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|. Introduction

A brief history of charm

Originally there are three quarks in the quark
model , a theory based on the SU(3) symmetry
of hadrons, in 1960s.

i) s

But there are at least two leptons and two
neutrinos since 1962 when people knew v
and v _are not the same.
U
y y The number of quarks
[ j (;j and leptons are

e .
unsymmetric



A theory of weak interaction with four quarks was
proposed by Bjorken, Glashow, llliopoulos and
Maiani in the mid-1960 and early 1970s

Phys. Lett. 11 (1964) 255;
Phys. Rev. D2 (1970) 1285
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We propose a model of weak interactions in which the currents are constructed out of four basic quark
fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory,
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The fourth quark charm was inroduced.

Then two families are formed due to the structure of
the charged current of weak interaction of quarks.

PETE

The properties of charm quark are the
same as up, except for the mass

The weak interactions of quarks and leptons
are highly symmetric in this theory.



Fine features in the theory with charm

The flavor-changing-neutral-current (FCNC)
naturally cancel in tree level.
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In experiment:

BR(K™ = r’e’v,)=(4.98+0.07)%

L BR(KT > 2°uv,) = (332+0.06)%

FCNC
BRIK* > n"utu)=(8.121.4)x107°

BR(K, > 1 ") =(6.87+£0.11)x10"



Introduing charm quark makes the theory of
weak interaction more beautiful.

Charm quark was predicted in theory several
years before it was discovered in experiment.



The eve before the discovery of charm

In March of 1974, M.K. Galllard and B. Lee studied
how charm gquark affect kaon decays through loop
effects:

K—upg, K—mvv, K—=vy, K—myy, and K — mee

A ‘ o s K
, Z
*Q® v
7 N #

w* =
P ; ’ . " I
l’ T 1 ‘f From experimental information,
v d s e they got: m <<m,
m, <5GeV

Phys. Rev. D10 (1974) 897



The revolution of 1974 The hidden charm

In the October of 1974 a heavy, narrow width particle
was discovered simultaneously by two groups, one is
led by Samuel Chao Chung Ting, the other by Burton
Richter.

Jv: M=3.1GeV, I'<1.3MeV

Brookhaven, 30-GeV alternating-gradient synchrotron

p+Be—e" +e +x
H_/

measuring 11 .

SLAC, electron-positron stroge ring SPEAR

e’ +e —hadrons, e'e”, uu -

Richter



The ADONE e+e- collider at Frascati in Italy was
designed at a maximum center-of-mass energy
3.0GeV.

That was badly unfortunate, the energy was just
below the edge of discovering this particle.

Immediately after receiving the news of J/ v
observation, they boosted the currents beyond
designed limits, ...

Phys. Rev. Lett. 33 (1974) 1404,
Phys. Rev. Lett. 33 (1974) 1406;
Phys. Rev. Lett. 33 (1974) 1408;



® The new particle J/ v is heavier than 3 protons

@ Its life is surprisingly longer than any resonances
found at that time

This can only be explained by assuming it is a
bound state of a new kind quark-antiquark pair :

CcC



The open charm

Hadrons with open charm had to be found before
charm could be acccepted as an established
explanation of J/ v.

Then the question is how to find hadrons with
open charm?



Then possible production and decay process for
charm is through weak interactions induced by
charged current:




Evidence for the production and decay of charm

Brookhaven, bubble chamber exposed to broad-
band neutrino beam, 1975

possibly 77

NP PRL34(1975)1125

vh— wW AT Tm T



The observation

The charmed-meson D was finally observed at
SLAC-Spear, at e+e- annihilation at center-of-mass

energy between 3.9GeV and 4.6GeV in 1975 and
1976.

Mass: 1.865+15 MeV

| _ PRL37(1976)255
It is DY, composed of CU

PRL37(1976)569

Itdecaysto: K*rz°

K ntnrint



A little summary for

the production environment of D mesons

e
P i 0
— C
P
(a) Hadronproduction (b) e+p production
n -
Vu
p e’

(c) Neutrino interaction (d) electron-positron collision



Experiments for charm

beam Sample
E791 T 500 GeV 2.5x10° D
CDF pp 1 GeV 1.5x10° D

Focus 7 200 GeV 1x10° D
CLEO e'e” (Y(4s)) 1.5x10° D
CLEO-C e'e (y(3770)) 10 nb cc
BABAR e'e” (Y(4s)) 1.5x10°D
LEP ee” (Z%)) 1x10° D
BELLE e'e” (Y(4s)) 1.5x10° D
BES ee (J/y)




II. What can we do with charm?

(1) To reveal the features of weak interaction
of up-type quarks

The weak interaction of charm quark in the
SM:



This can be tested with D decays:

a) Leptonic decay

D" —»u'v, D —>u'v,

b) Rare decay




c) Semi-leptonic decay

D—->rzl'v, D—>KIv

d) Hadronic decay



(2) the methods to treat strong interaction

Some methods:

® Perturbative QCD
@ Lattice QCD

® QCD sum rule

® Potential model



lll. Leptonic decays
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The vector current contribution to the hadronic
matrix element is zero due to the parity property of
the matrix element

(g7 D;)=0
Only the axial current contribute!

The hadronic matrix element induced by the axial
current is conventionally parametrized as

(0[gy"yse|D;) = if,, p*

\

decay constant



The amplitude

[fD cuty, (I—y)vp

The total decay width is then given by

2
+ Gé 2 2 m12
DDy —1'V)=5 f3 |V, [ | 1= | m,

:

Helicity suppression

%Q?O-’ fje”

antiparticle




The physical explanation of the decay constant

For the D meson to decay leptonically, ¢ and ¢
have to come together to annihilate due to the
practically zero range of the weak interactions.

C W 14

D; %
q I

The decay amplitude is therefore proporational to

l//cq (O)
"\ The wavefunction
at zero separation

Then

I, ¥ 4(0)



Recent experimental result

Decay mode exp. BR.

