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Motivation

▶ Hadronic states: Mesons, qq̄, Baryons, qqq, ….
▶ The intermediate states in the scatterings: Resonance, virtual

state(anti-bound), bound states.
▶ The intermediate state could be: |qq̄⟩+ |two hadrons⟩ · · · ?

E.g. DD̄∗ → χc1 → DD̄∗.
▶ Pure composite states: dynamically generated. How to

express using the component states?
▶ Can we define the compositeness and elementariness for a

state?
▶ Dynamically generated states: How is it generated from

interaction?
▶ To study these theoretical problems, look at a solvable model

is instructive: Friedrichs model.



The simplest Friedrichs model[Friedrichs, Commun. Pure

Appl. Math.,1(1948),361, See O. Civitaresea, M. Gadella, Phys.Rep.396,41 for review]

Different models in the same spirit: Lee model, Anderson model,
Jaynes Cummings, …

H = H0 + V

▶ Free Hamiltonian:bare discrete state |1⟩, a continuum state
|ω⟩, (set threshold=0 for simplicity)

H0 = ω0|1⟩⟨1|+
∫ ∞

0
ω|ω⟩⟨ω|dω

▶ Interaction:

V = λ

∫ ∞

0
[f(ω)|ω⟩⟨1|+ f∗(ω)|1⟩⟨ω|]dω

▶ Orthonormal condition: ⟨1|1⟩ = 1, ⟨1|ω⟩ = 0, and
⟨ω|ω′⟩ = δ(ω − ω′)

Completeness: |1⟩⟨1|+
∫∞

0 dω|ω⟩⟨ω| = 1
This model is exactly solvable.



Eigenvalue equation:

H|Ψ(E)⟩ = (H0 + V)|Ψ⟩ = E|Ψ(E)⟩.

Solutions:
▶ Continuum: Eigenvalue E > 0, real

Solution: define inverse resolvent

η±(E) = E − ω0 − λ2
∫ ∞

0

f(ω)f∗(ω)
E − ω ± iϵdω

|Ψ±(E)⟩ = |E⟩+ λ
f∗(E)
η±(E)

[
|1⟩+ λ

∫ ∞

0

f(ω)
E − ω±iϵ |ω⟩dω

]
▶ S-matrix:

S(E,E′) = δ(E − E′)
(

1 − 2πiλf(E)f∗(E)
η+(E)

)
.

▶ Discrete states:The zero point of η(E) corresponds to
eigenvalues of the full Hamiltonian — discrete states.



Discrete state solutions:Bound states

ηI(E) = E − ω0 − λ2
∫ ∞

0

f(ω)f∗(ω)
E − ω

dω = 0

▶ Bound states: solutions on the first sheet real axis below the
threshold.

|zB⟩ = NB

(
|1⟩+ λ

∫ ∞

0

f(ω)
zB − ω

|ω⟩dω
)

where NB = (η′(zB))
−1/2 = (1 + λ2 ∫ dω |f(ω)|2

(zB−ω)2 )
−1/2, such that

⟨zB|zB⟩ = 1.
▶ Elementariness: Z = N2

B;
Compositeness: X = N2

Bλ
2 ∫ dω |f(ω)|2

(zB−ω)2 .
▶ Eg. If ω0 < 0 , there could be a bound state. In the weak

coupling limit, it → |1⟩,
▶ Eg. there could also be dynamically generated bound state

when the coupling is strong.



