Theoretical Aspects on bound states, virtual states and resonances from Friedrichs model

Zhiguang Xiao Si Chuan University

Talk given online at The 10th International Workshop on Chiral Dynamics (15 Nov.-19Nov.), Beijing, IHEP

November 15, 2021

CONTENTS

MOTIVATION

SINGLE CHANNEL FRIEDRICHS MODEL
Virtual state, bound state, resonance solutions

GENERALIZATION: MORE STATES, RELATIVISTIC Dynamically generated states

Application: P-wave first excited chrmonium

APPLICATION: TWO-POLE STRUCTURE

CONCLUSION

MOTIVATION

- ightharpoonup Hadronic states: Mesons, $q\bar{q}$, Baryons, qqq,
- ► The intermediate states in the scatterings: Resonance, virtual state(anti-bound), bound states.
- ► The intermediate state could be: $|q\bar{q}\rangle + |\text{two hadrons}\rangle \cdots$? E.g. $D\bar{D}^* \to \chi_{c1} \to D\bar{D}^*$.
- Pure composite states: dynamically generated. How to express using the component states?
- Can we define the compositeness and elementariness for a state?
- Dynamically generated states: How is it generated from interaction?
- ➤ To study these theoretical problems, look at a solvable model is instructive: Friedrichs model.

THE SIMPLEST FRIEDRICHS MODEL[Friedrichs, Commun. Pure

Appl. Math.,1(1948),361, See O. Civitaresea, M. Gadella, Phys.Rep.396,41 for review]

Different models in the same spirit: Lee model, Anderson model,
Jaynes Cummings, ...

$$H = H_0 + V$$

Free Hamiltonian:bare discrete state $|1\rangle$, a continuum state $|\omega\rangle$, (set threshold=0 for simplicity)

$$H_0 = \omega_0 |1\rangle\langle 1| + \int_0^\infty \omega |\omega\rangle\langle \omega| d\omega$$

► Interaction:

$$V = \lambda \int_{0}^{\infty} [f(\omega)|\omega\rangle\langle 1| + f^{*}(\omega)|1\rangle\langle\omega|] d\omega$$

▶ Orthonormal condition: $\langle 1|1\rangle=1$, $\langle 1|\omega\rangle=0$, and $\langle \omega|\omega'\rangle=\delta(\omega-\omega')$

Completeness:
$$|1\rangle\langle 1|+\int_0^\infty d\omega |\omega\rangle\langle\omega|=1$$

This model is exactly solvable.

Eigenvalue equation:

$$H|\Psi(E)\rangle = (H_0 + V)|\Psi\rangle = E|\Psi(E)\rangle.$$

Solutions:

▶ Continuum: Eigenvalue E > 0, real Solution: define inverse resolvent

$$\eta^{\pm}(E) = E - \omega_0 - \lambda^2 \int_0^{\infty} \frac{f(\omega)f^*(\omega)}{E - \omega \pm i\epsilon} d\omega$$

$$|\Psi_{\pm}(E)\rangle = |E\rangle + \lambda \frac{f^*(E)}{\eta^{\pm}(E)} \Big[|1\rangle + \lambda \int_0^{\infty} \frac{f(\omega)}{E - \omega \pm i\epsilon} |\omega\rangle d\omega \Big]$$

S-matrix:

$$S(E, E') = \delta(E - E') \left(1 - 2\pi i \frac{\lambda f(E) f^*(E)}{n^+(E)} \right).$$

Discrete states: The zero point of $\eta(E)$ corresponds to eigenvalues of the full Hamiltonian — discrete states.

DISCRETE STATE SOLUTIONS: BOUND STATES

$$\eta^{I}(E) = E - \omega_0 - \lambda^2 \int_0^\infty \frac{f(\omega)f^*(\omega)}{E - \omega} d\omega = 0$$

▶ Bound states: solutions on the first sheet real axis below the threshold.

$$|z_B\rangle = N_B \Big(|1\rangle + \lambda \int_0^\infty \frac{f(\omega)}{z_B - \omega} |\omega\rangle d\omega\Big)$$

where $N_B = (\eta'(z_B))^{-1/2} = (1 + \lambda^2 \int d\omega \frac{|f(\omega)|^2}{(z_B - \omega)^2})^{-1/2}$, such that $\langle z_B | z_B \rangle = 1$.

