Charmonium: Spectroscopy and Decays

Estia Eichten (Fermilab)

- Lecture 1: Spectroscopy
- Lecture 2: Transitions
- Lecture 3: Above Threshold and the X, Y, Z States

General References

[1] N. Brambilla et al. [Quarkonium Working Group], arXiv:hep-ph/0412158.
[2] N. Brambilla et al. , 'Heavy quarkonium: progress, puzzles, and opportunities" (in preperation)
[3] M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008) [arXiv:0711.4556 [hep-ph]].
[4] E. Eichten, S. Godfrey, H. Mahlke and J. L. Rosner, Rev. Mod. Phys. 80, 1161 (2008) [arXiv:hep-ph/0701208].
[5] S. Godfrey and S. L. Olsen, Ann. Rev. Nucl. Part. Sci. 58, 51 (2008) [arXiv:0801.3867 [hep-ph]].

Charmonium I: Spectroscopy

- QCD with heavy quarks
- QED -> QCD
- Velocity expansion
- Static energy
- pNRQCD + QCD string
- Potential models + Lattice
- Spin Splittings
- Open issues in Spectroscopy

QCD with Heavy Quarks

- For heavy quarks $m_{Q} \gg \Lambda_{Q C D}$, nonrelativistic $(Q \bar{Q})$ bound states form with masses M near $2 m_{Q}$:
- systematic expansion in powers of v / c
- heavy quark velocity: $\mathrm{p}_{\mathrm{Q}} / \mathrm{m}_{\mathrm{Q}} \approx \mathrm{v} / \mathrm{c} \ll 1$
- binding energy: $2 m_{Q}-M \approx m_{Q} v^{2} / c^{2}$
- QED - positronium ($e^{+} e^{-}$), (true) muonium ($\mu^{-} \mu^{+}$), muonium ($e^{-} \mu^{+}$), hydrogen atom (e^{-P});
- QCD - charmonium (c-cbar), bottomoniun (b-bbar), "toponium" (t-tbar), (b-cbar), ...
- Let's look at QED first:
- Nonrelativistic fermions: four component $\Psi \rightarrow$ two component ψ and $\sigma_{2} \chi^{*}$

$$
\begin{array}{rlr}
\mathcal{H}=\int d^{3} x \Psi^{\dagger}\left[\alpha \cdot(\mathbf{p}-\mathbf{A})+A^{0}+\beta m\right] \Psi & \\
i \frac{\partial}{\partial t} \Psi=[\quad \mathcal{H}, \Psi] \rightarrow i \frac{\partial}{\partial t} \Psi=H \Psi & \alpha^{i}=\gamma^{0} \gamma^{i} \\
\text { where } H=\alpha \cdot(\mathbf{p}-\mathbf{A})+A^{0}+\beta m & \beta=\gamma^{0} \\
\text { Odd Even } &
\end{array}
$$

- Foldy-Wouthuysen transformation:

$$
\exp (i S) \Psi=\Psi^{\prime}=\left[\begin{array}{c}
\psi \\
\sigma_{2} \chi^{*}
\end{array}\right]
$$

$$
\begin{aligned}
& i \frac{\partial}{\partial t} \exp (-i S) \Psi^{\prime}= H \exp (-i S) \Psi^{\prime} \rightarrow i \\
& H^{\prime}=H+i[S, H]+\frac{(i)^{2}}{2}[S,[S, H]]+\frac{(i)^{3}}{6}[S,[S,[S, H]]]+\ldots \\
&-\frac{\partial S}{\partial t}-\frac{i}{2}\left[S, \frac{\partial S}{\partial t}\right]+\ldots
\end{aligned}
$$

- Goal is to remove odd terms in H^{\prime}
- Solve iteratively in powers of $1 / \mathrm{m}$
$\exp (-i S)=\exp \left(-i S_{1}\right) \exp \left(-i S_{2}\right) \exp \left(-i S_{3}\right) \ldots$
To kth order : $S_{k} \sim O\left(m^{-k}\right)$ and $\mathcal{H}^{\prime}($ leading odd term $) \sim O\left(m^{-k}\right)$
- In lowest order:

$$
H=H(\text { even })+H(\text { odd }) \text { where }[H(\text { even }), \beta]=0
$$