Discrete state solutions:Virtual states

▶ Virtual states: Solutions on the second sheet real axis below
the threshold.

|z±v ⟩ = N±
v

(
|1⟩+ λ

∫ ∞

0

f(ω)
[zv − ω]±

|ω⟩dω
)
, ⟨z̃±v | = ⟨z∓v | ,

where
N−

v = N+∗
v = (η′+(zv))−1/2 = (1 + λ2 ∫ dω |f(ω)|2

[(zv−ω)+]2 )
−1/2,

such that ⟨z̃±v |z±v ⟩ = 1. No probability explanation.
▶ Elementariness & compositeness not well-defined.

zv

zv



Discrete state solutions:Virtual states
▶ When ω0 < 0, a bound state generated from |1⟩ is always

accompanied with a virtual state for weak coupling, → |1⟩.
▶ Virtual states from the singularity of the form factor,

(|zv⟩ ̸→ |1⟩, at λ → 0)

ηI =z − ω0 − λ2
∫ ∞

0

|f(ω)|2
z − ω

dω, (G(ω) ≡ |f(ω)|2)

ηII(ω) =ηI(ω) + 2πiλ2 GII(ω) = ηI(ω)− 2λ2πi G(ω),
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G(ω) ∼
√
ω

ω+3 G(ω) ∼
√
ωe−ω/Λ,



Discrete state solutions: Resonance

▶ Resonant states: ω0 > threshold, the discrete state becomes a
pair of solutions zR, z∗R, on the second sheet of the complex
plane. Ĥ|zR⟩ = zR|zR⟩

|zR⟩ = NR
(
|1⟩+ λ

∫ ∞

0
dω f(ω)

[zR − ω]+
|ω⟩

)
,

|z∗R⟩ = N∗
R

(
|1⟩+ λ

∫ ∞

0
dω f(ω)

[z∗R − ω]−
|ω⟩

)
,

Γ+

ω


1+ i γ



Discrete state solutions: Resonance
Resonant states:
▶ Normalization: ⟨zR|zR⟩ = 0, naïve argument, z∗R ̸= zR,

⟨zR|Ĥ|zR⟩ = zR⟨zR|zR⟩ = z∗R⟨zR|zR⟩ = 0

|zR⟩ is not in the Hilbert space — need rigged Hilbert space
description.

▶ Left eigenstates:⟨z̃R|Ĥ = ⟨z̃R|zR

⟨z̃R| = ⟨z∗R| = NR

(
⟨1|+ λ

∫ ∞

0
dω f(ω)

[zR − ω]+
⟨ω|

)
,

⟨z̃∗R| = ⟨zR| = N∗
R

(
⟨1|+ λ

∫ ∞

0
dω f(ω)

[z∗R − ω]−
⟨ω|

)
.

NR is a complex normalization parameter,
NR = (η′+(zR))

−1/2 = (1 + λ2 ∫ dω |f(ω)|2
[(zR−ω)+]2 )

−1/2 such that
⟨z̃R|zR⟩ = 1, [Sekihara,Hyodo,Jido,PTEP 2015 (2015) 063D04]

▶ Other physical proposal of “elementariness” and
“compositeness”: [Guo,Oller,PRD93,096001].



Discrete state solutions: Dynamically
generated Resonance

Dynamical resonance generated from the singularity of the form
factor.
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G(ω) ∼
√
ω

ω2+a2 , a = 1.9, ω0 = 1

▶ G =
√
ωe−ω2/a2 case : Similar situation could happen.

▶ A caveat to using form factor put by hand to suppress the
high E contribution: The form factor may play an important
role in generating the dynamical state.



Other interesting things

▶ Higher order poles: [A. Mondragon and E
Hernandez,J.Phy.A26(1993),5595;A. Bohm et.al.JMP38(1997),6072;
I. E. Antoniou et.al.,JMP39(1997),2459; E. Hernández et.al.,
Int.J.Theo.Phys.,42(2003), 2167]

Hamiltonian:
can not be diagonalized exactly,
→ Jordan form

▶ Completeness relation: redefine the continuum states to
including the resonances into the completeness relation [T.
Petrosky et..al. Phys.A173(1991),175;ZX,Zhou,PRD94(2016)076006]



Generalization:[ZYZ&ZX,JMP.58(2017),062110;JMP58(2017), 072102]

Real world: interaction between |0; JM⟩ and |p1p2,S⟩
▶ Partial wave decomposition: |p1p2⟩ → |p, JM, lS⟩ ∼ |ω, l⟩

H = M0|0⟩⟨0|+
∑

l

∫
dω ω|ω, l⟩⟨ω, l|+

∑
l

∫
dωgl(ω)|0⟩⟨ω, l|+ h.c.