- ► Elementariness: $Z = N_B^2$; Compositeness: $X = N_B^2 \lambda^2 \int d\omega \frac{|f(\omega)|^2}{(z_P - \omega)^2}$.
- ▶ Eg. If $\omega_0 < 0$, there could be a bound state. In the weak coupling limit, it $\rightarrow |1\rangle$,
- Eg. there could also be dynamically generated bound state when the coupling is strong.

DISCRETE STATE SOLUTIONS: VIRTUAL STATES

► Virtual states: Solutions on the second sheet real axis below the threshold.

$$|z_v^{\pm}\rangle = N_v^{\pm} \Big(|1\rangle + \lambda \int_0^{\infty} \frac{f(\omega)}{|z_v - \omega|_{\pm}} |\omega\rangle \mathrm{d}\omega\Big), \quad \langle \tilde{z}_v^{\pm}| = \langle z_v^{\mp}|,$$

where

$$N_v^-=N_v^{+*}=(\eta'^+(z_v))^{-1/2}=(1+\lambda^2\int d\omega \frac{|f(\omega)|^2}{[(z_v-\omega)_+]^2})^{-1/2}$$
, such that $\langle \tilde{z}_v^\pm|z_v^\pm \rangle=1$. No probability explanation.

Elementariness & compositeness not well-defined.

DISCRETE STATE SOLUTIONS: VIRTUAL STATES

- ▶ When $\omega_0 < 0$, a bound state generated from $|1\rangle$ is always accompanied with a virtual state for weak coupling, $\rightarrow |1\rangle$.
- ▶ Virtual states from the singularity of the form factor, $(|z_v\rangle \not\to |1\rangle$, at $\lambda \to 0)$

$$\begin{split} \eta^I = & z - \omega_0 - \lambda^2 \int_0^\infty \frac{|f(\omega)|^2}{z - \omega} \mathrm{d}\omega, \quad (G(\omega) \equiv |f(\omega)|^2) \\ \eta^{II}(\omega) = & \eta^I(\omega) + 2\pi i \lambda^2 \ G^{II}(\omega) = \eta^I(\omega) - 2\lambda^2 \pi i \ G(\omega), \end{split}$$

DISCRETE STATE SOLUTIONS: RESONANCE

▶ Resonant states: $\omega_0 >$ threshold, the discrete state becomes a pair of solutions z_R , z_R^* , on the second sheet of the complex plane. $\hat{H}|z_R\rangle = z_R|z_R\rangle$

$$|z_R\rangle = N_R \Big(|1\rangle + \lambda \int_0^\infty d\omega \frac{f(\omega)}{[z_R - \omega]_+} |\omega\rangle \Big),$$

$$|z_R^*\rangle = N_R^* \Big(|1\rangle + \lambda \int_0^\infty d\omega \frac{f(\omega)}{[z_R^* - \omega]_-} |\omega\rangle \Big),$$

DISCRETE STATE SOLUTIONS: RESONANCE

Resonant states:

Normalization: $\langle z_R|z_R\rangle=0$, naïve argument, $z_R^*\neq z_R$,

$$\langle z_R | \hat{H} | z_R \rangle = z_R \langle z_R | z_R \rangle = z_R^* \langle z_R | z_R \rangle = 0$$

 $|z_R\rangle$ is not in the Hilbert space — need rigged Hilbert space description.

▶ Left eigenstates: $\langle \tilde{z}_R | \hat{H} = \langle \tilde{z}_R | z_R \rangle$

$$\langle \tilde{z}_R | = \langle z_R^* | = N_R \Big(\langle 1 | + \lambda \int_0^\infty d\omega \frac{f(\omega)}{[z_R - \omega]_+} \langle \omega | \Big),$$
$$\langle \tilde{z}_R^* | = \langle z_R | = N_R^* \Big(\langle 1 | + \lambda \int_0^\infty d\omega \frac{f(\omega)}{[z_R^* - \omega]_-} \langle \omega | \Big).$$

 N_R is a complex normalization parameter,

$$N_R=(\eta'^+(z_R))^{-1/2}=(1+\lambda^2\int d\omega \frac{|f(\omega)|^2}{[(z_R-\omega)_+]^2})^{-1/2}$$
 such that $\langle \tilde{z}_R|z_R \rangle=1$, [Sekihara,Hyodo,Jido,PTEP 2015 (2015) 063D04]

Other physical proposal of "elementariness" and "compositeness": [Guo,Oller,PRD93,096001].