S_{1} is given by solving:

$$
H_{1}=\beta m+A^{0}+\alpha \cdot(\mathbf{p}-\mathbf{A})+i\left[S_{1}, \beta\right] m+O(1 / m)
$$

giving

$$
S_{1}=-i \beta[\alpha \cdot(\mathbf{p}-\mathbf{A})] /(2 m)
$$

then use S_{1} to determine the full H_{1}

- To third order:

$$
\begin{aligned}
\mathcal{H}_{\mathrm{QED}}= & \mathcal{H}_{\text {gauge }}+\mathcal{H}_{\psi}=\int d^{3} x\left\{\frac{1}{2 e^{2}}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right)+A^{0} \psi^{\dagger} \psi\right. \\
& \text { Kinetic + corrections } \\
& +\psi^{\dagger}\left[m+\frac{(\mathbf{p}-\mathbf{A})^{2}}{2 m}-\frac{\left(\mathbf{p}^{2}\right)^{2}}{8 m^{3}}\right] \psi-\frac{1}{2 m} \sigma \cdot \mathbf{B} \\
& \left.\left.-\frac{i}{8 m^{2}} \sigma \cdot(\nabla \mathbf{x} \mathbf{E})-\frac{1}{4 m^{2}} \sigma \cdot(\mathbf{E} \mathbf{x ~ p})-\frac{1}{8 m^{2}} \nabla \cdot \mathbf{E}+\ldots\right] \psi\right\} \\
& \quad \text { spin orbit }
\end{aligned}
$$

- So for a nonrelativistic $\left(Q Q_{c}\right)$ system: $(Q=e-, \mu-) ;\left(Q_{c}=e+, \mu+, P\right)$:

$$
\mathcal{H}_{\text {eff }}=\mathcal{H}_{\text {gauge }}+\mathcal{H}_{Q}+\mathcal{H}_{Q_{c}}
$$

- In Coulomb gauge: $\quad \nabla \cdot \mathbf{A}=0 ; \quad A^{0}$ dependent

$$
\mathbf{E}=\mathbf{E}_{\mathbf{T}}+\mathbf{E}_{\mathbf{L}} ; \quad \nabla \cdot \mathbf{E}_{\mathbf{T}}=\mathbf{0}
$$

$$
\left(\mathbf{E}_{\mathbf{T}}, \mathbf{A}\right) ; \quad\left(\psi^{\dagger}, \psi\right) \text { ConjugateVariables }
$$

- Eliminate A^{0}

$$
\begin{aligned}
\int d^{3} x\left\{\frac{1}{2 e^{2}}\left(\vec{\nabla} A^{0}\right)^{2}+A^{0}\left[Q^{\dagger} Q-Q_{c}^{\dagger} Q_{c}\right]\right\} & \rightarrow \frac{e^{2}}{8 \pi} \int d^{3} x d^{3} y\left\{j_{\mathrm{EM}}^{0}(x) \frac{1}{|\mathbf{x}-\mathbf{y}|} j_{\mathrm{EM}}^{0}(y)\right\} \\
\mathrm{A}^{0} \mathrm{j}_{\mathrm{EM}}{ }^{0} \quad & \text { since } \quad<x\left|\frac{1}{\nabla^{2}}\right| y>=\frac{1}{4 \pi} \frac{1}{|\mathbf{x}-\mathbf{y}|}
\end{aligned}
$$

- Effective Hamiltonian

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}= & \int d^{3} x\left\{\frac{1}{2 e^{2}}\left(\mathbf{E}_{\mathbf{T}}{ }^{2}+\mathbf{B}^{2}\right)\right\} \quad \text { Gauge } \\
& +\int d^{3} x\left\{Q^{\dagger}\left[m+\frac{(\mathbf{p}-\mathbf{A})^{2}}{2 m}+\ldots\right] Q\right. \\
& \left.\quad+Q^{\dagger}\left[-\frac{1}{2 m} \sigma \cdot \mathbf{B}-\frac{i}{8 m^{2}} \sigma \cdot\left(\nabla \mathbf{x} \mathbf{E}_{\mathbf{T}}\right)-\frac{1}{4 m^{2}} \sigma \cdot\left(\mathbf{E}_{\mathbf{T}} \mathbf{x} \mathbf{p}\right)+\ldots\right] Q\right\} \\
& +\mathcal{H}_{Q_{c}} \\
& -\frac{e^{2}}{4 \pi} \int d^{3} x \int d^{3} y\left\{Q^{\dagger} Q(x) \frac{1}{|\mathbf{x}-\mathbf{y}|} Q_{c}^{\dagger} Q_{c}(y)+\ldots\right\}
\end{aligned}
$$