▶ Include more discrete states.
▶ Include interaction among continua: in general not solvable

anymore.
▶ Separable interaction potential like in [E. Hernández et.al,

PRC29(1984),722;Aceti et.al., PRD86,(2012),014012;Sekihara,
PTEP(2015)063D04;Weinberg,PR131(1963),441;…]: solvable.

H =
D∑

i=1
Mi|i⟩⟨i|+

C∑
i=1

∫ ∞

ai
dω ω|ω; i⟩⟨ω; i|

+
C∑

i,j=1
vij

(∫ ∞

ai
dωfi(ω)|ω; i⟩

)(∫ ∞

aj
dωf∗j (ω)⟨ω; j|

)

+
D∑

j=1

C∑
i=1

[
u∗

ji|j⟩
(∫ ∞

ai
dωf∗i (ω)⟨ω; i|

)
+ uji

(∫ ∞

ai
dωfi(ω)|ω; i⟩

)
⟨j|

]



Dynamically generated states
Study the near threshold behavior of the dynamically generated
states.
▶ No discrete bare states → dynamically generated discrete state

— Bound state (molecular state), resonances, or virtual state.
▶ Hamiltonian:

H =

∫
a

dω ω|ω⟩⟨ω| ± λ2
∫

a
dω

∫
a

dω′f(ω)f∗(ω′)|ω⟩⟨ω′| (1)

▶ Form factor
f(ω) = (ω − a)(l+1/2)/2 exp{−(ω − a)/(2Λ)}.

▶ Discrete state pole position:

M±(E) = det M± = 1 ± λ2G(E) = 1 ± λ2
∫

a
dω |f(ω)|2

ω − E = 0

▶ − sign: attractive.



Eg: dynamically generated states, attractive
potential

▶ S-wave: Strong coupling, a bound state → Weak coupling, a
virtual state

▶ P-wave: Strong coupling, A bound state
and a virtual state → Weak coupling, a pair of resonance poles.



Eg: D-wave dynamically generated states

Attractive coupling:
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▶ The resonance poles merge at the threshold, and one becomes
a virtual state, the other becomes a bound states.



Near threshold poles for attractive potential: when coupling is
becoming stronger
▶ l ≥ 1: a virtual state and a bound state appear together.
▶ l = 0, one bound/virtual state near the threshold.
▶ Explained using the effective range expansion in Hanhart et.

al. PLB739(2014)375 and also using Jost function in
Hyodo,PRC90:055208(2014);



Dynamical v.s. Elementary

Elementary: originated from the bare discrete state
Dynamical: generated by interaction
▶ S-wave bound state:

Dynamical state: have no acompanied virtual state.
Elementary state: always accompanied with a virtual state
pole at weak coupling
— Pole counting rule [D. Morgan, NPA543(1992),632;Ou Zhang,C.
Meng,H.Q. Zheng Phys.Lett.B680(2009),453]

▶ Higher partial wave , no such a difference: The dynamically
generated state if appears from the threshold (resonance pole
merging), it must acompanied with a virtual state.

▶ In weak coupling limit: The dynamically generated states do
not go to bare states, but towards the singular point of the
form factor.