D" —>pu'v, (3.82£0.32£0.09)x10* 1]

D >r'v, (4.5+0.5+0.4+03)% [2
(530+047+022)% [3

(5.52+0.57+021)% 4

CLEO-c: [1] PRD78 (2008)052003
BABAR: [2] arxiv: 1003.3063

CLEO-c: [3] PRD79 (2009)052002
[4] PRD80 (2009)112004



Taking |V =0.97425, |V |=0.2256,

the decay constants can be extracted from the
measured branching ratios of leptonic decays:

f,. =(205.8+8.5+2.5) MeV

£, =(233£13£10+7) MeV

(252.5+11.1£5.2) MeV
(259.0+£6.2+3.0) MeV

Io: /0
%+ =1.14




Comparision with theoretical predictions

Theoretical predictions of fp+ and f,+/fp+. QL indicates quenched lattice calculations.

Model fpr MeV)  fpi (MeV)  frr/fp+
Lattice (nj=2+1) [1] 249+3+16 201 +3+17 1.24+0.01 +0.07
QL (Taiwan) [2] 266 + 10 4 18 235 + 8 414 1.13 £ 0.03 +0.05
QL (UKQCD) [3] 236 +£ 871 210+ 107} 1.13+0.02705)
QL [4] 231+ 12F% 211+ 14F%, 1.10 4+ 0.02

QCD Sum Rules [5] ~ 205+22  177+£21 1.16 £0.01 £0.03
QCD Sum Rules [6] 235 + 24 203 4+20 1.15+0.04

Quark Model [7] 268 234 1.15
Quark Model [8] 248427 230+25  1.08+0.01
Potential Model [9] 241 238 1.01
[sospin Splittings [10] 262 + 29
CLEO-c 233+13+10+7 205.8+8.5+2.5 1.14

[1] PRL95(2005)122002. [2] PLB624(2005)31. [3] PRD64 (2001)094501.
[4] PRD60 (1999) 074501. [5] hep-ph/0507241. [6] hep-ph/0202200.

[7] PLB635 (2006)93. [8] PLB596(2004)84.

[9] NPA744 (2004) 156; J.Phys.34(2004)297. [10] PRD47(1993) 3059



Ill Semi-leptonic decays

D meson can decay into light hadrons by emitting a
pair of leptons /v through weak interaction.

Leptons do not involve strong interactions, they can
be factored out from the hadronic matrix element

A= f;v*um s )UX gL — 5)e| D)

/

All the strong interactions are included
In the hadronic matrix element.




(X|gv* (1 —5)e| D)

® The hadronic matrix element can be decomposed into
several form factors.

® The form factors are controled by non-perturbative
dynamics, where perturbative QCD can not apply.

Several metholds are developed:

Lattice QCD
QCD Sum Rule

QCD Light-cone Sum Rule
Quark Model (potential)

Light-Front approach
Large-Energy Effective theory



¢€"  The final mesin X can be
pseudoscalar, vector, or scalar
/ meson due to the quantum

_‘\QX number of the final quark-

antiguark syetem.

_— pseudoscalar
D— Pl'v
D—-VI'v
D> Sty vector



(1) Transitions to pseudoscalar mesons D — P{Tv

According to the Lorentz structure, the hadrnoic
matrix element can be decomposed as

(Plgy* (1 —5)elD) = (p1 + p2)uF1(¢%) + (p1 — p2) F— (%)

;

p2 P1 Form Factors
q=pP — P

Why do F, and F_ only depend on g2 ?

In general, Fx= should depend on all the
Lorentz scalars formed by p, and p,:

plza P1 P p§ 5 5 5
Va Va q" = pi—2p1-p2 +p3.

2 2
mp, mpy



Equivalently the decomposition can be in another
form

; _ ’ \ m L 2 [ ] 2
(Plgy" (1 —v5)c| D) = (Pl +p2 — —— q) Fi(q®) + —Lq.Fo(q°)
7

transverse longitudinal

eIt is difficult to calculate the form factor for the
whole range of the g2 analytically in theory.

® One usually calculate the form factor for a set of
discrete points for g2, then fit these point with an
assumed formula for the g2 dependence due to
some phenomenological considerations.



Pole Dominance

C
q -

T Z.Phys.C29(1985)637

Z.Phys.C34(1987)103
The guantum munber JP
) F1(0) el
Fi(q®) = 5 of the pole resonance
1 —q2/mz.., should be the same as that

of the weak current, which
- iInduces the transition c—>q

(Plgy*(1-y5)d| D) > <P\ay§c\ D) —— -1

Vector current



The modified pole model

There may be other contributions out side the single pole,
then the formula should be modified, one proposal in the
literature is F. (0)
F q2 — *

+(q) (1—=¢q2/m%. (1 —aq?/m%. )

(<) (" _ PLB478 (2000) 417
— PRD62(2000) 114002

CTTFTe)
_ m,. =532 GeV
) F+)O(O):O’38
¢ [GeV] a =0.54(17)

Fig. 1. Fitting the lattice data using the parametrization (19). Note
that the fit of /% form factor is constrained by the precise data
for f°. For easiness. only the central curves (without errors in
parameters) are displayed.



There are also other models for the g? dependence
of the form factors, for example

Fi(q?) = F(0)e™®

The g? dependence of the form factors can be
tested by experiment.



Calculation of the differential decay width

The differential decay width of D — P#+v with lepton mass neglected is

dl’ G*
d_qE{D — P€+IJ} = L3

Voo *[(mB + mp — ¢°)% — dmpmB*/?|Fy (¢%)

192?r3m£} .

The range of g2is: 0<q’<(m,—m,)

The branching ratio:



+ FOCUS —— pole 193
- - ~mod alpham0 28 4 hep-ph/0408306

’ ~ 1" Hep-ex/0410015
B M '
05

’ o 0.5 'Il 15 2

Fig.1. The overlay of the unquenched LQCD calculation of the form factor
f(g®)[A] over the preliminary FOCUS preliminary result. The solid line represents
a pole form fit to the FOCUS data while the dotted line represents a modified pole
form fit. All the data points and the fitted lines are normalized to have f(0) = 1.