DISCRETE STATE SOLUTIONS: DYNAMICALLY GENERATED RESONANCE

Dynamical resonance generated from the singularity of the form factor.

- $G = \sqrt{\omega}e^{-\omega^2/a^2}$ case : Similar situation could happen.
- ▶ A caveat to using form factor put by hand to suppress the high *E* contribution: The form factor may play an important role in generating the dynamical state.

OTHER INTERESTING THINGS

Higher order poles: [A. Mondragon and E Hernandez, J. Phy. A26(1993), 5595; A. Bohm et.al. JMP38(1997), 6072;

I. E. Antoniou et.al., JMP39(1997),2459; E. Hernández et.al., Int.J.Theo. Phys.,42(2003), 2167]

Hamiltonian: can not be diagonalized exactly, \rightarrow Jordan form

➤ Completeness relation: redefine the continuum states to including the resonances into the completeness relation [T. Petrosky et..al. Phys.A173(1991),175;ZX,Zhou,PRD94(2016)076006]

GENERALIZATION: [ZYZ&ZX,JMP.58(2017),062110;JMP58(2017), 072102]

Real world: interaction between $|0; JM\rangle$ and $|\mathbf{p}_1\mathbf{p}_2, S\rangle$

▶ Partial wave decomposition: $|\mathbf{p}_1\mathbf{p}_2\rangle \rightarrow |p, JM, lS\rangle \sim |\omega, l\rangle$

$$H = M_0|0\rangle\langle 0| + \sum_{l} \int d\omega \,\omega |\omega, l\rangle\langle \omega, l| + \sum_{l} \int d\omega \,g_l(\omega)|0\rangle\langle \omega, l| + h.c.$$

- Include more discrete states.
- Include interaction among continua: in general not solvable anymore.
- ► Separable interaction potential like in [E. Hernández et.al, PRC29(1984),722; Aceti et.al., PRD86,(2012),014012; Sekihara, PTEP(2015)063D04; Weinberg, PR131(1963),441;...]: solvable.

$$\begin{split} H &= \sum_{i=1}^{D} M_{i} |i\rangle \langle i| + \sum_{i=1}^{C} \int_{a_{i}}^{\infty} \mathrm{d}\omega \, \omega |\omega; i\rangle \langle \omega; i| \\ &+ \sum_{i,j=1}^{C} v_{ij} \Big(\int_{a_{i}}^{\infty} \mathrm{d}\omega f_{i}(\omega) |\omega; i\rangle \Big) \Big(\int_{a_{j}}^{\infty} \mathrm{d}\omega f_{j}^{*}(\omega) \langle \omega; j| \Big) \\ &+ \sum_{i=1}^{D} \sum_{i=1}^{C} \Big[u_{ji}^{*} |j\rangle \Big(\int_{a_{i}}^{\infty} \mathrm{d}\omega f_{i}^{*}(\omega) \langle \omega; i| \Big) + u_{ji} \Big(\int_{a_{i}}^{\infty} \mathrm{d}\omega f_{i}(\omega) |\omega; i\rangle \Big) \langle j| \Big] \end{split}$$

Dynamically generated states

Study the near threshold behavior of the dynamically generated states.

- No discrete bare states → dynamically generated discrete state
 Bound state (molecular state), resonances, or virtual state.
- ► Hamiltonian:

$$H = \int_{a} d\omega \, \omega |\omega\rangle\langle\omega| \pm \lambda^{2} \int_{a} d\omega \int_{a} d\omega' f(\omega) f^{*}(\omega') |\omega\rangle\langle\omega'| \quad (1)$$

- Form factor $f(\omega) = (\omega a)^{(l+1/2)/2} \exp\{-(\omega a)/(2\Lambda)\}.$
- ▶ Discrete state pole position:

$$\mathbf{M}_{\pm}(E) = \det M_{\pm} = 1 \pm \lambda^2 G(E) = 1 \pm \lambda^2 \int_a d\omega \frac{|f(\omega)|^2}{\omega - E} = 0$$

– sign: attractive.

EG: DYNAMICALLY GENERATED STATES, ATTRACTIVE POTENTIAL

ightharpoonup S-wave: Strong coupling, a bound state ightharpoonup Weak coupling, a virtual state

P-wave: Strong coupling, A bound state and a virtual state → Weak coupling, a pair of resonance poles.