Coulomb interaction

- Threshold bound states
- let O_{A} be a local operator coupling to $Q Q c$ with bare vertex Γ the full vertex function satisfies the equation:

- where K is the two body irreducible kernel
- if a bound state exists in this channel then for $E_{1}+E_{2}$ near the mass M of the bound state the pole should dominate.
- So the bound state equation becomes

- Using the nonrelativistic $H_{\text {eff }}$, to leading order in $(1 / m)$
- the kernel K is just the Coulomb exchang

$$
\Phi(M, \mathbf{0}, \mathbf{p})=-\frac{\alpha_{\mathrm{EM}}}{2 \pi^{2}} \int d^{3} p^{\prime} \frac{1}{\left(\mathbf{p}-\mathbf{p}^{6}\right)^{2}}\left[\frac{1}{\sqrt{m_{1}^{2}+\mathbf{p}^{\prime 2}}+\sqrt{m_{2}^{2}+\mathbf{p}^{\prime 2}}-M}\right] \Phi\left(M, \mathbf{0}, \mathbf{p}^{\prime}\right)
$$

- But $\alpha_{E m} \ll 1$-> no solutions unless:

$$
\begin{aligned}
\sqrt{m_{1}^{2}+\mathbf{p}^{\prime 2}}+\sqrt{m_{2}^{2}+{\mathbf{\mathbf { p } ^ { \prime 2 }}}^{2}-M} & =\left(m_{1}+m_{2}-M\right)+\frac{\mathbf{p}^{2}}{\mu_{R}}+\ldots \ll m_{1}+m_{2} \\
E(\text { binding }) & \sim \frac{v_{\mathrm{rel}}^{2}}{2 \mu_{R}} \\
\mathbf{p}, \mathbf{p}^{\prime} & \sim v_{\mathrm{rel}} \mu_{R}
\end{aligned}
$$

- Nonrelativistic states with natural expansion in v/c $\approx \alpha_{\text {EM }}$
- Schrödinger Equation:

$$
\begin{array}{ll}
\left.\Psi(M, \mathbf{0}, \mathbf{p}) \equiv \sqrt{m_{1}^{2}+\mathbf{p}^{2}}+\sqrt{m_{2}^{2}+\mathbf{p}^{2}}-M\right] \Phi(M, \mathbf{0}, \mathbf{p}) \\
{\left[-\frac{\vec{\nabla}^{2}}{2 \mu_{R}}-\frac{\alpha_{\mathrm{EM}}}{r}\right] \Psi(M, \mathbf{x})=M \Psi(M, \mathbf{x})} & \text { with }
\end{array} \begin{aligned}
\mu_{R} & =\frac{m_{1} m_{2}}{m_{1}+m_{2}} \\
r & =|\mathbf{x}|
\end{aligned}
$$

- QCD with heavy quarks we can follow the same steps to obtain:
- Notation

$$
\begin{array}{ll}
\left(A^{0}, \mathbf{A}\right)=g A_{a}^{\mu} t^{a} \quad \mathbf{D}=\nabla+i \mathbf{A} \quad-i\left[\mathbf{D}^{0}, \mathbf{D}^{i}\right]=E^{j} & \nabla \cdot \mathbf{A}=0 \\
\operatorname{Tr}\left(t^{a} t^{b}\right)=\frac{1}{2} \delta^{a b} \quad-i\left[\mathbf{D}^{j}, \mathbf{D}^{k}\right]=\epsilon^{j k l} B^{l} & \nabla \cdot \mathbf{E}=0 \\
J_{a}^{0}(\mathbf{x})=\sum_{Q=c, b, t}\left[J_{a}^{0}(\mathbf{x})\right]_{Q}+\left[J_{a}^{0}(\mathbf{x})\right]_{\text {gauge }} & \text { Color current } \\
\\
{\left[J_{a}^{0}(\mathbf{x})\right]_{\text {gauge }}=g f_{a b c} \sum_{i} E_{b}^{i}(\mathbf{x}) A_{c}^{i}(\mathbf{x})} & \\
{\left[J_{a}^{0}(\mathbf{x})\right]_{Q}=Q^{\dagger}(\mathbf{x}) t_{a} Q(\mathbf{x})-Q_{\mathbf{c}}^{\dagger}(\mathbf{x}) t_{a}^{*} Q_{\mathbf{c}}(\mathbf{x})} & \\
G_{a b}(\mathbf{x}, \mathbf{y})=4 \pi<\mathbf{x}, a\left|\frac{1}{\nabla \cdot \mathbf{D}} \nabla^{2} \frac{1}{\nabla \cdot \mathbf{D}}\right| \mathbf{y}, b>\rightarrow \frac{\delta_{a b}}{|\mathbf{x}-\mathbf{y}|} \text { as } g \rightarrow 0 &
\end{array}
$$

