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Experiments

BB--FactoriesFactories
BaBar @ PEPII
SLAC

Belle @ KEKB
KEK

on resonance production
e+e- → Υ(4S) → B0B0, B+B-

σ(BB) ≈ 1.1 nb (~109 BB pairs)

σ(c c) ≈ 1.3 nb (~1.3x109 XcYc pairs)
continuum production

B-factory=γ* c
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Nrec(D*+ → D0 π+ → K- π+ π+) ≈ 2.5x106 B-factory=
charm factoryc
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Experiments

CharmCharm--FactoriesFactories
Cleo-c @ CESR
Cornell

BESIII @ BEPC-II
IHEP
e+e- → ψ(3770) → D0D0, D+D-

Cleo-c:
~800 pb-1 of data 
available at ψ(3770); 2 8x106 D0D0available at ψ(3770); 2.8x106 D0D0

Nrec(D0 → K- π+) ≈ 150x103 (single tag)
BES-III: 
~900 pb-1 of data (?)

DD in coherent 
(C = -1) state
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available at ψ(3770); (C = -1) state
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Experiments

pp Colliderspp Colliders( - )

∼ 6 fb-1 available

D0, CDF @ Tevatron
Fermilab

Nrec(D*+ → D0 π+ → K- π+ π+) ≈ 7x106

LHCb @ LHC
CERNCERN
For 2 fb-1 (currently 1 pb-1)
Nrec(D*+ → D0 π+ → K- π+ π+) ≈ 15x106

huge statistics
in more requiring

We all live with the 
objective of being happy; 
our lives are all different 
and yet the same

diverse exp. 
conditions to
study charm
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in more requiring
exp. environment

and yet the same. 

Anne Frank (1929 -1945)

study charm 
physics
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Flavor physics

Questions (to SM)Questions (to SM)

You always admire what you 
really don't understand.
B. Pascal (1623 - 1662)

Why are we humans and
not anti-humans?

Sakharov, CP violation;
CPV in SM smallnot anti humans?

Why are some large
and some small?

Hierarchy, three generations
and some small?

Why am I massive? Origin of EW symmetry breaking;
beyond SM theories may explainbeyond SM theories may explain, 
but at what scale?
Precission needed
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Charm physics

Dual roleDual role

answer yes without having asked 
any clear question.

A. Camus (1913 - 1960)

- experimental tests 
of theor. predictions 
(most notably of (L)QCD);

example: leptonic decays 
of D mesons →
decay constants, 
tests of LQCD;(most notably of (L)QCD);

improve precision of CKM 
measurements (B physics);

tests of LQCD;

- standalone field of SM tests 
and searches for new example: mixing and CPV in 

D0 system
phenomena 
(SM and/or NP);

sys e
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Mixing of neutral mesons

PhenomenaPhenomena

HistoryHistory
observation of K0:   

1950 (Caletch)
i i i K0 6in course of life neutral 

meson P0 can transform 
into anti-meson P0

mixing in K0: 
1956 (Columbia)

observation of Bd
0: 

1983 (CESR)

6
years

c quark
massinto anti meson P

P0
q1

P0
q2

1983 (CESR)
mixing in Bd

0: 
1987 (Desy) 

observation of Bs
0:  

1992 (LEP)

4
years

t quark
P0

q2 q1
P0 1992 (LEP) 

mixing in Bs
0: 

2006 (Fermilab) 
observation of D0:

14
years

mass

????
P0 = K0, Bd

0, Bs
0 and D0 1976 (SLAC)

mixing in D0:
2007  (KEK, SLAC)

(evidence of)

31
years

????
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(evidence of)????
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Time evolution

Schrödinger equationSchrödinger equation
mixing affects the time

D. Kirkby, Y. Nir, CPV in Meson Decays, in RPP

mixing affects the time 
evolution → oscillations

00state initially produced as    

will evolve in time as

00 )0()0()0( PbPat +==ψ

K++= 00 )()()( PtbPtatψ

if interested in a(t), b(t):
effective Hamiltonian 
H=M (i/2)Γ (non Hermitian)

)()()(ψ

⎥
⎤

⎢
⎡⎞

⎜
⎛ −=⎥

⎤
⎢
⎡∂ )()( 00 tPitP

i ΓMH=M-(i/2)Γ (non-Hermitian)
and t-dependent Schrödinger eq.:

eigenstates:

⎥
⎥
⎦⎢

⎢
⎣⎠

⎜
⎝⎥

⎥
⎦⎢

⎢
⎣∂ )(2)( 00 tPtPt

i ΓM

00 PqPpP ±=
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eigenstates:
(well defined m1,2 and Γ1,2)

2,1 PqPpP ±=
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Time evolution

Schrödinger equationSchrödinger equation
eigenvalues ⎤⎡⎤⎡⎥

⎤
⎢
⎡ Γ

−
Γ

− ppiMiM 12
12eigenvalues

diagonal elem.: 
P0 ↔ P0

non diagonal elem :
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non-diagonal elem.: 
P0 ↔ P0
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q/p: CPV; 
if CPV l t d / 1
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2,1122,1 Γ
−⎠
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imiM
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if CPV neglected q/p=1

P1,2 evolve in time 
di t d Γ

)0()( 2,12,1
2,1 == − tPetP tiλ
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according to m1,2 and Γ1,2:
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Time evolution

Flavor statesFlavor states
state initially produced

[ ]

[ ])()(1)(
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state initially produced
as pure P0 or P0
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can at a later time t be P0 or P0, depending on 
values of mixing parameters x y:values of mixing parameters x, y: 
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Time evolution

Flavor statesFlavor states
h t i d ti f V=Υ(4S) B0

M. Gronau et al., PLB508, 37 (2001)

coherent pair production from 
vector resonance
e+e- →V → P0 P0

V Υ(4S)        B
V=Ψ(3770)    D0

V=Φ K0

initial state, C= ±1[ ])()()()(
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Mixing rate

PhenomenologyPhenomenology
P0: any pseudo-scalar meson;
specific example of Bd

0

P0-P0 transition → 
box diagram at quark

d b

u c t u c t
W+

B0 B0

Vid Vjb*

box diagram at quark 
level

b d

u, c, t u, c, t
W-

B

VjdVib*

d b
u, c, t

u c t
W+ W-B0 B0

),,( 222**

00

jiWjbjdidib

wk

mmmVVVV

BHB

∑
∝

F
b d

u, c, t

if mi = mj ⇒ due to CKM unitarity: no mixing

),,(
,,,

j
tcuji

iWjbjdidib mmmVVVV∑
=

F
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if mi  mj ⇒ due to CKM unitarity: no mixing
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Mixing rate

PhenomenologyPhenomenology
)( 222**

00
wk BHB

∑
∝

simplified treatment 
based on dimension:
O. Nachmtann, Elem. Part. Phys., Springer-Verlag

),,( 2

,,,

22**
j

tcuji
iWjbjdidib mmmVVVV∑

=

F

O. Nachmtann, Elem. Part. Phys., Springer Verlag

)(),,( 2
3

2
2

2
1

2
0

222 −++++∝ WjijiWjiW mOmmfmfmfmfmmmF
A.J. Buras et al., Nucl.Phys.B245, 369 (1984)for serious treatment see e.g.:

CKM unitarity ⇒

Homework: contribution of which quark is dominant in the

j
tcuji

ijbjdidibwk mmVVVVBHB ∑
=

∝
,,,

**00
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Homework: contribution of which quark is dominant in the 
above expression? 
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Mixing rate

PhenomenologyPhenomenology
u

Vci Vuj*

D0 case
c u

d, s, b d, s, b
W+

W-

D0 D0

ci

the only P0 system with 
uplike q’s c u

d, s, b

u c
W

VcjVui*

the system resisiting exp. 
observation for the u c

, ,

d, s, b
W+ W-D0 D0

obse at o o t e
longest time

j
bsdji

iujcjciuiwk mmVVVVDHD ∑
=

∝
,,,

**00

B. Golob, D Mixing  & CPV 14/51Frontier of Particle Physics 2010, Hu Yu Village, Aug 2010



Mixing phenomenology

Mixing rate c u
Vci Vuj*

Introduction Additional material
Mixing phenomenology
Mixing measurements

Mixing rate

PhenomenologyPhenomenology

c u

d, s, b d, s, b
W+

W-

D0 D0

|VcbVub*|<< |VcsVus*|, |VcdVud*|
assuming unitarity in

u c
W

VcjVui*

assuming unitarity in 
2 generations  ⇒

2**00 )( dsudcdcsuswk mmVVVVDHD −∝

more involved (and correct) 
DCS     SU(3) breaking

G B d I Shi

A.F. Falk et al., PRD65, 054034 (2002)

)( dsudcdcsuswk mmVVVV

calculation: G. Burdman, I. Shipsey, 
Ann.Rev.Nucl.Sci. 53, 431 (2003)

0
55

0
2

222
**

2

2
020 |)1()1(|)(

4
DcucuD

m
mmVVVVGDHD ds

usudcdcs
FC

w γγγγ
π µ

µ −−
−

=−=∆
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DCS     SU(3) breaking

4 mcπ
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Mixing rate

PhenomenologyPhenomenology Γ jeffi DHD
iM

||
)(2nd order perturb. theory

∆m=m1-m2=f(M12,Γ12)
++=

==−

−=∆C
w

D
ijD

D
ij

DHD
M

M

M
iM

δ 020

2
1

2
)