EG: D-WAVE DYNAMICALLY GENERATED STATES

Attractive coupling:

► The resonance poles merge at the threshold, and one becomes a virtual state, the other becomes a bound states.

Near threshold poles for attractive potential: when coupling is becoming stronger

ightharpoonup l > 1: a virtual state and a bound state appear together.

Hyodo, PRC90:055208(2014);

- l=0, one bound/virtual state near the threshold.
- ► Explained using the effective range expansion in Hanhart et. al. PLB739(2014)375 and also using Jost function in

Dynamical V.S. Elementary

Elementary: originated from the bare discrete state Dynamical: generated by interaction

S-wave bound state:

Dynamical state: have no acompanied virtual state. Elementary state: always accompanied with a virtual state pole at weak coupling

- Pole counting rule [D. Morgan, NPA543(1992),632;Ou Zhang,C. Meng,H.Q. Zheng Phys.Lett.B680(2009),453]
- Higher partial wave, no such a difference: The dynamically generated state if appears from the threshold (resonance pole merging), it must acompanied with a virtual state.
- ► In weak coupling limit: The dynamically generated states do not go to bare states, but towards the singular point of the form factor.

RELATIVISTIC FRIEDRICHS-LEE MODEL

[Antoniou, et.al., JMP39(1998), 2995; ZYZ&ZX, EPJC80(2020), 1191]

Creation and annihilation operators:

Discrete bare state: $a_{\vec{i}}^{\dagger}|0\rangle = |\vec{k}\rangle;$

Continuum: treat the two-particle states together, [JMP4(1963),490, Macfarlane; Nuo.Cim,34,1289,McKerrell]

 $B_{\vec{p}m[wi]ls}^{\dagger}|0\rangle = |\vec{p}m[wj]ls\rangle$

$$[B_{\vec{p}'m'[w'j']l's'}, B_{\vec{p}m[wj]ls}^{\dagger}] = \delta^{(3)}(\vec{p} - \vec{p}') \frac{\delta(q - q')}{q^2} \delta_{mm'} \delta_{ss'} \delta_{ll'} \delta_{jj'}$$

$$= \beta^{-1} \delta^{(3)}(\vec{p} - \vec{p}') \delta(E - E') \delta_{mm'} \delta_{ss'} \delta_{ll'} \delta_{jj'}, \quad \beta(E) = \frac{qq_1^0 q_2^0 E}{2}$$

Hamiltonian:

$$\begin{split} P_0 &= \int d^3\mathbf{k} \beta(E) dE \, E \, B^\dagger(E,\mathbf{k}) B(E,\mathbf{k}) + \int d^3\mathbf{k} \, \omega(\mathbf{k}) \, a^\dagger(\mathbf{k}) a(\mathbf{k}) \\ &+ \int d^3\mathbf{k} \, \beta(E) dE \, \alpha(E,\mathbf{k}) \, \big(a(\mathbf{k}) + a^\dagger(-\mathbf{k}) \big) \big(B^\dagger(E,\mathbf{k}) + B(E,-\mathbf{k}) \big) \\ \omega(\mathbf{k}) &= \sqrt{m^2 + \mathbf{k}^2}, \quad \alpha(E,\mathbf{k}) = \alpha^*(E,-\mathbf{k}) \end{split}$$

 α : interaction form factor between the discret state and the continuum.

Relativisite Friedrichs-Lee model

Find b^{\dagger} s.t. $[H, b^{\dagger}(E)] = Eb^{\dagger}(E)$

Find
$$b^{\dagger}$$
 s.t. $[H, b^{\dagger}(E)] = Eb^{\dagger}(E)$

Continuum: $E > E_{th}$

$$\begin{split} b_{in}^{\dagger}(E,\mathbf{p}) = & B^{\dagger}(E,\mathbf{p}) - \frac{2\omega(\mathbf{p})\alpha(k(E,\mathbf{p}))}{\eta_{+}(E,\mathbf{p})} \bigg[\int_{M_{th}} dE' \beta(E')\alpha(k(E',\mathbf{p})) \bigg[\frac{B^{\dagger}(E',\mathbf{p})}{(E'-E-i0)} \\ & - \frac{B(E',-\mathbf{p})}{(E'+E+i0)} \bigg] - \frac{1}{2\omega(\mathbf{p})} \bigg((\omega(\mathbf{p})+E)a^{\dagger}(\mathbf{p}) - (\omega(\mathbf{p})-E)a(-\mathbf{p}) \bigg) \bigg] \,, \end{split}$$