- Result NRQCD

$$
\begin{gathered}
\text { Gauge } \\
\mathcal{H}_{\mathrm{QCD}}^{\mathrm{eff}}=\frac{1}{g^{2}} \int d^{3} x\left[\operatorname{Tr}\left(\mathbf{E}^{2}\right)+\operatorname{Tr}\left(\mathbf{B}^{2}\right)\right]+\sum_{Q=c, b, t}\left[\mathcal{H}_{Q}+\mathcal{H}_{Q_{c}}\right] \\
+\frac{g^{2}}{4 \pi} \int d^{3} x \int d^{3} y\left\{J_{a}^{0}(x) \mathcal{G}(\mathbf{x}, \mathbf{y})_{a b} J_{b}^{0}(y)\right\} \\
\text { Potential }
\end{gathered}
$$

Relativistic
corrections

$$
\mathcal{H}_{Q}=\int d^{3} x Q^{\dagger}\left(\left(m_{Q}+\delta m_{Q}\right)-\frac{\mathbf{D}^{2}}{2 m_{Q}}\right) Q
$$

$$
-\int d^{3} x Q^{\dagger}\left[c_{f} \frac{1}{2 m_{Q}} \sigma \cdot \mathbf{B}+c_{s} \frac{i}{8 m_{Q}^{2}} \sigma \cdot(\mathbf{D} \times \mathbf{E}+\mathbf{E} \times \mathbf{D})\right] Q+\ldots \text { Spin Dependent }
$$

- Comments
- The coefficients ($\delta m_{Q}, c_{4}, c_{d}, c_{f}, c_{8}$) are $(0,1,1,1,1)$ plus perturbative corrections associated with matching at scale m_{Q}
- Gribov copies, ordering issues and $1 / m_{Q}{ }^{2}$ contact terms ignored
- Adding light quarks
- relativistic form appropriate for (u, d, s) quarks

$$
\begin{array}{ll}
J_{a}^{0}(\mathbf{x}) \rightarrow\left[J_{a}^{0}(\mathbf{x})\right]_{\text {gauge }}+\sum_{Q=c, b, t}\left[J_{a}^{0}(\mathbf{x})\right]_{Q}+\sum_{f=u, d, s}\left[J_{a}^{0}(\mathbf{x})\right]_{f} & \text { with } \quad\left[J_{a}^{0}(\mathbf{x})\right]_{f}=\psi_{f}^{\dagger}(\mathbf{x}) t_{a} \psi_{f}(\mathbf{x}) \\
\mathcal{H}_{\mathrm{QCD}}=\mathcal{H}_{\mathrm{QCD}}^{\mathrm{eff}}+\sum_{f=u, d, s} \mathcal{H}_{f} & \text { where }
\end{array} \quad \mathcal{H}_{f}=\int d^{3} x \psi_{f}^{\dagger}\left[-i \alpha \cdot \mathbf{D}+\beta m_{f}\right] \psi_{f} .
$$

- Light quarks have both important effects on charmonium physics
» modify properties of narrow states
» above threshold allow strong decays to charmed meson pairs
» more details later
- QCD with sufficiently heavy quarks: $\alpha_{\text {QCD }}\left(\left(p-p^{\prime}\right)^{2}\right)$ will be small
- charmonium $\sim\left\langle v^{2} / c^{2}\right\rangle \approx 0.24$ bottomonium $\sim\left\langle v^{2} / c^{2}\right\rangle \approx 0.08$

Static Energy

- Can compute the potential at short distance using NRQCD
- In coulomb gauge (using $H^{\text {eff }}$)