2
(

∆m m1 m2 f(M12,Γ12)
∆Γ=Γ1-Γ2=g(M12,Γ12)

short distance      |x| ∼ O(10-5)
∑ +−

+
−=∆−=∆

n nD

C
w

C
w

D

D

iEM
DHnnHD

M

M

ε

0110

2
1

2

| | ( )

common statement: mixing 
with large x sign of NP; c ug g

more appropriate: measurement
of x yields complementary u c

NPD0 D0
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constraints on NP models
(because of specific uplike q couplings)
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Γ jeffi DHD
iM

||
)(

Mixing rate

PhenomenologyPhenomenology

++=

==−

−=∆C
w

D
ijD

D
ij

DHD
M

M

M
iM

δ 020

2
1

2
)

2
(2nd order perturb. theory

long distance  

∑ +−
+

−=∆−=∆

n nD

C
w

C
w

D

D

iEM
DHnnHD

M

M

ε

0110

2
1

2
difficult to calculate;
contributes to real and 
imaginary part ⇒
affects x and y; 

two approaches: 
OPE

D0 D0

K+

I I Bigi N Uraltsev Nucl Phys B592 92 (2001)OPE
exclusive approach

K-
A.F. Falk et al., PRD69, 114021 (2004)

I.I. Bigi, N. Uraltsev, Nucl. Phys. B592, 92 (2001)

( )MEiPV
⎞

⎜⎜
⎛

δ11
2

(principle can be easy understood, see p. II/26)
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Mixing of neutral mesons

ObservablesObservables
(B-factories, hadron machines)

ttmi
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p
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2
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⎠
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+
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→ Γ−
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DfADfA

pdt
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==
20 )( fd

Decay time distribution of experimentally accessible states D0, D0

0

2
)( tAyix

q
pAe
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fDdN
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+
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→ Γ−
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sensitive to mixing parameters x and y, depending on final state
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Mixing of neutral mesonsMixing of neutral mesons

ObservablesObservables

⎞⎛⎞⎛

(Charm-factories)
coherent production, V(C= -1)→D0D0

t-integrated rate

21212121
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2
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2
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00

;

1
1

1
1

2
1

1
1

1
1

2
1)(
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Decay rate of experimentally accessible states D0 D0Decay rate of experimentally accessible states D0, D0

sensitive to mixing parameters x and y, depending on final state
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Mixing of neutral mesons

ObservablesObservables
x=26 y=0 15

Bs
1

x=26, y=0.15

P(P0 →P0)
P(P0 →P0)

.4

00
1                      4     Γt

x=0.8, y=0Bd
D0

1

4

1
.1

log scale!
x=0.01, y=0.01.4

0 0
1                      4     Γt 1                      4     Γt
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Experimental methods

Common exp. featuresCommon exp. features
20

2
)(1 tAyix

p
qA

dt
fDd

e fft

+
+=

→Γ
−

tagging
(B-factories, hadron machines)

D*+ →D0πs
+

h f fl f D0

p

(for easier notation:Γt  → t)

charge of πs ⇒ flavor of D0;
∆M=M(D0πs)-M(D0) 
(or q=∆M-mπ) ⇒
background reduction

∼100 µm
background reduction

decay time
(B-factories)

∼200 µm

(B factories)
D0 decay products vertex;
D0 momentum & int. region;
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p*(D*) > 2.5 GeV/c
eliminates D0 from b → c
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Experimental methods

B-factories
d ti

hadron machines
decay time
D0 decay products vertex;
D0 momentum & int. region;

Tevatron: transverse decay length
LHCb: decay length between B (B→ D*X) 

and D0 vtx
p*(D*) > 2.5 GeV/c
eliminates D0 from b → c

and D vtx

Tevatron: impact param. distribution
LHCb: using D0 from Bg

(better trigger ε and vtx resol.)

int. point
B decay vtx

mm

10 B decay vtx
D decay vtx

10
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Experimental methods

Decay modesDecay modes

methods/precision/measured parameters
depend on the decay mode

final states:
semileptonic 
CP states

example, D0 →
K+ l ν
K+K-CP states

WS hadronic 2-body states
multi-body self conjugated states 

K K
K+π -
KSπ -π+

and some decays which are 
a combination of those examples

K+π -π0
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Semileptonic decays
f=K-l +ν   

Introduction Additional material
Mixing phenomenology
Mixing measurements

Semileptonic decays

PrinciplePrinciple
RS

2

20 )(

;0

A
e

tDf

AAAAA

t

ffff

=

≡===

−
derived from master
formula on p. I/18

D*+ → D0 πslow
+

D0 → K(*)- e+ ν RS
0 0 ( )