▶ Discrete state: at the solution of
$$\eta(z) = 0$$

$$b^{\dagger}(E_0, \mathbf{p}) = N \left[\frac{(\omega(\mathbf{p}) + E_0)}{\sqrt{2\omega(\mathbf{p})}} a^{\dagger}(\mathbf{p}) - \frac{(\omega(\mathbf{p}) - E_0)}{\sqrt{2\omega(\mathbf{p})}} a(-\mathbf{p}) - \sqrt{2\omega(\mathbf{p})} \int_{M_{\bullet}} dE' \beta(E') \left[\frac{\alpha(k(E', \mathbf{p}))}{E' - E_0} B^{\dagger}(E', \mathbf{p}) - \frac{\alpha(k(E', \mathbf{p}))}{E' + E_0} B(E', -\mathbf{p}) \right] \right],$$

$$\eta_{\pm}(s) = s - \omega_0^2 - \int_{s_{th}} ds' \frac{\rho(s')}{s - s' \pm i0}, \quad \rho = 2\omega_0 \frac{k\varepsilon_1 \varepsilon_2}{W} |\alpha(k)|^2$$

$$\blacktriangleright S\text{-matrix}$$

$$S(E, \mathbf{p}; E', \mathbf{p}') = \delta^{(3)}(\mathbf{p} - \mathbf{p}')\delta(E - E') \left(1 - 2\pi i \frac{\rho(s)}{W}\right).$$

S-matrix
$$S(E,\mathbf{p};E',\mathbf{p'}) = \delta^{(3)}(\mathbf{p}-\mathbf{p'})\delta(E-E')\Big(1-2\pi i\frac{\rho(s)}{\eta_+(s)}\Big)\,.$$

For bound state $N = \frac{1}{\sqrt{2E_0}} \left[1 + 2\omega(\mathbf{p}) \int_{M_{th}} dE' \beta(E') \frac{2E' |\alpha(k(E',\mathbf{p}))|^2}{(E' + E_0)^2 (E' - E_0)^2} \right]^{-1/2}$

FRIEDRICHS-QPC SCHEME

To study to hadron spectrum using nonrelativistic Friedrichs model: Solve $\eta(E)=0$.

$$\eta = z - \omega_0 - \lambda^2 \int_0^\infty \frac{|f(\omega)|^2}{z - \omega} d\omega$$

- ▶ Coupling vertex between the discrete state and continuum $f(\omega)$: dynamically given.
- ► The interactions can be estimated using different models: we will use the QPC (3P0) model.

$$\langle BC|T|A\rangle = \delta^{3}(\vec{P}_{f} - \vec{P}_{i})M^{ABC}$$

$$T = -3\gamma \sum_{m} \langle 1m1 - m|00\rangle \int d^{3}\vec{p}_{3}d^{3}\vec{p}_{4}\delta^{3}(\vec{p}_{3} + \vec{p}_{4})$$

$$\times \mathcal{Y}_{1}^{m}(\frac{\vec{p}_{3} - \vec{p}_{4}}{2})\chi_{1-m}^{34}\phi_{0}^{34}\omega_{0}^{34}b_{3}^{\dagger}(\vec{p}_{3})d_{4}^{\dagger}(\vec{p}_{4}).$$

$$A^{1}$$

- γ : the strength of creating a quark-antiquark pair. [Blundell,Godfrey,PRD53(1996),3700]
- ▶ The bare mass and wave functions of A, B, C are Gl's results. [Godfrey & Isgur, PRD32,189(1985)].

$$L=1, S=1, J^{PC}=0,1,2^{++},\chi_{c0,1,2}; L=1, S=0, J^{PC}=1^{+-}, h_c(2P).$$

Current status:

- ▶ 2^3P_2 is well established: X(3930), [Belle,PRL96,082003;BaBar,PRD81,092003]
- ▶ 2^3P_1 channel: X(3872) [Belle,PRL91,262001] molecular state or $c\bar{c}$? Mixture of molecule and $c\bar{c}$, and which is the dominant component?
- ▶ 2^1P_1 channel: The $h_c(2P)$ state still has not been seen by experiments.
- ▶ 2^3P_0 channel: X(3915) [Belle,PRL104,092001;BaBar,PRD86,072002] (0⁺⁺ or 2⁺⁺?[Zhou et.al., PRL115,022001]), $\chi_{c0}(3860)$ [Belle, PRD95,112003] ?