Relativistic Friedrichs-Lee model
[Antoniou,et.al., JMP39(1998),2995; ZYZ&ZX,EPJC80(2020),1191]
▶ Creation and annihilation operators:

Discrete bare state: a†
k⃗
|0⟩ = |⃗k⟩;

Continuum: treat the two-particle states together,
[JMP4(1963),490, Macfarlane; Nuo.Cim,34,1289,McKerrell]
B†

p⃗m[wj]ls|0⟩ = |⃗pm[wj]ls⟩

[Bp⃗′m′[w′j′]l′s′ ,B
†
p⃗m[wj]ls] =δ(3) (⃗p − p⃗′)

δ(q − q′)
q2 δmm′δss′δll′δjj′

= β−1δ(3) (⃗p − p⃗′)δ(E − E′)δmm′δss′δll′δjj′ , β(E) =
qq0

1q0
2E

w2

▶ Hamiltonian:

P0 =

∫
d3kβ(E)dE E B†(E, k)B(E, k) +

∫
d3kω(k) a†(k)a(k)

+

∫
d3kβ(E)dEα(E, k)

(
a(k) + a†(−k)

)(
B†(E, k) + B(E,−k)

)
ω(k) =

√
m2 + k2, α(E, k) = α∗(E,−k)

α: interaction form factor between the discret state and the
continuum.



Relativisitc Friedrichs-Lee model
Find b† s.t. [H, b†(E)] = Eb†(E)
▶ Continuum: E > Eth

b†in(E, p) =B†(E, p)− 2ω(p)α(k(E, p))
η+(E, p)

[ ∫
Mth

dE′β(E′)α(k(E′, p))
[ B†(E′, p)
(E′ − E − i0)

−
B(E′,−p)

(E′ + E + i0)

]
−

1
2ω(p)

(
(ω(p) + E)a†(p)− (ω(p)− E)a(−p)

)]
,

η±(s) =s − ω2
0 −

∫
sth

ds′ ρ(s′)
s − s′ ± i0

, ρ = 2ω0
kε1ε2

W
|α(k)|2

▶ S-matrix
S(E, p;E′, p′) = δ(3)(p − p′)δ(E − E′)

(
1 − 2πi ρ(s)

η+(s)

)
.

▶ Discrete state: at the solution of η(z) = 0

b†(E0, p) =N
[
(ω(p) + E0)√

2ω(p)
a†(p)− (ω(p)− E0)√

2ω(p)
a(−p)

−
√

2ω(p)
∫

Mth
dE′β(E′)

[α(k(E′, p))
E′ − E0

B†(E′, p)− α(k(E′, p))
E′ + E0

B(E′,−p)
]]

, ρ = 2ω0
kε1ε2

W
α(k)2

For bound state N = 1√
2E0

[
1 + 2ω(p)

∫
Mth

dE′β(E′) 2E′|α(k(E′,p))|2
(E′+E0)2(E′−E0)2

]−1/2



Applications: Friedrichs-QPC scheme



Friedrichs-QPC scheme
To study to hadron spectrum using nonrelativistic Friedrichs
model: Solve η(E) = 0.

η = z − ω0 − λ2
∫ ∞

0

|f(ω)|2

z − ω
dω

▶ Coupling vertex between the discrete state and continuum
f(ω): dynamically given.

▶ The interactions can be estimated using differnent models: we
will use the QPC (3P0) model.

⟨BC|T|A⟩ = δ3(P⃗f − P⃗i)MABC

T =− 3γ
∑
m

⟨1m1 − m|00⟩
∫

d3p⃗3d3p⃗4δ
3(p⃗3 + p⃗4)

× Ym
1 (

p⃗3 − p⃗4
2

)χ34
1−mϕ34

0 ω34
0 b†3(p⃗3)d†

4(p⃗4).

γ: the strength of creating a quark-antiquark pair.
[Blundell,Godfrey,PRD53(1996),3700]

▶ The bare mass and wave functions of A, B, C are GI’s results.
[Godfrey & Isgur, PRD32,189(1985)].



2P Charmonium-like states [Zhou& ZX,PRD96(2017),054031]

L = 1, S = 1, JPC = 0, 1, 2++,χc0,1,2; L = 1, S = 0, JPC = 1+−,
hc(2P).