The models should be tested by exp. data.
Unfortunately, the statistics and detected range of
g? of the present data are not large enough, the
different models can not be differentiate yet.



The comparasion of theoretical prediction and
exp. Data for the form factor

Table 1: Form factors of F'P7(0) and FP%(0).

F{™(0) FP™(0)
LQCD1[1] 0.57£0.06T55 | 0.66 4+ 0.0475 5
0.57 + 0.06 7555
LQCD2[2] 0.64 +0.03+ 0.06 | 0.73 + 0.03 = 0.07
QCD SR[5] 0.5+ 0.1 0.67510
LCSR[§] 0.65 £ 0.11 0.785 £ 0.11
LCSR[9] 0.67 = 0.19 0.67 +0.20
Quark Model[13] 0.69 0.78 _
Light-Front[14] 0.67 Sliglz
— «— pole fit
BES[18](Exp.) | 0.73+0.14 £ 0.06 | 0.78 & 0.04 + 0.03
D T 12 - -
o s = 0038600
CLEO[19](Exp.) | Input [V.g[?/|V..]? = 0.052 £ 0.001 [22]
\ = % — 0.86+ 0.0772% 4 .01

A
modified pole fit



Table 2: Branching ratios of DY 7 ¢ty and D° — K—(tu.

Br(D° — 7= (*tv)(%) Br(D — K (Tv)(%)
LQCDI1/[1] 0.23 4+ 0.06 2.83 £ 0.45
0.24 + 0.06 2.99 4+ 0.45
LQCD2|2] 0.324+£0.024+0.06 £0.03 | 3.77 £0.29 + 0.74 £ 0.08
QCD SR 0.16 + 0.03 2706
LCSR[S] 0.27 £ 0.10 36+ 14
LCSR[] 0.30 + 0.09 30+ 1.2
BES[18](Exp.) 0.33 £ 0.13 £ 0.03 3.82 £ 0.40 £ 0.27
CLEO[20](Exp.) | 0.262 = 0.025 = 0.008 344+ 0.10 £ 0.10




(2) Transitions to vector mesons D — V /Ty

The decomposition of D—V hadronic matrix element
according to its Lorentz structure:

2V (¢?)
_ 3
(V(E,pz)‘g’jﬁ“(l - )C‘D(pﬂ} EuvaBt p?pz T g
* 2 a2
% € 4 _ mH — My,
~iley — 5 aw)mp + my) A1(q%) + i[(pr + pa)u — —2 - - qul
As(q?) 2mye* - g 9
E . o A
XE" - q mp + my l > quAo(q°)
V(q?) - vector current gvy,c,

Ai(qz) """""""""""" axial-vector current gfmf}%c



Calculation of the Form Factors in QCD Sum Rule

The idea of QCD sum rule:

1) Constructing a correlation function, which can
be calculated within QCD in the gquark level. At
the same time it can be also described in the
hadronic level.

2) By assuming quark-hadron duality, these two
descriptions of the correlation function are equal .

3) Solve the above equation, get the form factors



Calculation of the form factors in D: — @ v

The correlation function

a,, =i / dtzdiyelP2 == Pry (0| T{%(2)5,(0)55 (1) }]0),

The currents have the same quantum numbers
as the relevant particles:

1) the currents for D, : Js () =¢(1)iyss(y)
2) the currents for ¢ : jf (x) =s(x)y,s(x)
3) c—s weak current: J.(0)=sy,(I-ys5)c 0

D.S. Du, J.W. Li and M.Z. Yang, v, - X
¥ S -,
EPJC37(2004) 173 P17 - P»




Dispersion relation

Due to the Cauchy formula, any analytic function
IT(g?) can be expressed as contour integration

[T ):2_m dz H(Z
_ 1 H(z)
_27zz|z|j:>R —q°
A fe H(Hw) [1G-ie)
27 v, —q°



If as ‘qz‘va—)oo, the function T1(g2) —0 fast enough,

the integration along the round contour would be zero
Then

T (?)- 2mj H(z+zg) H(z—ze)

0 q

Dispersion relation




Define the hadronic spectrum density:

p(s) = %Im [T (Gs)

Then the dispersion relation can be written as

2 _OO p(s)
H(q )_ jdss_qz_ig

min



Calculate the correlation function in the hadronic level

Insert two complete sets of hadronic states into the
time-ordered product

3

1 = i / d*zd’ Jelpj i y<O‘T{Ju (2)7.(0)J5

.
2

(y)}10),

7)Y

>

And using the dispersion relation due to the two variables
p,* and p,?



- 2
. !l'_-;‘ 5 !S" . (

,, = /[l.ﬁltl.ﬁg oL 50.q)

. (-5'1 —p1)(-5'2 — P‘E)

where

210)

p(s1,59,¢%) = Z(DL} | X) (X 7,1Y) Y|y
XY

xd(s1 —miy )0 (s2 — m3 )B(pX)O(pY).



(02 XY X |7, YWY |2
H,u:.x _ Z \ |j:.f| I\ |jﬁ | >1 J5

o (m3 — p{)(m% — p3)

0)

+continuum states.

Separate the ground states:

U0 (0liID.) (D
S (n:.%ﬂ — p‘f}(mi — p3)

+ higher resonances and continuum states.

i210)

!




Calculate the correlation function by OPE in QCD

According to OPE, the time-ordered operator in the
correlation function can be expanded as

:2 14 .34, Jipez—ipryrpf o0 (VAP ()
? [ dtdtye T{j¢(2)7, (002 (9))
~ 0 ~ 1 aaf3

— (f'{},u :.JI =+ C’.‘S,{zrﬁpw T C*"_l,u;r.f ‘:?1-3 -

+ Os Voo 3 TG + Cp, W TOOT'W - -

1) I is the unity operator
2) W¥ s the local Fermion field operator
3) Ggﬂ IS the gluonic strength tensor

4) C’s are the Wilson coefficients



The vacuum expectation of the above OPE will give the
correlation function:

1, = i /CHICH?JPIP TP YO|IT4{j2(x)7,.(0)75 Dy) ) }|0)

= Coud + C3,,, (0[FT|0) + Cy,,, (0|G2 3G*7|0)

+ C.'_G‘“N {[}‘!?{Tﬁﬁ-Ta.(Ta.ﬂ;.‘iip‘ )

The Wilson coefficients can be calculated in QCD
perturbatively



The expressions of the correlation function in hadronic
level and in quark level should be the same thing, then

0)

52 |0Y (D7, | Ds){Ds|5¥
(m3, —pi)(m2 — p3)

+ higher resonances and continuum states.