Confusions [Guo,Meissner,PRD,86,091501; Olsen,PRD91,057501].

Our scheme

Friedrichs model + QPC model.

- Bare states: the masses and wave functions from the GI.
- Bare discretes $c\bar{c}$ states: $\chi_{c0}(2P)$ at 3917 MeV, $\chi_{c1}(2P)$ at 3953 MeV, $\chi_{c2}(2P)$ at 3979 MeV. $h_c(2P)$ at 3956MeV.
- ▶ OZI allowed continuum states: $D\bar{D}$, $D\bar{D}^*$, $D^*\bar{D}^*$ threshold, upto D-wave.

Channels:

 $\begin{array}{ll} \chi_{c0}(2P) \colon \ D\bar{D} \ \mbox{(S-wave)}, \ D^*\bar{D}^* \ \mbox{(S-wave, D-wave)}. \\ \chi_{c1}(2P) \colon \ D\bar{D}^*(\mbox{S,D-wave)}, \ D^*\bar{D}^* \ \mbox{(D-wave)} \\ \chi_{c2}(2P) \colon \ D\bar{D} \ \mbox{(D-wave)}, \ D\bar{D}^* \ \mbox{(D-wave)}, \ D^*\bar{D}^* \ \mbox{(S,D-wave)}. \end{array}$

Parameterize the interactions between the bare states and the continua using the QPC model— only one free parameter γ .

Numerical results

 $\rm TABLE:$ Comparison of the experimental masses and the total widths (in MeV) [PDG2016] with our results.

$n^{2s+1}L_J$	M_{expt}	Γ_{expt}	M_{BW}	Γ_{BW}	pole	GI
$2^{3}P_{2}$	3927.2 ± 2.6	24 ± 6	3910	12	3908-5i	3979
$2^{3}P_{1}$	3942 ± 9	37^{+27}_{-17}			3917-45i	3953
	3871.69 ± 0.17	< 1.2	3871	0	3871-0i	
$2^{3}P_{0}$	3862^{+66}_{-45}	201^{+180}_{-110}	3860	25	3861-11i	3917
$2^{1}P_{1}$			3890	26	3890-22i	3956

Numerical results

- Narrow 2^3P_2 state \rightarrow well-established χ_{c2} .
- ▶ 2^3P_0 state: around 3860, narrow width $\sim 22MeV$. Belle: $M\sim 3862$, $\Gamma\sim 201^{+180}_{-110}$ MeV.
- ► Other predictions with small width, [Barnes et.al., PRD72,054026; Eichten et.al, PRD69,094019]

X(3872)

$$(2^3P_1): X(3872) \& \chi_{c1}$$

- ▶ Dynamical generated bound state $\sim 3871 \rightarrow X(3872)$
- ▶ Sensitive to γ parameter: decrease γ , X(3872) pole → second sheet virtual state pole.
- ▶ Bare state pole \rightarrow about 3917 MeV, a large width may be related to X(3940).
- ► X(3872)

$$\frac{\text{elementariness}}{\text{compositeness}} \sim 1:2.7.$$

A large portion of continuum state $D\bar{D}^*$ — more molecular component than the $c\bar{c}$ component.

- ► This information helps us in understanding its decay. [Z.Y.Zhou,ZX,PRD97(2018),034011;PRD100(2019),094025]
- ▶ This method can also be used to discuss the X_b bottomnium counterpart for X(3872) [Z.Y.Zhou,ZX,PRD99 (2019) 3, 034005].

APPLICATION: TWO-POLE STRUCTURE

- ► X(3872) as an accompanying pole: dynamically generated by interaction between χ_{c1} and continuum $D\bar{D}^*$, $D^*\bar{D}^*$.
- ► This mechanism may be a general phenomenon in hadron spectra.
- Lightest scalars, two nonets:

```
Non-q\bar{q}: f_0(500), K_0^*(700), a_0(980) f_0(980); q\bar{q}: f_0(1370), K_0^*(1430), a_0(1450), f_0(1500) or f_0(1710).
```

- ▶ Non- $q\bar{q}$ with heavy c quark: $D_0^*(2300)$, $D_{s0}^*(2317)$.
- ▶ These non- $q\bar{q}$ candidates may be generated by this mechanism. We also consider the corresponding states with b quarks.
- ► For simplicity, only consider one discrete bare state + one continuum.