WS

22
20

2
22

2

20

)(
4

)(

tDf

tyxA
e

tDf
e

t

+
=−

D0 → D0 → K(*)+ e- ν WS

t-integrated rates
N /N R ( 2+ 2)/2

WS

RS
2

20

2
22

2
0

)(
4

)(

A
tDf

tyxA
e

tDf
t

=

+
=−

NWS/NRS = RM =(x2+y2)/2

Reconstruct ν:
p p p p

RS
Belle, PRD77, 112003 (2008), 492 fb-1

A
e t =−

pmiss = pCMS – pKeπ – prest

to improve resolution
M(Keνπ ) M(D*+) M2(ν) 0
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M(Keνπslow) ≡ M(D*+), M2(ν) ≡ 0

NRS ≈330 · 103                 NRS ≈ 0 
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Semileptonic decays

ResultsResults
RM=(1.3 ± 2.2 ± 2.0)·10-4

RM< 6.1·10-4 @ 90% C.L.
Belle, PRD77, 112003 (2008), 492 fb-1

main syst.: WS bkg. Br’s
WS bkg. ∆M shape y

[%] 4
average of various measurements:
Heavy Flavor Averaging Group
HFAG, http://www.slac.stanford.edu/xorg/hfag/

[%]  4

RM =(x2+y2)/2

0RM=(1.3 ± 2.7)·10-4
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Decays to CP eigenstates A
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Decays to CP eigenstates

PrinciplePrinciple ⎤⎡ +

====

2
222

20 )(

1;;;

yxtPf

A
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AAAAff
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f
ffff

D0 → K+K- / π+π -

CP even final state;

if CPV ⎥
⎤

⎢
⎡ +

+=

⎥
⎦

⎤
⎢
⎣

⎡ +
+−=−

2
222

20

22

1
)(

4
1

)(

tyxtyA
tPf

tyxtyA
e

f
ft

to linear order:

if no CPV: 
CP|D1> = |D1>
|D1> is CP even state; only this 
component of D0/D0 decays to

⎥
⎦

⎢
⎣

+−=− 4
1 ttyA

e ft

ff
2020 )()(

derived from master
formula on p. I/18

component of D0/D0 decays to
K+K- / π+π -;
measuring lifetime in these 
decays ⇒ τ =1/Γ1;

[ ]

t

ftt

ytetPftPf

tyA
e

tPf

e

tPf

2020

2
00

)1()()(

1
)()(

−

−−

−∝+

−=+

when considering CPV expression

decays ⇒ τ 1/Γ1;

D0 → K- π+

K-π+: mixture of CP states ⇒

tyytt eee

yff
)1(

)()()(
+−−− =≈
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is modified ⇒ y in this mode called yCPτ=f(1/Γ1,1/Γ2)



Mixing measurements

Decays to CP eigenstates

Introduction Additional material
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Mixing measurements

Decays to CP eigenstates

PrinciplePrinciple K +−

1)( πτ
D0 → K+K- / π+π -

R ltR lt

y
KK

y
CPVnoCP =−≡ +− 1

)(
)(

τ

ResultsResults

M(K+K- ) , 
M(K+K ) M(K+K ) M( )

Belle, PRL 98, 211803 (2007), 540fb-1

q=M(K+K- πs)- M(K+K- )- M(π), 
σt, 
selection optimized on MC

K+K- K-π+ π+π-

Nsig 111x103 1.22x106 49x103

P 98% 99% 92%
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P 98% 99% 92%



Mixing measurements

Decays to CP eigenstates Belle, PRL 98, 211803 (2007), 540fb-1

Introduction Additional material
Mixing phenomenology
Mixing measurements

Decays to CP eigenstates
ResultsResults

D0 → K+K- / π+π -

simultaneous binned likelihood 
fit to decay-t, common free yCP

χ2/ndf=
1.084 
(ndf=289)

++

)%25.032.031.1( ±±=CPy

K+K-/π+π -

and K-π+ratio

first evidence 
(one of ...)
for D0 mixing

dominant syst.:
t acceptance linearity;
small residual bias
i
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and K π ratio in τ;



Mixing measurements

Decays to CP eigenstates

Introduction Additional material
Mixing phenomenology
Mixing measurements

Decays to CP eigenstates

PrinciplePrinciple
ff + )1(' ττ

D0 → (K+K- ) KS
(D0 → φ KS, a0(980) KS ,...)
mixture of CP= ±1 states

CP= 1 (φK )

CP
CP

CP
CP y

f
y

f
−

−+
+

= +=+= 1
)1(

1
' 11τ

τ(φKS)= 1/Γ2 > 1/Γ1 = τ(K+K-)