(0

= Co I + Cs,,, (0[FW|0) + Cy,, (0|GE ;G |0)
+ C-S‘u 1/ (O ‘@JHST{}GEG_ELP| O>

+ Co,, (O TOIT'T|0) + - - -




@® With the assumption of quark-hadron duality, the
contribution of higher resonances and continuum

state are canceled in the above equation.

pert
(Sl,Sz,q ) J‘dsl“‘dsz (S1>Szaq )

del jdsz pl )(s, — pl )(s, — )

@® With Borel transformation, the dependence on the
quark-hadron duality is suppressed.

; (2 : —p2) 9"
B ) = lim —
p2,M? 7(P7) n — oo (n—1)! E)UJQ}”
;—J‘-_.'J-‘;I___.t.r.-_ioif"

f(p?)




The form factors for D" — ¢ [ v are calculated to be

V(0) =1.21+£0.33,
Ap(0) = 0.42 4 0.12,
A1(0) = 0.55 4+ 0.15,
A5(0) = 0.59 £ 0.17,
= 0) _ 590+ 085,

141(0) '
Ax(0)

= 2 = 1.07 4+ 0.43

2= AL (0) '(

The branching ratio:

Br(Dt — olv) = (1.8 £ 0.5)%,
Br(Dt — ¢lv)=P = (2.0£ 0.5)%



V DO -D° Mixing

1) Mixing under weak interaction

2) The basic formulas
3) The mixing parameters in the SM

4) Decays of physical neutral D system

5) Time-dependent measurement of DOD° mixing

6) Summary



1) Mixing under weak interaction

D’ and D ° can transform into each under weak
Interaction

§: % .% D’ — D°

D’and D° can not be separated absolutely




® The D°-D° mixing occurs via loop diagrams involving
Intermediate down-type quarks, it provides unique
Information about weak interaction

® |n the standard model, the mixing amplitude is quite
small

It is severely suppressed by the GIM mechanisms

Aoc > flm,m )V VIV V)

i,j=d,s,b V\

Loop-integration function

The b-quark contribution is highly suppressed by the
CKM factor

d S b

u 1-22/2 A AX (p-in)
Veery = ) 1-27/2 y +0(1Y)

t AX (- p—in) —AX 1

@)



The CKM suppression factor

%

VVy |11V, Vo |2 O3 x107)
The b-quark contribution in the loop diagram can be
neglected

Thus, the mixing in D system involves only the first
two generations. CP violation is absent in both the

mixing and decay amplitudes, and therefore can be
neglected.

The mixing amplitude vanishes in the limit of SU(3) flavor
symmetry , m;=mg, due to the GIM suppression.

Mixing is only the effect of SU(3) breaking
T . ~sin’@,.x[SU(3) breaking]

mixing



2) The basic formulas

In general the neutral D meson exists as a mixture
state of D%and DO

|D)=a|D")+b|D")
Assume there iIs a neutral D state at t=0:
lw(0)) = a(0)| D) +b(0)| D*)

Then at any time t, the state evolves into

‘l//(t)> = a(l‘)‘D0>+b(t)‘50>+cl(t)‘f1>—|—cz(1‘)‘f2>+...

_

~ T~

Oscillation within States D decays into
neutral D states



If we only consider the oscillation within the neutral
D state, then we can consider the evolution of the
following state

| D(t)) = a(t)| D)+ b(t)| D°)
which can be written in the form of matrix product

p@)=(p" D) (Zgj

a(t)
then we can use (b(t)j to stand for the wave

function of the neutral D meson state



The Shrodinger equation for the evolution of the
wave function is

ii(d(i)j _ H(a(t)j
ot \ b(t) b(t)
\2><2

H needs not be Hermite because D meson can
decay in the evolution

AN Zas

M =M " =T M _EF



The matrix H can be expressed explicitly in terms of
the matrix elements

[ i j \
Mu_gru M12_5F12
H = i i
\M21_5F21 M22_5F22/

The matrix elements are determined by the Hamiltonians
of strong, electromagnetic and weak interactions

H ,=H +H, +H,

total

The magnitude of weak interaction is greatly smaller
than the strong and electromagnetic interaction

H <<H_ +H,



The weak interaction can be treated as a perturbation
over the strong and EM interaction.

_ i
Then the matrix elements M, —Efaﬂ can be solved
perturbatively

o (a2 )

y l

_ 1
__r - HAC—2
v 2mD<a‘ Y ﬂ>+2mDZn: E,—E, +ic

+O(H )+

The eigenstates of

CZ, ﬂ m~~/ D09 50 / / HSt+Hem

n ~ 2, 3r, Kn, Knr, Krnrrx, mev, ---



Using the formula
1 1
=P
f(x)+ie  f(x)

J

1 1
=P —ind(E,—E,)
E,—E +ic E,—E,

—imo(f(x))

Then from
il 1 s gy L 1 oA H T n)(n|H 7| B)
Maﬂ 2Faﬂ§2ml) <a‘HW 'B>+2mD Zn: E,—E +i¢
. 1 Ac=2 < ‘H»ﬁC:l n><n‘H£021 /8>
Maﬂ B sz <a‘HW > 2m, Zn:P E,-E, ’

<
1 Ac=1 Ac=1

L 5 Ly = o, Zn:ﬂ< ‘HW n><n H, ﬂ>5(ED—En)+---

+ ...



Theorems:
@ If CPT is conserved, then M;;=M,,, and 7";=1",,.