RELATIVISTIC FRIEDRICHS-LEE-QPC SCHEME

To discuss both the heavy and the light hadron states:

▶ The relativistic Freidrichs model: adding negative frequency modes. Dispersion integral $E \rightarrow s$.

$$\eta(s) = s - \omega_0^2 - \int_{s_{th}} ds' \frac{\rho(s')}{s - s'}, \quad \rho = 2\omega_0 \frac{k\varepsilon_1 \varepsilon_2}{W} |\alpha(k)|^2$$

Solve $\eta(z)=0$, find poles of S-matrix: resonance, bound state, virtual state.

► Relativistic QPC: including the boost effect into the state definition[Beveran et.al. PRD27(1983),1527; Fuda,PRC86(2012), EPJC80(2020),1191;ZYZ&ZX, 055205;ZYZ&ZX, EPJC,81(2021),551].

When $\gamma=4.3$ GeV, Single channel approximation: general appearance of two-pole structures

"discrete"	"continuum"	GI mass	Input	poles	experiment states	PDG values [15]
$\frac{u\bar{u}+d\bar{d}}{\sqrt{2}}(1^3P_0)$	$(\pi \pi)_{I=0}$	1.09	1.3	$\sqrt{s_{r1}} = 1.34 - 0.29i$	$f_0(1370)$	$1.35^{\pm0.15} - 0.2^{\pm0.05}i$
				$\sqrt{s_{r2}} = 0.39 - 0.26i$	$f_0(500)$	$0.475^{\pm0.075} - 0.275^{\pm0.075}i$
$u\bar{s}(1^3P_0)$	$(\pi K)_{I=\frac{1}{2}}$	1.23	1.42	$\sqrt{s_{r1}} = 1.41 - 0.17i$	$K_0^*(1430)$	$1.425^{\pm0.05} - 0.135^{\pm0.04}i$
	-			$\sqrt{s_{r2}} = 0.66 - 0.34i$	$K_0^*(700)$	$0.68^{\pm0.05} - 0.30^{\pm0.04}i$
$s\bar{s}(1^3P_0)$	$K\bar{K}$	1.35	1.68	$\sqrt{s_{r1}} = 1.71 - 0.16i$	$f_0(1710)$	$1.704^{\pm 0.012} - 0.062^{\pm 0.009}i$
				$\sqrt{s_b} = 0.98, \sqrt{s_v} = 0.19$	$f_0(980)$	$0.99^{\pm 0.02} - 0.028^{\pm 0.023}i$
$\frac{u\bar{u}-d\bar{d}}{\sqrt{2}}(1^3P_0)$	$\pi\eta$	1.09	1.3	$\sqrt{s_{r1}} = 1.26 - 0.14i$	$a_0(1450)$	$1.474^{\pm0.019} - 0.133^{\pm0.007}i$
				$\sqrt{s_{r2}} = 0.70 - 0.42i$	$a_0(980)$	$0.98^{\pm0.02} - 0.038^{\pm0.012}i$
$c\bar{u}(1^{3}P_{0})$	$D\pi$	2.4	2.4	$\sqrt{s_{r1}} = 2.58 - 0.24i$	$D_0^*(2300)$	$2.30^{\pm 0.019} - 0.137^{\pm 0.02}i$
				$\sqrt{s_{r2}} = 2.08 - 0.10i$		
$c\bar{s}(1^3P_0)$	DK	2.48	2.48	$\sqrt{s_{r1}} = 2.80 - 0.23i$		
				$\sqrt{s_b} = 2.24, \sqrt{s_v} = 1.8$	$D_{s0}^{*}(2317)$	$2.317^{\pm 0.0005} - 0.0038^{\pm 0.0038}$
$b\bar{u}(1^3P_0)$	$\bar{B}\pi$	5.76	5.76	$\sqrt{s_{r1}} = 6.01 - 0.21i$		
				$\sqrt{s_{r2}} = 5.56 - 0.07i$		
$b\bar{s}(1^3P_0)$	$\bar{B}K$	5.83	5.83	$\sqrt{s_{r1}} = 6.23 - 0.17i$		
				$\sqrt{s_b} = 5.66, \sqrt{s_v} = 5.3$		
$c\bar{c}(2^3P_1)$	$D\bar{D}^*$	3.95	3.95	$\sqrt{s_{r1}} = 4.01 - 0.049i$	X(3940)	
				$\sqrt{s_b} = 3.785$	X(3872)	$3.87169^{\pm0.00017}$

TWO-POLE STRUCTURES

Two pole structure, a general phenomenon:

Coupling a seed $q\bar{q}$ state with the nearest open flavor states in S-wave — another new dynamical state ("dynamical pole").