- Three loop calculation: A. V. Smirnov, V. A. Smirnov and M. Steinhauser, arXiv:1006.5513
- Large distance - expect string-like behavior

$$
\mathcal{E}(\mathrm{R})=\sigma \mathrm{R}
$$

- Potential models $-\mathrm{V}(\mathrm{R})=-\kappa / \mathrm{R}+\sigma \mathrm{R}+C$ (Cornell Model)

Practical realities

- The scales that enter NR calculations are:
- for heavy quarks: $m_{Q}{ }^{2}-p^{2} \sim m_{Q} V^{2} \sim$ (binding energy), $p \sim m_{Q} V$
- for gauge fields: $k \sim m_{Q V}$ ("soft" or "potential" gluons) ; $k \sim m_{Q} V^{2}$ ("ultrasoft")
- In QED $v \sim \alpha \ll 1$ so bound states are always nonrelativistic: $m v^{2} \ll m v \ll 1$. Corrections to the NR limit Coulomb interaction can be calculated in perturbation theory.
- In QCD there is a strong interaction scale $\Lambda_{Q C D}$.
- $\Lambda_{Q C D} \ll m_{Q} v^{2} \ll m^{Q_{V}} \ll 1$ only for the ($\dagger \mp$) system. but the top quark decays before toponium states form.
- For the $(c \bar{c}),(b \bar{b})$ and $(b \bar{c})$ systems: $\Lambda_{Q C D} \sim m_{Q} v^{2}<m_{Q} v<m_{Q}$ at best.
- Integrate out perturbative scales: $m_{Q}(N R Q C D)$ and $m_{Q} v(p N R Q C D)$. Still left with nonperturbative theory that must be modeled on computed on the lattice.

Static Energy

- Wilson loops $W(R, T)$ and static energy $E(R)$

- Q and Q_{c} separated by distance R for time T :
- Static states: $H_{0}\left|n, x_{1}, x_{2}\right\rangle=E_{n}\left|n, x_{1}, x_{2}\right\rangle$ where Q at x_{1}, Q_{c} at x_{2}; $H_{0}=$ all gauge interactions and no $1 / m Q$ corrections included.
- Translation invariance: depends on $R=x_{1}-x_{2}$
- Ground state for gluonic degrees of freedom: Eo
- States with excited gluonic degrees of freedom (hybrids): $E_{n} n=1,2, \ldots$.
- Wilson loop: $\mathrm{W}(\mathrm{R}, \mathrm{T})=\ll 1 \gg$ with $\mathrm{U}\left(\mathrm{x}, \hat{\mathrm{r}}^{\mu}\right)=P \exp \left\{i \int_{x}^{x+a \hat{n}^{\mu}} A^{\mu} \cdot \hat{n}_{\mu} d x\right\} \quad$ and

$$
\ll O_{G} \gg=\int \Pi d \mathrm{U} O_{G} \operatorname{Tr}\left[\Pi_{C(R, T)} \mathrm{U}\left(\mathrm{x}, \hat{\mathrm{n}}^{\mu}\right)\right] \exp \left(-\mathrm{S}_{\text {gauge }}\right)
$$

$W(R, T)$

- Euclidean space: $W(R, T)=\sum_{n} C_{n} e^{-E n(R) T} \rightarrow C_{0} e^{-E(R) T}$ as $T \rightarrow \infty$

$$
\mathcal{E}(R)=-\lim _{T \rightarrow \infty} \frac{1}{T} \log (W(R, T))
$$

Static Energy

- LQCD calculations with and without 3 light quark loops

C. W. Bernard et al., Phys. Rev. D 62, 034503 (2000) [arXiv:hep-lat/0002028]

Narrow States Below Threshold

- Basic to this NR picture is the adiabatic assumption
- Heavy quarks react slowly relative to the interactions of the gauge degrees of freedom
- This allows the velocity expansion in NRQCD and the $1 / m_{Q}$ expansion in HQET
- So for the $\left(Q Q_{c}\right)$ system at rest:

$$
\begin{aligned}
& \Psi(\mathbf{R})=\frac{u_{n l}(r)}{r} Y_{l m}(\theta, \phi) \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \\
& -\frac{1}{2 \mu} \frac{d^{2} u_{n l}(r)}{d r^{2}}+\left\{\frac{\mathbf{L}^{2}}{2 \mu r^{2}}+V_{Q \bar{Q}}(r)\right\} u_{n l}(r)=E_{n l} u_{n l}(r) \quad M=E_{o}+E_{n l}
\end{aligned}
$$