Current status:
▶ 23P2 is well established: X(3930),

[Belle,PRL96,082003;BaBar,PRD81,092003]

▶ 23P1 channel: X(3872) [Belle,PRL91,262001] molecular state or
cc̄? Mixture of molecule and cc̄, and which is the dominant
component?

▶ 21P1 channel: The hc(2P) state still has not been seen by
experiments.

▶ 23P0 channel: X(3915) [ Belle,PRL104,092001;BaBar,PRD86,072002]
(0++ or 2++?[Zhou et.al., PRL115,022001]), χc0(3860) [Belle,
PRD95,112003] ?
Confusions [Guo,Meissner,PRD,86,091501; Olsen,PRD91,057501].



Our scheme

Friedrichs model + QPC model.
▶ Bare states: the masses and wave functions from the GI.
▶ Bare discretes cc̄ states:

χc0(2P) at 3917 MeV, χc1(2P) at 3953 MeV,
χc2(2P) at 3979 MeV. hc(2P) at 3956MeV.

▶ OZI allowed continuum states: DD̄, DD̄∗, D∗D̄∗ threshold,
upto D-wave.
Channels:
χc0(2P): DD̄ (S-wave), D∗D̄∗ (S-wave, D-wave).
χc1(2P): DD̄∗(S,D-wave), D∗D̄∗ (D-wave)
χc2(2P): DD̄ (D-wave), DD̄∗ (D-wave), D∗D̄∗ (S,D-wave)
hc(2P): DD̄∗ (S,D-wave), D∗D̄∗ (S,D-wave).

▶ Parameterize the interactions between the bare states and the
continua using the QPC model— only one free parameter γ.



Numerical results

Table: Comparison of the experimental masses and the total widths (in
MeV) [PDG2016] with our results.

n2s+1LJ Mexpt Γexpt MBW ΓBW pole GI
23P2 3927.2 ± 2.6 24 ± 6 3910 12 3908-5i 3979
23P1 3942 ± 9 37+27

−17 3917-45i 3953
3871.69 ± 0.17 < 1.2 3871 0 3871-0i

23P0 3862+66
−45 201+180

−110 3860 25 3861-11i 3917
21P1 3890 26 3890-22i 3956



Numerical results

▶ Narrow 23P2 state → well-established χc2.
▶ 23P0 state: around 3860, narrow width ∼ 22MeV. Belle:

M ∼ 3862, Γ ∼ 201+180
−110 MeV.

▶ Other predictions with small width, [ Barnes et.al., PRD72,054026;
Eichten et.al, PRD69,094019]



X(3872)
(23P1) : X(3872) & χc1
▶ Dynamical generated bound state ∼ 3871 → X(3872)
▶ Sensitive to γ parameter: decrease γ, X(3872) pole → second

sheet virtual state pole.
▶ Bare state pole → about 3917 MeV, a large width — may be

related to X(3940).
▶ X(3872)

elementariness
compositeness ∼ 1 : 2.7.

A large portion of continuum state DD̄∗ — more molecular
component than the cc̄ component.

▶ This information helps us in understanding its decay.
[Z.Y.Zhou,ZX,PRD97(2018),034011;PRD100(2019),094025]

▶ This method can also be used to discuss the Xb —
bottomnium counterpart for X(3872) [Z.Y.Zhou,ZX,PRD99 (2019)
3, 034005].



Application: Two-pole structure

▶ X(3872) as an accompanying pole: dynamically generated by
interaction between χc1 and continuum DD̄∗,D∗D̄∗.

▶ This mechanism may be a general phenomenon in hadron
spectra.

▶ Lightest scalars, two nonets:
Non-qq̄: f0(500), K∗

0(700), a0(980) f0(980);
qq̄: f0(1370), K∗

0(1430), a0(1450), f0(1500) or f0(1710).
▶ Non-qq̄ with heavy c quark: D∗

0(2300), D∗
s0(2317).

▶ These non-qq̄ candidates may be generated by this
mechanism. We also consider the corresponding states with b
quarks.