Other models:[Törnqvist,PRL49(1982),624,Z.Phys.68(1995),647; E. van

Beveren et.al., Z.Phys.C30,615,PRD.27,1527; Boglione,Pennington, PRD65,114010;

 $Kalashnikova, PRD72, 034010;\ Ortega, et.al.,\ PRD81, 054023;$

 $Wolkanowski, et.al., PRD93, 014002; \ NPB909(2016)418 \ \ldots]$

When the coupling γ is turned on

- ► The seed will move into the second sheet — a pair of resonance poles ("bare pole").
- ► The dynamical pole comes from faraway on the second sheet towards the real axis: Resonance or virtual state or /and bound state poles.

$c\bar{u}$ SEED, $b\bar{u}$ SEED

 $ightharpoonup c\bar{u}$ seed couples to $D\pi$: $D_0^*(2300)$, two broad poles

$$\gamma = 4.3: \quad \sqrt{s_1} = 2.08 - i0.10; \quad \sqrt{s_2} = 2.58 - i0.24$$

 $\gamma = 3: \quad \sqrt{s_1} = 2.21 - i0.28; \quad \sqrt{s_2} = 2.39 - i0.18$

► Two-poles From Unitarized χ PT: $D_0^*(2300)$, two poles PLB582(2004),39,EEK et.al; PLB641(2006),278, FK.Guo, et. al.; PLB,767(2017),465, MA,et.al.:

$$\sqrt{s_1} = 2.105 - i0.102; \quad \sqrt{s_2} = 2.451 - i0.134$$

$$\sqrt{s_1} = 2.114 - i0.111; \quad \sqrt{s_2} = 2.473 - i0.140$$

 $\blacktriangleright b\bar{u}$ couples to $\bar{B}\pi$:

$$\gamma=4.3:\sqrt{s_1}=5.556-i0.07; \quad \sqrt{s_2}=6.01-i0.21$$
 $\gamma=3.0: \quad \sqrt{s_1}=5.62-i0.13; \quad \sqrt{s_2}=5.85-i0.26$ Unitarized APT:

Unitarized χ PT:

$$\sqrt{s_1} = 5.537 - i0.116; \quad \sqrt{s_2} = 5.840 - i0.025$$

$c\bar{s}, \ b\bar{s} \text{ SEEDS}$

 $ightharpoonup c\bar{s}$ couples to DK: $D_{s0}^*(2317)$, dynamically generated;

$$\gamma = 4.3 : \sqrt{s_b} = 2.24, \quad \sqrt{s_v} = 1.8, \quad \sqrt{s_{r1}} = 2.80 - 0.23i$$

$$\gamma = 3.0 : \sqrt{s_b} = 2.32, \quad \sqrt{s_v} = 1.9, \quad \sqrt{s_{r1}} = 2.68 - 0.26i$$

 $\blacktriangleright b\bar{s}$ couples to $\bar{B}K$:

$$\gamma = 4.3: \quad \sqrt{s_b} = 5.66, \quad \sqrt{s_v} = 5.3, \quad \sqrt{s_{r1}} = 6.23 - 0.17i$$

$$\gamma = 3.0: \quad \sqrt{s_b} = 5.72, \quad \sqrt{s_v} = 5.4, \quad \sqrt{s_{r1}} = 6.11 - 0.22i$$

Conclusion

- As an rigourously solvable model, Friedrichs model helps us in understanding the resonances, virtual states, and bound states
- Understand why resonances, virtual states are not normalizable as usual, and compositeness and elementariness not well-defined.
- ► How dynamical state is generated from the interaction between the discrete state and the continuum.
- Given the interaction vertices, it can still be used in the discussion of the real hadronic states.
- ► Two pole structure Two states dynamically related May be a general phenomenon.

Thank you!