- Phenomenological potential models:
- V(r) [Cornell, Richardson, Buchmueller-Tye, Godfrey-Isgur, ...]
- Many successful predictions

Narrow States Below Threshold

- Below threshold for heavy flavor meson pair production
- Narrow states allow precise experimental probes of the subtle nature of QCD.
- Lattice QCD supports and will supplant potential models
- A variety of lattice approaches
- Low-lying states directly calculated in Lattice QCD
- Use Lattice calculations to determine non-perturbative potentials and continuum NRQCD to calculate masses and properties of states. \checkmark

S. Gottlieb et al., PoS LAT2006

Figure 5: Summary of charmonium spectrum.

Narrow States Below Threshold

- Consistency between (b $\bar{b})$ and $(c \bar{c})$ systems validates NRQCD approach.
- masses (pNRQCD, LQCD)
- spin splittings (pNRQCD, LQCD)
- EM transitions (ME, LQCD)
- hadronic transitions (ME)
- direct decays (pQCD)

Cornell Potential Model

Narrow States Below Threshold

Narrow States Below Threshold

Why it works so well

- Lattice calculation $V(r)$, then $S E$

$$
-\frac{1}{2 \mu} \frac{d^{2} u(r)}{d r^{2}}+\left\{\frac{\left\langle\boldsymbol{L}_{Q \bar{Q}}^{2}\right\rangle}{2 \mu r^{2}}+V_{Q \bar{Q}}(r)\right\} u(r)=E u(r)
$$

- What about the gluon and light quark degrees of freedom of QCD?
- Two thresholds:
- Usual $(\mathbb{Q} \bar{q})+(q \bar{Q})$ decay threshold
- Excite the string - hybrids
- Hybrid states will appear in the spectrum associated with the potential Π_{u}, \ldots
- In the static limit this occurs at separation: $r \approx 1.2 \mathrm{fm}$. Between 3S-4S in (c $\bar{c})$; just above the 5 S in ($\mathrm{b} \overline{\mathrm{b}}$).

LQCD calculation of static energy

Relativistic Corrections

- In order $1 / \mathrm{m}^{2}$ masses have both spin dependent and spin independent corrections. First the spin dependent terms:

$$
\begin{array}{r}
H_{1}\left(\mathbf{x}_{\mathbf{1}}\right)=-c_{f} \frac{1}{2 m_{1}} \mathbf{s}_{\mathbf{1}} \cdot \mathbf{B}-\frac{\mathbf{D}_{\mathbf{1}}{ }^{2}}{2 m_{1}}-c_{s} \frac{i}{8 m_{1}^{2}} \sigma \cdot\left(\mathbf{D}_{\mathbf{1}} \times \mathbf{E}+\mathbf{E} \times \mathbf{D}_{\mathbf{1}}\right)+\ldots \\
H_{2}\left(\mathbf{x}_{\mathbf{2}}\right)=-c_{f} \frac{1}{2 m_{2}} \mathbf{s}_{\mathbf{2}} \cdot \mathbf{B}-\frac{\mathbf{D}_{\mathbf{2}}{ }^{2}}{2 m_{2}}-c_{s} \frac{i}{8 m_{2}^{2}} \sigma \cdot\left(\mathbf{D}_{\mathbf{2}} \times \mathbf{E}+\mathbf{E} \times \mathbf{D}_{\mathbf{2}}\right)+\ldots \\
\text { Magnetic }
\end{array}
$$

Q m1 t_{a}
$Q_{c} m 2 t_{a}{ }^{*}$

- D_{1} term

Denote the static state $\mid n, \mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}>$ by $\mid n>$

$$
\begin{aligned}
\mathbf{D}_{\mathbf{1}} \mid 0> & =\nabla_{1}\left|0>+i \sum_{n \neq 0}\right| n><n|\mathbf{A}| 0> \\
& =\nabla_{1}\left|0>+\sum_{n \neq 0} \frac{1}{\left(E_{n}-E_{0}\right)}\right| n><n|\mathbf{E}| 0> \\
<0\left|\mathbf{D}_{1}^{2}\right| 0> & =<0\left|\nabla_{1}^{2}\right| 0>+\sum_{n \neq 0} \frac{1}{\left(E_{n}-E_{0}\right)}<0\left|\mathbf{E}_{\mathbf{1}}^{\mathbf{i}}\right| n><n\left|\mathbf{E}_{\mathbf{1}}^{\mathbf{i}}\right| 0>
\end{aligned}
$$