F12 M12

@) If T is conserved, then —
F12 o M12

The proof can be performed with the
formulas in the previous page



The eigen-equation

Solve the equation, one can get the eigenvalues
and eigenfunctions

1 ]
H o :E[Mll +M,, _E(Fn +1,)

_ l l l
+\/(§m—§5f)2 +4(M12 —Erlz)(le —EFZI)]

/

om=M, —M,, or=I), —I,



eThe real parts of 1, will be the masses m,
and m, of the two eigenstates

e The imaginary parts will be decay-widths of the
two eigenstates: I, and I,

That is



The two relevant eigenstates are

D)= Nz D) s gizDY) 2

D) ZPE‘DO>_‘1@‘EO> T =m—LT,

l
M21 _Erzl

]
M12_5F12

<R
(

l
M11 _Mzz _E(Fu _Fzz)

7z =
] ] ]
\/(5m_25r)2 +4(M,, _Erlz)(le _Erzl)



If CPT Is conserved, then z=0

Then
D1> =p‘DO>+q‘50>
D)= 1{p")4|D")

p and g satisfy the normalization condition

| +|g| =1



3) The estimation of the mixing
parameters in the SM

Two physical parameters which characterize the
mixing are

Am _my—m

X

r r
_Al _T,-T,
Y Eor T or

Where I' is the averaged decay widths of the two
eigenstates D, and D,

1 +1
2

)




Using the eigenvalues of D, and D,, we can obtain
with CPT conservation and neglecting CP violation
INn Mixing

Am=2M ,
| ~ D° Hﬁc*:l n><n‘Hﬁczl DO
= —(D"|H,) 2D°>+ml);p< ‘ P >+
AL =2T, =— 2272<D0‘HA” \n|H 27| DOS(E, ~E,)+--
D n

where (27)’'8°(p,—-p,) is implicitly included



Define the correlator

1= [ (DT (0 H " 0 D)

Insert a complete set of final states Z‘n><n‘

One can obhtain

=3 {D" | —+275(E, ~E,)}

< ‘HACI

>{ZP

I’l

(27)' 8 (P~ P,)

Compare the above result with the expression of

Am, Al



One can obtain

=)

1

2m,,

+

Re[% [ ax(D° [ {H 7 () H ) (0)} DO )]+

AT =~ Im[j [ ax(D°[r (= (x)H ¥ (0)}| D° )+
mD



The contribution of the box diagrams

U — - C W e —— e
W g i W d,5,b 1 d,s,b
C 3 E,E u E—-—T—-‘—E
- Gr a (m,2—my*)?
W V2 8msin®0y S5 My’m,?

§i=VicViu
O=uy*(l1+ysicay,(1+vyslc,
O'=ul(l ‘T;)E ul(l —T’ﬂﬂ'

[1] A. Datta and D. Kumbhakar, Z. Phys. C 27, 515 (1985); H. Y.
Cheng, Phys. Rev. D 26, 143 (1982).

[2] J. F. Donoghue, E. Golowich, B. Holstein, and J. Trampetic,
Phys. Rev. D 33, 179 (1986).

[3] I. F. Donoghue, E. Golowich, and G. Valencia, Phys. Rev. D
33, 1387 (1986).



The box contribution to Am is given by

G m*
Amp = w/; 411'5;:129W S5 144;4[,;%2 %

X mpFp%(Bp —2Bp) ,

where the quantities Bp,B) are defined by
(D°|o |I_)°)= 16 mDZFDEBD |
3 2mp

— mp |* mpFp?

(D°|0"|B%)y=~ | =2 | =3B,

m,



Numerically, by simply taking B, =Bp =1

Amp*=2.5%10"" GeV

which leads to
"% %1.6x107°

The bare quark loop contribution to Al is even further
suppressed by additional powers of m, / m,

Numerically, one finds

™ ~ few x 107



The small result of box diagram can be enhanced by
various long-distance effects, or by contributions of higher-
dimension operator in the OPE

Long-distance effects

ar, KK, Krzr, Kzrr, Krxrnr, etc.

50 ‘ . DO

K(1460), n(1760), ~(1800), K(1830),---




Long-distance contributions can severely enhance the
mixing parameters, although it is difficult to calculate them
accurately.

It is estimated that long-distance dynamics can
enhance the mixing parameters to be

x, y~10* =10~

J.F. Donoghue et.al, Phys. Rev. D33, 179 (1986)
E. Golowich, A.A. Petrov, Phys. Lett. B427, 172 (1998)



Contribution of higher-dimension operator in operator product
expansion (OPE)

1

Am = m—D<D° H)2|D")
+ iRe[% [ ax(D° [T {H = (o) H ) (03| D )]+
AT = i [ ax(D°[r{H = () H = (0)) D° )+
mp

The time-ordered product can be expanded in local operators
of increasing dimension.

The higher dimension operators are suppressed by powers of

A/m,



The leading contribution comes from the dimension-6
|A C|=2 four-quark operators corresponding to the short dis-
tance box diagram,

()1 :”_cr ’}/,[LPJT_.CEPH_,H’Y,[LPLCH > (); :”_ErPLCEr”_ﬁPLCS:

()EZH_EI’};‘[LPLCS!{_,S‘};;LPLC[I? ()EZH_[rPLCSH_BPLCEr

where P; =1(1— y5)



Higher order terms in the OPE can be important, because
chiral suppression can be lifted by the quark condensates,
which lead to contribution proportional to m.?, rather than

4
m.*.

Diagram for 6-quark
operator (D=9)

« Diagram for 8-quark
operator (D=12)

l.I. Bigi, N.G. Uraltsev, Nucl. Phys. B592 (2001)92
A. Falk et al., Phys. Rev. D65 (2002) 054034



Explicitly, the contribution of 6-quark operator with D=9 is given
by

A ME]DZQ) — 2sin’8¢ cos? B¢

. (ﬁpfj’ﬁ(l_J/5){'J":’}k3/v(l_:Vﬁ)J/O("E

2Mp
X (Ejj/'“j/gj/v(l — ys)sk —dyHyey¥ (1 — Vﬁ)dk”‘o)'

The dominant contribution to X is from 6- and 8-quark operators
For Y, the dominant contribution is from 8-quark operators

Numerically, the resulting estimates are

x, y~0(107)



This estimate means that the observation of mixing
parameters severely larger than 10-3 would reveal
the existence of new physics beyond the SM

But this statement can not be conclusive because the
uncertainty in this estimation is still large.

e The main uncertainty comes from the size of the
relevant hadronic matrix elements.

e Larger observed values of x and y might indicate
serious underestimation of the hadronic matrix
elements.