D0 → (K+K- ) K is topologically

-- CP= -1 (φKS)
-- CP= +1 (a0(980)KS) 

D → (K K ) KS is topologically 
different than D0 → K-π+;

small biases in the τ measurement
τ’ τ’’τ’’

small biases in the τ measurement
would not cancel in the ratio 
τ(K-π+)/ τ(K+K- KS)

m(K+K-)

)'''('''
≈

−
∆ ffyτττ
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measure τ for K+K- KS only in 
different m(K+K-) regions

)(
''' 11 +=+= −≈

+
=∆ CPCPCP ffy

ττ
τ



Mixing measurements

Decays to CP eigenstates

Introduction Additional material
Mixing phenomenology
Mixing measurements

Decays to CP eigenstates

ResultsResults
N’sig ≈72 ·103

D0 → (K+K- ) KS
(D0 → φ KS, a0(980) KS ,...)

)%520610110( ±±=y

N’’sig ≈62 ·103

main syst : residual biases in τ

)%52.061.011.0( ±±=CPy

1.0                     1.1    m2(K+K-) [GeV]
Belle, PRD 80, 052006 (2009), 673fb-1

main syst.: residual biases in τ
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Mixing measurements

Decays to CP eigenstates

Introduction Additional material
Mixing phenomenology
Mixing measurements

Decays to CP eigenstates
ResultsResults
average yCP

HFAG, http://www.slac.stanford.edu/xorg/hfag/

)%217.0107.1( ±=CPy
D0 → K+K- / π+π -

D0 → (K+K- ) KS

meas. can be performed with y
un-tagged (no D*+ → D0π+) 
decays (larger stat., larger bkg.)

y
[%]  4

B B PRD 80 071103 (2009) 384fb 1

yCP

yCP = y

0BaBar, PRD 80, 071103 (2009), 384fb-1

RM
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Mixing measurements

WS 2 body decays

Introduction Additional material
Mixing phenomenology
Mixing measurements

WS 2-body decays

PrinciplePrinciple
V

Vud* π+

D*+ → D0 πslow
+

RS: D0 → K- π+

WS: D0 → D0 → K+ π-

VcsD0 K-

V *

CF 

WS: D  D K π
or

WS: D0 → K+ π- (DCS)
Vcd

Vus*

0

K+

DCS
interference between mixing 
and DCS for WS decays

VcdD0 π-

ff AA δ

DCS 

f=K-π+

- sign due to relative sign of Vus and Vcd

1; =−≡ −

f

fi
D

f

f

A
A

eR
A
A δ

2* λλλ−uscdf VVA
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csud

uscd

f

f

VVA



Mixing measurements

WS 2 body decays −≡+≡ sincos';sincos' xyyyxx δδδδ

Introduction Additional material
Mixing phenomenology
Mixing measurements

WS 2-body decays

PrinciplePrinciple
⎤⎡ +

+≡

2222

20 )(

sincos''
;

yxtPf

xyy
yyy

δδ
derived from master
formula on p. 18

D*+ → D0 πslow
+

RS: D0 → K- π+

WS: D0 → D0 → K+ π- ≈

≈⎥
⎦

⎤
⎢
⎣

⎡ +
+−=−

2

20

222

)(

4
''1

)(

A
tPf

AtyxRtyRA
e

tPf

f

fDDft

WS: D  D K π

t-dependence to separate 
DCS/mixed ⎥

⎦

⎤
⎢
⎣

⎡ +
++=−

−

2
222

20

4
'

)(
tyxtyRRA

e

tPf

A
e

DDft

ft

δ: unknown strong phase DCS/CF;

⎥
⎦

⎤
⎢
⎣

⎡ +
++=−

2
222

20

4
'

)(
tyxtyRRA

e

tPf
DDft

⎤⎡δ: unknown strong phase DCS/CF;
not directly measurable at B-factories; 
directly accesible at charm-factories {

t

mix
interf

D
DCS

D etyxtyRRtDK −−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

++∝
4342143421
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n.b.: x’2+y’2 = x2+y2



Mixing measurements

WS 2 body decays

Introduction Additional material
Mixing phenomenology
Mixing measurements

WS 2-body decays

ResultsResults NWS ≈ 4000;
(note: P worse

D0 → K+ π - than for K+K-)

RD = (3.03 ± 0.16±0.10 ) ·10-3

x’2 = (-0.22 ±0.30±0.21) · 10-3

BaBar, PRL 98, 211802 (2007), 384fb-1

x  ( 0.22 ±0.30±0.21) 10
y’ = (9.7 ±4.4±3.1) · 10-3

likelihood
contours

1σ
2σ

3σ
4σ
5σ

3.9σ first evidence
(2nd of ....) 
for D0 mixing
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Mixing measurements