- Define in terms of Wilson loop

$$
V^{(1,0)}(r)=-\frac{1}{2} \lim _{T \rightarrow \infty} \int_{0}^{T} d t t\left\langle\left\langle g \mathbf{E}_{1}(t) \cdot g \mathbf{E}_{1}(0)\right\rangle\right\rangle_{c} .
$$

A. Pineda and A. Vairo, Phys. Rev. D 63, 054007 (2001) [Erratum-ibid. D 64, 039902

(2001)] [arXiv:hep-ph/0009145].

Relativistic Corrections

$$
\begin{aligned}
& V_{S D}^{(1,1)}=V_{L_{1} S_{2}}^{(1,1)}(r) \mathbf{L}_{1} \cdot \mathbf{S}_{2}-V_{L_{2} S_{1}}^{(1,1)}(r) \mathbf{L}_{2} \cdot \mathbf{S}_{1}+V_{S^{2}}^{(1,1)}(r) \mathbf{S}_{1} \cdot \mathbf{S}_{2}+V_{\mathbf{S}_{12}}^{(1,1)}(r) \mathbf{S}_{12}(\hat{\mathbf{r}}) \\
& V_{S D}^{(2,0)}=V_{L_{1}, S_{1}}^{(2,0)}(r) \mathbf{L}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{1}}
\end{aligned}
$$

- Calculations in perturbation theory: S. F. Radford and W. W. Repko, Phys. Rev. D 75, 074031 (2007)

$$
\begin{aligned}
V_{H F}= & \frac{32 \pi \alpha_{S} \vec{S}_{1} \cdot \vec{S}_{2}}{9 m^{2}}\left\{\left[1-\frac{\alpha S}{12 \pi}(26+9 \ln 2)\right] \delta(\vec{r})\right. \\
& \left.-\frac{\alpha S}{24 \pi^{2}}\left(33-2 n_{f}\right) \nabla^{2}\left[\frac{\ln \mu r+\gamma_{E}}{r}\right]+\frac{21 \alpha_{S}}{16 \pi^{2}} \nabla^{2}\left[\frac{\ln m r+\gamma_{E}}{r}\right]\right\} \\
V_{L S}= & \frac{2 \alpha_{S} \vec{L} \cdot \vec{S}}{m^{2} r^{3}}\left\{1-\frac{\alpha_{S}}{6 \pi}\left[\frac{11}{3}-\left(33-2 n_{f}\right)\left(\ln \mu r+\gamma_{E}-1\right)+12\left(\ln m r+\gamma_{E}-1\right)\right]\right\} \\
V_{T}= & \frac{4 \alpha_{S}\left(3 \vec{S}_{1} \cdot \hat{r} \vec{S}_{2} \cdot \hat{r}-\vec{S}_{1} \cdot \vec{S}_{2}\right)}{3 m^{2} r^{3}}\left\{1+\frac{\alpha_{S}}{6 \pi}\left[8+\left(33-2 n_{f}\right)\left(\ln \mu r+\gamma_{E}-\frac{4}{3}\right)\right.\right. \\
& \left.\left.-18\left(\ln m r+\gamma_{E}-\frac{4}{3}\right)\right]\right\}
\end{aligned}
$$

- General results:
- The spin-spin terms

$$
<0\left|\mathbf{B}_{\mathbf{1}}^{\mathbf{i}} \mathbf{B}_{\mathbf{2}}^{\mathbf{j}}\right| 0>\sum_{n \neq 0} \frac{1}{\left(E_{n}-E_{0}\right)^{2}}<0\left|\mathbf{B}_{\mathbf{1}}^{\mathbf{i}}\right| \mathbf{n}><\mathbf{n}\left|\mathbf{B}_{\mathbf{2}}^{\mathbf{j}}\right| \mathbf{0}>
$$