4) Decays of physical neutral D system

How to measure the mixing parameters in
experiments?

To measure them, one has to study the
evolution and various decays of the neutral
D meson system.



The evolution of neutral D meson state

For any neutral D state at any time t, its wave
function can be expanded as linear combination of
the eigenstates

i
—i(m, —Erz)t

|D(1)) =

+ C,e D2>

\ ¥

constant

cl and c2 can be determined by initial and
normalization condition



\D(t)>=cle EEPAT D2>
e ) B ™ )| )
_ p(CIe—z(ml—zn)z +cze_l(m2_2F2) ) DO> _q(cze—l(mz—zrz)t _Cle—l(ml—zfl)t) 50>
For a state initially | D°) ,i.e., |D()) _, =|D")
1
S—/> ¢ =C= o
P

Denote such a state as ‘ D, . (t)>



D), O)=—(e > +e 2D
(my—1) (m—1T)e | —
e D)

o (t)z%(e (my=> )_ei(m1 EF)z)

D} (0) = 8.0|D") = & 0|D°)
Similarly

D),.(0))=g.()D") —fg_ (0| D")



The time-dependent decay rate of a physical
neutral D meson state

The time-dependent amplitude of initial D° physical
state to any final state f

T,(6)=(f|H| D}, (6))

=g+(t)<f\H\DO>‘%g_(f)<f\H‘50>
— N\

A4, A,

=g.(04, —%g_ ()4,



2 2

yeosh(yI't)+ (|4, ~|L 4| yeos(xT1)

q_
E iy
! P

1
7,0 =2et (] + ;

+2Re[d, (L 4,) Isinh(yTr) - 2Im[L 4} 4, ]sin(x['1)]}
p

p

dF[Dphys(t)_)f] 2 F:F1+F2 x:Am:mz—ml

02 TR

! AT _T,-T,

S PTor . ar

dr[D°, (t)—> f1/dt > g = I » g = |
Phy_rt / :{(‘Af‘ +1Af )cosh(yFt)Jr(‘Af‘ —gAf )cos(xI'7)
N, p p

+2Re[4, (% 4, Jsinh(yT1) - ZIm[Z A4, Jsin(xT'1)]}

A normalization factor



We can get the decay rate of an initial D state by

(D)D)
* q <> p
| Af<—>2f
dr[D’, (1) — f1/dt : 2
phyS_rlN (24| +[4,] -4,y cos(xT1)
f

+2 Re[£ Z A, ]sinh(yl't)—2 Im[ﬁ Z A, Isin(xI')]}
q q



(1) Semi-leptonic decay

At leading order of weak interaction




With mixing present, the wrong-sign decay can occur

Let us consider the wrong-sign decays

phys (t) > IvX
[

DY, ()= I'vX
dT[D°. (1) —> VX _I°
[ phys( ) V. ] _ Nf EA [Cosh(yrt)—COS(xrt)]
dt P
dTTD° (£)—> I"vX 2
LD s (dz 24 =N, o2 A, | [cosh(yI't) —cos(xI't)]
q
dr[D°, (1)—1vX] dr[D’ (t)—I"vX] o
phy ~ 2 CP is violated!

dt dt



CP violation in wrong-sign semileptonic decay

dr (D" (t)— I'vX)/dt—dU(D°, (f)— 1vX)/dt

phys phys

dC(D°. (t) = I'vX)/dt+dU(D°. () — 1vX)/dt

phys phys

A () =

4
1= % The condition for mixing

We can get _ . o
g Agp = 7 induced CP violation
p

I+ 9] #|p




(2) Wrong-sign decay to hadronic final state f

For f=Krn"
A

/

AD’ > K n*)ocV V. ocl

f

Cabibbo favored

C < N
b’V {7 f Doubly Cabibbo
A suppressed




Let us consider the doubly cabibbo suppressed decay

(t)—> K n”

phys

Using the formua we have derived

dr(D,,, (t)— f1/dt _

2

2
EAf +‘Z i —‘Zf‘z)cos(xl“t)

—Ft
Nf

+ 2Re[£ A f*Af]sinh( yI't)— ZIm[EZ A, Isin(xI'1)]}
q q

We can obtain



dr[Dy, () —> K 7']/d1
e’ 'N,

) 2

Ly . “Ycosh(yTr) ~[4, .| )cos(xTr)

q

=1

T ‘AKVf

+
T

p
oA

+2Re[LA,_ "4 1sinh(yT0)-2Im[E A’ A Isin(xT5)]}
q q

T V4 K 7"
2

)cosh(yI't)—(1—

2

2
A, .
{1+t
pAK_ﬁ+

q AK_ + . q AK— + .
+ 2 Re[——""—]sinh(yI't) + 2 Im[——"]sin(xI'?)]}
P 14K_7z+ p AK_7T+

1 AKVﬁ

pP AKVf

)cos(xI't)

AN

define 4, .=

K x*
+

9
p K

AN



dr[D}, (t)—> K x*]/dt
e_”Nf
2

(A+12, . eosh(yIny—(1-|a, [ )cos(alr)

p

£y
q K
+2Re[A, . ]sinh(y['1)+2Im[A _ . ]sin(xI'?)]}

+
T

Similarly the CP conjugated process

dr[D), (t)—> K'7™]/dt

—I't
e N,
2
q T P 7 [
— ; AKW {( /1K+ﬂ_‘ +1)cosh(yl't)—(1— ‘/1 W‘ )cos(xI't)
+2Re[A, . Isinh(y['1)+2Im[A4, . ]sin(x['?)]} ) f’c”
K'rm q AK+7[



To simplify the above result, we can make
the following definitions

A 4 -
E(1+Am)e_l'8, &E—\/;e_la, K'm E_\/;e—la

9
P \ AKVf K'n~

Mixing induced CPV

AN

|

In order to demonstrate the CP violation in decay,
we define

V5= JRp e and V' = JRp(1 + Ap).




