | -2.691 | -2.005 | -2.02(5) |
|  |  |  | ${ }^{* *} \Lambda$ | 2.197 | 2.68 | $2.73(25)^{\text {a }}$ |  |  |  |  |
|  |  |  | $\Sigma^{*+} \Sigma^{+}$ | -2.537 | $-2.35$ | $-3.17(36)^{\text {b }}$ |  |  |  |  |

Coleman Glashow (CG) relation $\quad \mu_{p}-\mu_{n}-\mu_{\Sigma^{+}}+\mu_{\Sigma^{-}}+\mu_{\Xi^{0}}-\mu_{\Xi^{-}}=0$ valid at tree level NNLO and receives only a finite correction from the one loop contributions.

Only the magnetic radii of proton and neutron are experimentally known

| $\kappa_{r}=-2.63$ | $\left\langle r^{2}\right\rangle\left[\mathrm{fm}^{2}\right]$ |  |  |
| :--- | :--- | :---: | :--- |
|  | Exp | Th | Loop |
| p | 0.724 | 0.718 | 0.134 |
| n | 0.746 | 0.747 | 0.179 |
| $\Sigma^{+}$ | $\cdots$ | 0.766 | 0.100 |
| $\Sigma^{0}$ | $\cdots$ | 0.698 | 0.061 |
| $\Sigma^{-}$ | $\cdots$ | 0.922 | 0.189 |
| $\Lambda$ | $\cdots$ | 0.895 | 0.079 |
| $\Xi^{0}$ | $\cdots$ | 0.872 | 0.081 |
| $\Xi^{-}$ | $\cdots$ | 0.796 | 0.035 |
| $\Delta^{+} p$ | $\cdots$ | 0.875 | 0.226 |

## LQCD can test these predictions

At tree level $\quad A^{\mu c}=\stackrel{\circ}{g}_{A} G^{j c}\left(g_{j}^{\mu}-\frac{q^{\mu} q_{j}}{q^{2}-M_{b}^{2}} \delta^{b c}\right) \xrightarrow{\text { In the large Nc limit }} A^{i c}$


At the leading order, axial couplings are given in terms of $\stackrel{\circ}{g}_{A}$

$$
\text { Octet : } F=\stackrel{\circ}{g}_{A} / 3 \quad D=\stackrel{\circ}{g}_{A} / 2 \quad \text { Decuplet : } \mathcal{H}=\stackrel{\circ}{g}_{A} / 6
$$

At vanishing 3-momentum $\quad\left\langle\mathbf{B}^{\prime}\right| A^{i c}|\mathbf{B}\rangle=g_{A}^{\mathbf{B B}^{\prime}} \frac{6}{5}\left\langle\mathbf{B}^{\prime}\right| G^{i c}|\mathbf{B}\rangle$
The calculations up to 1-loop corrections to the axial-currents are performed in $\mathrm{SU}(3)$

$$
A^{i c}+\delta A_{1-\mathrm{loop}}^{i c}
$$

Diagrams contributing to the 1-loop corrections to the axial vector currents in $\underline{\mathrm{SU}(3)}$


SU(2)


A. CALLE CORDÓN AND J.L. GOITY PHYSICAL REVIEW D 87, 016019 (2013)

## Baryon axial-vector currents : Fits to LQCD




Baryon
Fit results
C. Alexandrou et al. Phys. Rev. D94, 034502 (2016)

| Fit | $\chi_{\text {dof }}^{2}$ | $\circ_{A}$ | $\delta g_{A}$ | $C_{1}^{A}$ | $C_{2}^{A}$ | $C_{3}^{A}$ | $C_{4}^{A}$ | $D_{1}^{A}$ | $D_{2}^{A}$ | $D_{3}^{A}$ | $D_{4}^{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LO | 3.9 | 1.35 | - | - | - | - | - | - | - | - | - |
| NLO Tree | 0.91 | 1.42 | - | -0.18 | - | - | - | - | 0.009 | - | - |
| NLO Full | 1.08 | 1.02 | 0.15 | -1.11 | 0 | 1.08 | 0 | -0.56 | -0.02 | -0.08 | 0. |
|  | 1.13 | 1.04 | 0.08 | -1.17 | 0 | 1.15 | 0 | -0.59 | -0.02 | -0.09 | 0. |
|  | 1.19 | 1.06 | 0. | -1.23 | 0 | 1.21 | 0 | -0.62 | -0.03 | -0.09 | 0. |

First LQCD calculations for baryon axial currents including hyperons and the decuplet:

## 6 Baryon axial-vector currents : Fits to LQCD






$g_{A}^{3}$
oे

 $g_{A}^{8}$










- The $\sigma$ terms of nucleons were calculated using $\mathrm{SU}(3) \mathrm{BChPT} \times 1 / \mathrm{Nc}$
- Our value for sigma $\mathrm{Pi}-\mathrm{N}$ is in agreement with similar determinations in calculations that included the decuplet baryons as explicit degrees of freedom

The " $\sigma$ term puzzle" is understood as the result of large non-analytic contributions to the mass combination, while the higher order corrections to the $\sigma$ terms have natural magnitude.

The intermediate spin $3 / 2$ baryons play an important role in enhancing $\hat{\sigma}$ and thus $\sigma_{\pi N}$
The analysis carried out here shows that there is compatibility in the description of $G M O$ and the nucleon $\sigma$ terms

- The value of $\sigma \pi N=69 \pm 10 \mathrm{MeV}$ obtained here from fitting to Physical \& LQCD baryon masses agrees with the more recent results from $\pi N$ analyses

- BChPT $\times 1 / N_{c}$ improves convergence by eliminating large $N_{c}$ power power violating terms in loop corrections
- $S U(3) B C h P T \times 1 / N_{c}$ shows a great improvement in describing charge, charge-radii, magnetic moments, magnetic-radii
- Only two LECs are needed to determine charge-radii of baryons
- Only eight LECs are needed to determine magnetic moments of baryons
- Only one LEC is needed to determine magnetic radii of baryons
- Axial couplings are also an important test of this approach
- More LQCD calculations are welcome, and current predictions can be used to test experimentally as well as in LQCD


## Thank you