WS 2 body decays
CDF, PRL 100, 121802 (2008), 1.5fb-1

Introduction Additional material
Mixing phenomenology
Mixing measurements

WS 2-body decays

ResultsResults
prompt

from B
D0 → K+ π -

CDF: divide data into 20 t bins;

o

fit 
(n.b.: RM central 
value <0)

in each bin determine 
yield of prompt (not from B)
RS d WS t b d )RS and WS events, based 
on imp. parameter distr.;

plot WS/RS ratio in bins of t;plot WS/RS ratio in bins of t;

fit the distribution;
2

22
20

'')( yxtDK +
−+π
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Mixing measurements

WS 2 body decays
BaBar: likelihood contours

B ll 95% C L t

Introduction Additional material
Mixing phenomenology
Mixing measurements

WS 2-body decays

ResultsResults
1σ

Belle: 95% C.L. contour,
frequentist, 
FC ordering

3 9D0 → K+ π -
1σ

2σ
3σ

4σ

5σ

3.9σ

CDF: Bayesian 
probab.

y
[%] 4 K

5σ
Belle, PRL 96, 151801 (2006), 400fb-1

BaBar, PRL 98, 211802 (2007), 384fb-1

CDF, PRL 100, 121802 (2008), 1.5fb-1

[%]  4 Kπ
δ=π/4

yCP

0
Kπ
δ=0

x’2 = (x cosδ+y sinδ)2

y’= -x sinδ+y cosδ
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Mixing measurements

Charm factories )( 00 ffDDVΓ
derived from master
formula on p. 19

Introduction Additional material
Mixing phenomenology
Mixing measurements

Charm-factories

PrinciplePrinciple 1
1
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1
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coherence of D0D0 pair
affects t-integrated rates; 
example: f1= K-π+, f2= e-X ;

0,;, 2121

e
i

De
i

De

f
i

Dfeff

AAeRAAeRqbAAa

AAeRAAAAA

≈==

=−=≡≡
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−

δδ

δ

{ })1()1(21
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;

222

00

eDeDe

RRAA

XeKDDV
p

=→→Γ −+−

−−

π

for D0 →f1 and D0 → f2

{ })1()1(2
2

22
DDe RyRxAA −−++=

⎬
⎫

⎨
⎧ −

Γ −+− 1)(
22

200 yxAAXKDDV(“double tagged”, DT
events); 
sensititiviy to x, y is 
in 2nd order only

⎭
⎬

⎩
⎨ +=→→Γ +

2
1),( 00 yAAXeKDDV eπ
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in 2nd order only



Mixing measurements

Charm factories f= K-π+ derived from master
formula on p. 18

Introduction Additional material
Mixing phenomenology
Mixing measurements

Charm-factories
PrinciplePrinciple

one can also reconstruct only 
i l fi l t t K + [ ] [ ]11

)()(
2

1 2020 tPftPf
e t ≈⎟

⎠
⎞⎜

⎝
⎛ +−

formula on p. 18

single final state, e.g. K-π+

(”single tagged”, ST events); 

each event contains D0 and

[ ] [ ]
π )(

'
2
1''1

2
1

00

22

XKDDV

tyRRAtyRA DDD

=→→Γ

+++≈

+−

each event contains D0 and 
D0, inclusive singe tag rate 
equals the rate of  non-
coherent decays; [ ]δcos21

)()(
2
1

2

2020

RRA

dttPftPf

++

≈⎥⎦
⎤

⎢⎣
⎡ += ∫

coherent decays;

sensitivity of ST events to 
√(RD) y cosδ is in 1st order;

[ ]δcos21 yRRA DD ++=

f= e- X
2221 ⎞⎛

( D) y

DT/ST ratio
(ST provides sensitivity to 

22020 )()(
2

1
et AtPftPf

e
=⎟

⎠
⎞⎜

⎝
⎛ +−

δπ 21),( RRXeKΓ −+−
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mixing parameters, DT 
normalization)

δ
π

cos21
)()(

),( yRR
XeK DD −−≈

ΓΓ −+−

see also formula on p. 37



Mixing measurements

Charm factories

Introduction Additional material
Mixing phenomenology
Mixing measurements

Charm-factories
PrinciplePrinciple

various decay modes, 
ff ti teffective rates; 

S± : CP= ±1 eigenstate
e- : semileptonic state
r : √R

Cleo, PRD 78, 012001 (2008), 281pb-1

r : √RD

ST;
Γ(f)

Γuncorr(f)( )

DT;DT;
Γ(f1,f2)

Γuncorr(f1) Γuncorr(f2)
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Mixing measurements

Charm factories
Γ(K-π+)

Γuncorr(K +)

Introduction Additional material
Mixing phenomenology
Mixing measurements

1+RCharm-factories
PrinciplePrinciple
carefull when reading 
the table:

Γuncorr(K-π+)

Γ(Γ(K-π+,e-X)
Γuncorr(K-π+) Γuncorr(e-X)

1+RWS

1-√RD xsinδ - √RD ycosδ

the table: 

ST rates 

1
)( 0 +− =→Γ πKDuncorr

uncorrelated 
)( 00 +− =→→Γ π XKDDV

ππ )()1()( 000 KDRXKDDV uncorr
WS =→Γ+=→→Γ +−+−

( ))()(
2
1 00 −++− →Γ+→Γ= ππ KDKD( ))()(

2
1 00 +−+− →Γ+→Γ= ππ KDKD

( )
[ ]δ

ππ

cos21)"1()'1(

)()(
2
1)1(

)()()(

22

00

yRRAyRARyRR

KDKDR

DDDMDD

WS

WS

++≈++++=

=→Γ+→Γ+= −++−
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1

yyy DDD
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MDD

WS+
444 3444 21

( )
( )π

π
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2/)(1
)()(

),(
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00

00

AyRA

yxAA
XeDKD

XeKDDV
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e
uncorruncorr ≈
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→Γ→Γ
→→Γ
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δδ sincos1"1
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DDD

eD

−−=−≈ derived from equations on p. I/37, 38



Mixing measurements

Charm factories
Cleo, PRD 78, 012001 (2008), 281pb-1

Introduction Additional material
Mixing phenomenology
Mixing measurements

Charm-factories
ResultsResults

examples of DT, M = (Mf1+Mf2)/2

NST(K-π+ + K+π -) ~ 51·103

NDT(K-π+ , K+π -)  ~ 600 

fit to several measured 
ST and DT rates

( 5 207 5 571 2 737)%

y
[%]  4

using WA value of RD:

y=(−5.207 ± 5.571 ± 2.737)%
√(RD) cosδ = (8.878 ± 3.369 ± 1.579)%

yCP

0
g D

cosδ = (1.54 ± 0.65);
naively: δ ∈ [0o,27o] & [153o, 180o]

R

Kπ

0

B. Golob, D Mixing  & CPV 41/51Frontier of Particle Physics 2010, Hu Yu Village, Aug 2010

RM

-4
-4                   0                    4  x [%]



Mixing measurements

Multi body self conjugated states

Introduction Additional material
Mixing phenomenology
Mixing measurements

Multi-body self conjugated states
PrinciplePrinciple

example D0 → KS π+ π -

diff t t f i t

D0 →KS π+π- t

different types of interm. 
states;
CF:    D0 → K*-π+

DCS: D0 → K*+π -DCS: D0 → K π
CP:    D0 → ρ0 KS

if f = f ⇒ populate same Dalitzif f  f ⇒ populate same Dalitz
plot; 

relative phases determined 
(unlike D0 → K+π -);

b t d i th

specific regions of Dalitz plane → 
specific admixture of interm. states →

by studying the 
decay time evolution
of Dalitz plane →
access directly x, y
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p
specific t dependence f (x, y);

y , y

“t-dependent Dalitz analyses”



Mixing measurements

Multi body self conjugated states

Introduction Additional material
Mixing phenomenology
Mixing measurements

Multi-body self conjugated states
PrinciplePrinciple

example D0 → KS π+ π-

t-dependent decay ampl.
depends on Dalitz variables
m 2 = m2(K π±); [ ]titi

S tDKtmm

21)(1
)(),,(

22

022

λλ

ππ
−−

−+
+− =≡

A

M
D0→f

m±
2 = m2(KSπ±);

contains D0 and D0 part 
(due to mixing)
that propagate differently in time

[ ]
[ ]titi

titi

eemm

eemm

21

21

),(
2
1

),(
2

22

22

λλ

λλ

−−
+−

+−

−+

++=

A

A
D0→f

that propagate differently in time
λ1,2=f (x,y);  
(n.b.: K+π -: dependence on x’2, y’)

2

mm +− =),( 22A

see equations on p. I/9

instantaneous amplitude:
sum of intermediate states

NRr i
NR

i
r eammBea Φ

+−
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Mixing measurements

Multi body self conjugated states B ll PRL 99 131803 (2007) 540fb 1

Introduction Additional material
Mixing phenomenology
Mixing measurements

Multi-body self conjugated states
ResultsResults

D0 → KS π+ π- K*X(1400)+

Belle, PRL 99, 131803 (2007), 540fb-1

Nsig= 530·103

P ≈ 95%
K*(892)+

3-dim fit (m+
2, m-

2, t);
complicated, ~40 free param.;
possibility of multiple solutions;

K (892)

K*(892)- ρ/ω

usually fit to t-integrated 
Dalitz first to establish 
th i t d lthe appropriate model
(A(m+

2, m-
2));

projection of fit
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projection of fit
in Dalitz plane



Mixing measurements

Multi body self conjugated states B ll PRL 99 131803 (2007) 540fb 1

Introduction Additional material
Mixing phenomenology
Mixing measurements

Multi-body self conjugated states
ResultsResults

D0 → KS π+ π-

Belle, PRL 99, 131803 (2007), 540fb-1

projection of fit in t distrib.