A N
Kzt = q AK_
S p A 7Z.+ .
. ] p AK_ﬂ+ RD %_I_AM
q Z T / “+AD e_i(5+¢)
- __/p 1+
where ) -
O = a+0[r +AM | -
b= a-a
15

2 5



1. A, — CP violation in decay
D'>f« D> f
2. 4, — CP violation in mixing
D’ - % i

D> D> f

3 ¢ — CP violation in the interference between

decays with and without mixing

DO\ / f

50




Then the time-dependent decay rates are

dr[D’ (t)— K x*]/dt
= ,,hysorjv 7/
S
r, 2{(1+AM)2R Ay e cos(5+¢)—xsin(5+¢))(r¢)+x2+y2 (T't)*}
g 7 (1+AD)2 P 1+4, o
p 2 x,2+yr2
oA | 1R =R L)+ = (D)
\ . . (1+4 ~ (1+4,)
ote the sign RD:( ) -R,, R, ( D)zRD
(1+A ) (1+AM)
_drD,,, (0> K )/dr e Snces(0 £y s0.£0)
r(t) = —er Y. =ycos(d£¢@)—xsin(o + @)

SRV (T + = y- (1))

=44
p



If CP Is conserved, then

A, —>0,4,—>0, >0

Then
R =R,
x, =x'=xc0s0+ ysino
y, =y =ycosd—xsinod

F(6) = F(t) o< {Ry —[R, y' Tt +



The coefficients of the time-dependent terms can be
fitted If the time dependent decay rate can be measured.

DO

phys

Bﬁhys (t)> K 7"

(t)> K 7~

- CPT {Ry,x,,y.}  for {

. CP: {RD,X’,y’}



In the early stage of 2007, BaBar and Belle found the evidence

of D°-D° mixing in the decay modes
D' >K'nm~ and D'—Kir'nm
respectively. Later CDF also found the evidence.

BaBar Collaboration, PRL98,211802 (2007)

Fit type Parameter Fit results (10-3)
No CP violation R, 3.03+0.16%0.10
X' —0.22+£0.30+£0.21
5 9.7+4.4+3.1
CPV allowed R, 3.03+£0.16%0.10
A, —21+£52+15
2 —0.24+0.43+0.30

2 -0.20+£0.41+0.29

y! 08+6.4+45
{ 5 97+6.1+4.3

CPV is
consistent
with zero



TABLE L

Fit results and 95% C.L. intervals for x and vy,

including systematic uncertainties. The errors are statistical,
experimental systematic, and decay-model systematic, respec-
tively. For the CPV-allowed case, there is another solution as

described 1n the text.

Fit case Parameter Fit result 95% C.L. interval
No x(%)  0.80 +0.291009+0.10 (0.0, 1.6)
CPV (%)  0.33 +0.241208+006 (- 0.34, 0.96)
CPV x(%)  0.81 +0.301010+0.09 x| < 1.6
y(%)  0.37 +0.25H007+0.07 ly| < 1.04
lq/pl  0.86%535+0-0¢ + (.08
arg(q/p)(°)  — 14118313

Table from Belle collaboration, PRL99, 131803 (2007)



@® The data disfavor the no-mixing point x=0, y=0
significantly.

@® CP violation is also searched for in mixing and
decays, but no evidence for CPV is found.

The comparison of the data and theoretical prediction is
premature, because the errors of the data and the
uncertainty of the theoretical prediction are both too large.

@® No new physics has to be invoked right now.



The decay rate of a correlated state

For a physical process producing D° D° such as

e'e” >y > DD’

DO

! I.
77
s

1
d
1,0,
+ -

The DO DO pair will be a quantum-

o — S —ef correlated state
QO The quantum number of y" is J™“ =1
D

The C number of D° DO pair in this
processis ( =—



For a correlated state with C = —

=L(‘DO>‘BO>—‘BO>‘DO>) C DO> :‘50>
e )=o)

Let us consider the decay of such a correlated
state, one D decays to f, at time t, , the other
decays to f, at time t,

"1

S/



The correlated wave function at time t, and t,
y_(t,1,) = (\ s (0 Dy (1)) = | Dy (1)) Dy (1))

The amplitude of such state decaying to final state f,/,
IS

<f1f2\H\w (t,,1,))
f (,|H| DY, D)) 3 |H| Dy, (1))
(£, |H| DY, e} 12| H| DY, (1))



‘<f1f2 ‘H‘ W_ (t1>t2)>‘2
|

— Ze‘“’l”z)[(‘cg‘z + ‘al ‘2) cosh(y['Ar) + (‘au‘2 — ‘al‘z)cos(xFAt)

—2Re(a,a’)sinh(yT'At)—2Im(a,a’ )sin(xT'At)]



5) The time-dependent measurement
of DODO Mixing parameters

The most promising place to produce D°D° pair is

e'e” > w(3770) > D°D"

However, the time-dependent information can not be
used here

Many interesting ideas and phenomenological studies
for measuring the mixing parameters have been
presented in the literature

Z.Z. Xing (1996); Z.Z. Xing, S. Zhou (2007); Y.
Grossman, A. Kagan, Y. Nir (2007); N. Sinha, R.
Sinha, T. Browder, N. Deshpanda, S. Pakvasa (2007);



We proposed a new method to measure the mixing

parameters in the correlated time-dependent processes
through

e'e” > Y(1S)—> DD’
at super-B factor

H.B Li and M.Z. Yang PRD74 (2006) 094016;
PRD75 (2007) 094015



Y(1S) - D°D°

The D mesons are strongly boosted

Decay point 2

Decay point 1
At=t, -t

Proper time interval A¢ can be
precisely determined



|DUDU>C =—1 __ 1 [|D(}>|D(}> _ |D(}>|DU>]

