

Novel NMR Gyro

- No first order time averaged longitudinal polarization
- Physics scale factor

Previously reported:

- ARW ~ 10 uHz/rt Hz
- Bias < 1 uHz
 - Hz bandwidth

"Hybrid" Operation

Bloch Equation for Xe:

 $\frac{d}{dt}K_{+} = -(i\gamma_{K}B_{z} + \Gamma_{2})K_{+} + \Gamma_{SE}S_{+}$

Bias Pulse Density Modulation (PDM) Pump Polarization Modulation (PM)

Scale Factor

$$f_k = \gamma_k (B + B_{Rb}^{[1]} + B_{kl}^{[2]}) + Q + f_{rot}$$

 f_k = precession frequency of isotope k γ_k = k's gyromagnetic ratio B_{Rb} = longitudinal alkali field seen by k $B_{k\prime}$ = longitudinal field produced by k' seen by k Q = quadrupole interaction with glass cell f_{rot} = spin dependent effect to be measured

$$f_{rot} = \frac{\rho f^{131} - f^{129}}{1 + \rho} \qquad \text{where} \qquad \rho = \frac{\gamma_{129}}{\gamma_{131}}$$

Implementation

• NIMD biog field (D.), acquiance of

- NMR bias field (B₁): sequence of 2π Rb pulses; since 0π ≡ 2π, the Rb magnetometer operates at zero field
- Rb atoms are optically pumped transverse to B₁ and can coprecess with the Xe nuclei
- The NMR is driven by collisions, not oscillating fields

Development of New Apparatus

<u>Change</u>	Purpose
 Rotating table 	 Measure Earth's rotation to evaluate accuracy of measurements
 Single sided on-resonant pumping DAVLL 	 Eliminate AC Stark
Tapered amplifier	 Reduce optical pumping gradients
 Smaller cell with higher Xe pressure Smaller laser beams 	 Sensitivity at shorter length scales (for axion search)
 New shield, shim coils, and coil rig 	 Improved magnetic field uniformity Better stray field suppression

[1] T.G. Walker & M. S. Larsen, Advances In Atomic, Molecular, and Optical Physics, Vol. 65 (2016) [2] M.E. Limes, et al., ArXiv e-prints, 1805.11578 (2018)