)%29.080.0( 16.0
13.0±±=x

dominant syst.: model dependency

)%24.033.0( 14.0
10.0±±=y

dominant syst.: model dependency 
(param. of resonances); 
Dalitz model for bkg.;

ResultsResults
t [fs]

other analogous modes: D0 → KS K+ K-

π0 π+ π -

sensitivity to x, y depends on relative 
phases of interm states (interference);
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phases of interm. states (interference);
difficult to predict



Mixing measurements

Multi body self conjugated states

Introduction Additional material
Mixing phenomenology
Mixing measurements

Multi-body self conjugated states
ResultsResults

simultaneous: 
D0 → K π+ π - /K K+ K-

BaBar, arXiv:1004.5053, 470 fb-1

D0 → KS π+ π /KS K+ K
profit from resonances that 
are present in both final states, 
e.g. a0(980)

m 2 m 2m-
2 m+

 0.07)%  ±0.13  ±0.20  ±(0.57
0.08)%  ±0.12  ±0.23  ±(0.16

=
=

y
x

first error stat., second syst., third model
mKK

2
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KS K+ K-KS π+ π -



Mixing measurements

Multi body self conjugated states ag
/

Introduction Additional material
Mixing phenomenology
Mixing measurements

Multi-body self conjugated states
ResultsResults

D0 → KS π+ π - /KS K+ K-

or
d.

ed
u/

xo
rg

/h
fa

t-dependent Dalitz analyses: 
most precise determination of
mixing parameters

w
w

w.
sl

ac
.s

ta
nf

o

g p

y
[%]  4

K H
FA

G
, h

ttp
://

w

yCP

0

Ksππ
KsKK

)%0 21±(0 42

RM

Kπ  )% 0.19  ±(0.46
)% 0.21±(0.42

=
=

y
x
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Mixing measurements

Multi body flavor specific states 2
f=K- π + π 0

Introduction Additional material
Mixing phenomenology
Mixing measurements

Multi-body flavor specific states

PrinciplePrinciple
D0  K+ 0

fKfKff

DCS

f

txyAA

AtDK −+

+−+

+∝ ||[

''

2200

)sincos(||||

)(
321

ππππ δδ

ππ

D0 → K+ π - π 0

properties: mixture of 
2-body WS (Kπ) and 

tKK
f

interf.

etyxA −+
+ ]2

2'2'
2

4
||

444 3444 21

444444 3444444 21

ππππ

y ( )
t-dependent Dalitz (KSππ);

WS: interference mixing/DCS; 

mix
2

ππππππ

ππππππ

δδ
δδ

KKK

KKK

xyy
yxx

sincos
sincos

'

'

−=
+=

and δf = δ - δ functions of 
mKπ

2, mππ
2

ff AA ,t-dependence similar as for Kπ;

WS and RS Dalitz distribution;
i h l ti hin each relative phases 
determined;
one unknown relative phase 
between chosen point in RS

δKππ: unknown strong phase DCS/CF;
not directly measurable at B-factories; 
directly accesible at charm-factories
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between chosen point in RS 
and WS Dalitz plane; 



Mixing measurements

Multi body flavor specific states
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ResultsResults
BaBar, PRL 103, 211801 (2009), 384 fb-1

x’K =(2 61 +0.57
0 68 ± 0 39)%x Kππ (2.61 −0.68 ± 0.39)%

y’Kππ=(−0.06 +0.55
−0.64 ± 0.34)%
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results of Dalitz fit for WS decays
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ResultsResults
D0  K+ 0D0 → K+ π - π 0

x’Kππ = x cosδKππ +y sinδKππ
y’ Kππ = -x sinδKππ +y cosδKππ
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Averages
ResultsResults
HFAG, http://www.slac.stanford.edu/xorg/hfag/

χ2 fit including correlations
among measured quantities

no mixing point
excluded at ~ 10σ

( )≠(0 0) 10

n.b.: x(D0) ≈0.01; x(K0) ≈1; x(Bd) ≈ 0.8; x(Bs) ≈ 25;

CP even state heavier and shorter lived;

(x,y)≠(0,0): 10 σ;

x ∝ m1 - m2, y ∝ Γ1 - Γ2; D1: CP=+1; 
x, y >0⇒
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(unlike K0 system)