▶ For simplicity, only consider one discrete bare state + one
continuum.



Relativistic Friedrichs-Lee-QPC scheme

To discuss both the heavy and the light hadron states:
▶ The relativistic Freidrichs model: adding negative frequency

modes. Dispersion integral E → s.

η(s) = s − ω2
0 −

∫
sth

ds′ ρ(s
′)

s − s′ , ρ = 2ω0
kε1ε2

W |α(k)|2

Solve η(z) = 0, find poles of S-matrix: resonance, bound
state, virtual state.

▶ Relativistic QPC: including the boost effect into the state
definition[Beveran et.al. PRD27(1983),1527; Fuda,PRC86(2012),
EPJC80(2020),1191;ZYZ&ZX, 055205;ZYZ&ZX, EPJC,81(2021),551].



When γ = 4.3 GeV, Single channel approximation: general
appearance of two-pole structures



Two-pole structures
Two pole structure, a general phenomenon:

Coupling a seed qq̄ state with the nearest open flavor
states in S-wave — another new dynamical state (“dy-
namical pole”).

Other models:[Törnqvist,PRL49(1982),624,Z.Phys.68(1995),647; E. van
Beveren et.al.,Z.Phys.C30,615,PRD.27,1527; Boglione,Pennington, PRD65,114010;
Kalashnikova,PRD72,034010; Ortega,et.al., PRD81,054023;
Wolkanowski,et.al.,PRD93,014002; NPB909(2016)418 …]

When the coupling γ is turned on
▶ The seed will move into the second

sheet — a pair of resonance poles
(“bare pole”).

▶ The dynamical pole comes from
faraway on the second sheet
towards the real axis: Resonance or
virtual state or /and bound state
poles.



cū seed, bū seed
▶ cū seed couples to Dπ: D∗

0(2300), two broad poles
γ = 4.3 :

√s1 = 2.08 − i0.10; √s2 = 2.58 − i0.24
γ = 3 :

√s1 = 2.21 − i0.28; √s2 = 2.39 − i0.18
▶ Two-poles From Unitarized χPT: D∗

0(2300), two poles
PLB582(2004),39,EEK et.al; PLB641(2006),278, FK.Guo, et. al.;
PLB,767(2017),465, MA,et.al.:

√s1 = 2.105 − i0.102; √s2 = 2.451 − i0.134
PRD92(2015),094008,ZH.Guo et.al.:

√s1 = 2.114 − i0.111; √s2 = 2.473 − i0.140
▶ bū couples to B̄π:

γ = 4.3 :
√s1 = 5.556 − i0.07; √s2 = 6.01 − i0.21

γ = 3.0 :
√s1 = 5.62 − i0.13; √s2 = 5.85 − i0.26

Unitarized χPT:
√s1 = 5.537 − i0.116; √s2 = 5.840 − i0.025



cs̄, bs̄ seeds

▶ cs̄ couples to DK: D∗
s0(2317), dynamically generated;

γ = 4.3 :
√sb = 2.24, √sv = 1.8, √sr1 = 2.80 − 0.23i

γ = 3.0 :
√sb = 2.32, √sv = 1.9, √sr1 = 2.68 − 0.26i

▶ bs̄ couples to B̄K:

γ = 4.3 :
√sb = 5.66, √sv = 5.3, √sr1 = 6.23 − 0.17i

γ = 3.0 :
√sb = 5.72, √sv = 5.4, √sr1 = 6.11 − 0.22i



Conclusion

▶ As an rigourously solvable model, Friedrichs model helps us in
understanding the resonances, virtual states, and bound states

▶ Understand why resonances, virtual states are not
normalizable as usual, and compositeness and elementariness
not well-defined.

▶ How dynamical state is generated from the interaction
between the discrete state and the continuum.

▶ Given the interaction vertices, it can still be used in the
discussion of the real hadronic states.

▶ Two pole structure — Two states dynamically related — May
be a general phenomenon.



Thank you !
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