The time-dependent evolution

DD (1), 1,)) = [|Dphw(k1 f)>|Dphw(kz 1))
— |me;.,(k1 t )>|Dphv,(kz H)],



AT(Y(15) = DO, DY, — f1f)
dt
= Ne 1 X [(lap]? + |a_|?) cosh(yI'r)

+ (lay|?> = la_|?) cos(x['t) — 2 Re(a* a_)
X sinh(yI't) + 2 Im(a® a_)sin(xI'r)],

here N is a common normalization factor, in |



_ = — o P
a+ = Apdp, — Apdp = ApdAp (A = Ap),

p g - - p
1. ==A A, ——=A, A, = A, A, —(] — A; A;),
a- =TAnAn T DARAn = Andy, q( fiAs)

with Ay, = (f:|H|D), ﬁf;_ = (f;|H |D®), and define

_ 4 (fil H|D) :ﬁﬁ
o p(fIIHIDYY  p ApT

Ay

_ p(fIIHIDY) _ p Af

Az === — = — L
T g (f,| 3| D) q A




' 1Y N0 PO L fr
R(f1, f2:1) _ dU(Y(1S) = Dy Do = f1/2)
T dt '




Now we consider the tollowing cases for the D meson
decays to various final states, such as semileptonic, had-
ronic, and CP eigenstates.

(1) (FXT Kra

a:|

E.Ir_—' Ny = 3. ; o Py
e (1 4 |- P cosh(yl) = (1 = g+~ |7 cos(xl 1)

| 2

RUTXH K ait) = NIAPIA: -

+ 2 Reldg+- ) sinh(ylt) + 2 Imldy+ - )sinlxl').

Q) ("X K7t

| 1 I , | ,
RITX™, K77 t) = N|APIAg- 5+ 4 e (1 4 [Ap- -+ cosh(ylt) = (1 = |Ag-o+|*) cos(xlt)
i

+2RKelAg-p+ | smhiyl't) + 2 ImiAg- - )sin(x]t)).



3) "X K 7 ;1)
5) (FXF,EX*50)
(7 (K" 7",S,51)
) (K7, K 7" ;1)

A1) (X, X50)

4) (" X",K n";¢)

(6) (I"X7,S,51)

8) (K 7", K*7-:1)
(10) (K" 7z-, K" 7-;1)

(12) (X, X" 50)



Taking into account that Ag—_+, A+ - << | and x, y <
I, keeping terms up to order x2, y%, and R, in the expres-
stons, neglecting CP violation in mixing, decay, and the
interference between decay with and without mixing
(Ayy = 0,Ap = 0, and ¢ = 0), expanding the time depen-

dent for xz, vt =I'"!, we can write the results as



() (X", K 7 1)
RITXT K w0 = N|APAg+,-|2e 1N
X {ERD — 11..'"?'-{'_5}3"'1_1{
+ Ry I°r), (31)

e BT o
where Ry, === is the mixing rate, and y" =
yCosd — xsind.

RUIX", K 7n™:t)
=N[4 |4, [Fe" (2R, 2R, yTt+R, )

Fitting data, three nummsured




(2) (ITX ", K 7":1):
RITX K 7 0) = N|AP|Ag- .+ e T
X (2Rp — Ex;'ﬂ?_ﬂy’ﬁ

+ Ry %1,

The same thing as case (1)

(32)

s



3) ("X ,K'7" ;1)

RITX K 7w 1)

= N|AI|3|AK+W_|%—FM(2 — 2JRp(y cos(8) + xsin(8))[t + ;‘ r%ﬁ).

2

2
=Ce "' x(1=/R, (ycosS+xsin &)t + 4 4x [*t)

////

Fitting data, these two numbers can be measured




+ + .
R(1*, S, 1) = NIAP|Ag, [P X (2 = 2n(y cosB F xsinB)['t + y T21),

the phase B = arg[(V,, Vi /(V.i V)] ~ 0.

= Ce "M x (1—-mpTt+y°T?t)

/

y can be measured



(5) (K™7",8,;1)
R(K 7",S,;t)

2 2 _ 1
_ M A, (11—+/R, cos 5 xe(1—mTt +o y* (1))

ASn

-

4{ 1 2 2
=Cxe (1—77yFt+§y (I't)7)

y can be measured



@ In summary, the numbers that can be fitted are:

2 2
R,, +R,(ycoso+xsino), ad :y ,

® There are four unknown variables in these fitted
numbers:

X, ¥, 0, R,

® Therefore, the mixing parameters can be
measured In the these correlated decay processes.



CP violation

@®In the SM CP violation is produced by the complex
phase of the CKM matrix, current experimental constraint
for CKM matrix element implies that CP violation in D

system is very small

@® However, New physics may induce new source of CP
violation

@® One possibility 1s the new CPV phase from

¢ = arg(qA / pA)



RI'X K7 ;t)-R(I"X",K 7";t)
RUX K7 ) +R(IX",K 7°31)

Acp (1) =

One can obtain

Aqp(t)=—+/R,(ysind —xcosd)sindxI't

\

Very small in the SM,
unless there 1s New Physics



In experiment

KEK-B can move to Y(1S) peak
about 7.1x10°Y(1S) events 1 year

Super-B about 102 Y(1S) 1 year

if the luminosity is about 10°¢ cm2s’!



Theoretical estimate
Br(Y(1S)> DD )=10"* ~10"

At super-B: 10" ~10° D’D®  pairs

It 1s possible to measure DD mixing
parameters and CPV 1n charm by
using the time-dependent
information in coherent neutral DD
decays



Summary

® The mixing parameters can be predicted to be
x, y~107°

without introducing new physics beyond the
standard model.

® The present uncertainty in both theoretical prediction
and the exp. data are still large.

®\/arious decays of the neutral D-meson system are
studied, a new method to measure the mixing
parameter by using the correlation and time-dependent
Information is proposed.