Relativistic Corrections

- Define in terms of Wilson loops

Hyperfine interactions

Spin-Spin

$$
\begin{aligned}
& \langle 0| \mathbf{B}_{\mathbf{1}}^{\mathbf{i}} \mathbf{B}_{\mathbf{2}}^{\mathbf{j}}|0\rangle=\sum_{n \neq 0} \frac{1}{\left(E_{n}-E_{0}\right)^{2}}\langle 0| \mathbf{B}_{\mathbf{1}}^{\mathbf{i}}|\mathbf{n}\rangle\langle\mathbf{n}| \mathbf{B}_{\mathbf{2}}^{\mathbf{j}}|\mathbf{0}\rangle \\
& V_{S^{2}}^{(1,1)}(r)=\frac{2 c_{F}^{(1)} c_{F}^{(2)}}{3} i \lim _{T \rightarrow \infty} \int_{0}^{T} d t\left\langle\left\langle g \mathbf{B}_{1}(t) \cdot g \mathbf{B}_{2}(0)\right\rangle\right\rangle
\end{aligned}
$$

Tensor

$$
\begin{aligned}
& \langle 0| \mathbf{B}_{1}^{\mathbf{i}} \mathbf{B}_{\mathbf{2}}^{\mathbf{j}}|0\rangle=\sum_{n \neq 0} \frac{1}{\left(E_{n}-E_{0}\right)^{2}}\langle 0| \mathbf{B}_{\mathbf{1}}^{\mathbf{i}}|\mathbf{n}\rangle\langle\mathbf{n}| \mathbf{B}_{\mathbf{2}}^{\mathbf{j}}|\mathbf{0}\rangle \\
& V_{\mathbf{S}_{12}}^{(1,1)}(r)=\frac{c_{F}^{(1)} c_{F}^{(2)}}{4} i \hat{\mathbf{r}}^{i} \hat{\mathbf{r}}^{j} \lim _{T \rightarrow \infty} \int_{0}^{T} d t\left[\left\langle\left\langle g \mathbf{B}_{1}^{i}(t) g \mathbf{B}_{2}^{j}(0)\right\rangle\right\rangle-\frac{\delta^{i j}}{3}\left\langle\left\langle g \mathbf{B}_{1}(t) \cdot g \mathbf{B}_{2}(0)\right\rangle\right\rangle\right]
\end{aligned}
$$

- The spin-orbit terms more complicated but same procedure

A. Pineda and A. Vairo, Phys. Rev. D 63, 054007 (2001) [Erratum-ibid. D 64, 039902
(2001)] [arXiv:hep-ph/0009145].

Lattice QCD Calculation of Spin Dependent Terms

M. Koma, Y. Koma and H. Wittig, PoS CONFINEMENT8, 105 (2008).

$$
\mathrm{V}^{\prime}=\mathrm{dV} / \mathrm{dr}
$$

$V_{\mathrm{SD}}(r)=\left(\frac{\vec{s}_{1} \cdot \vec{l}_{1}}{2 m_{1}^{2}}-\frac{\overrightarrow{\vec{s}}_{2} \cdot \vec{l}_{2}}{2 m_{2}^{2}}\right)\left(\frac{V^{(0)}(r)}{r}+2 \frac{V_{1}^{\prime}(r)}{r}\right)+\left(\frac{\vec{s}_{2} \cdot \vec{l}_{1}}{2 m_{1} m_{2}}-\frac{\overrightarrow{\vec{s}}_{1} \cdot \vec{l}_{2}}{2 m_{1} m_{2}}\right) \frac{V_{2}^{\prime}(r)}{r} \quad$ Long range component

$$
+\frac{1}{m_{1} m_{2}}\left(\frac{\left(\vec{s}_{1} \cdot \vec{r}\right)\left(\vec{s}_{2} \cdot \vec{r}\right)}{r^{2}}-\frac{\vec{s}_{1} \cdot \vec{s}_{2}}{3}\right) V_{3}(r)+\frac{\vec{s}_{1} \cdot \vec{s}_{2}}{3 m_{1} m_{2}} V_{4}(r),
$$

Gromes relation:

$$
\frac{d V_{2}(r)}{d r}-\frac{d V_{1}(r)}{d r}=\frac{d \mathcal{E}(r)}{d r}
$$

Follows from Lorentz invariance under infinitesimal boosts
D. Gromes, Z. Phys. C 22, 265 (1984)

Lattice QCD Calculation of Spin Dependent Terms

- Calculated from $r=0.25$ to 1.2 fm
- The spin-spin $\left(V_{3}\right)$ and tensor $\left(V_{4}\right)$ potentials are indeed short range
- The spin-orbit potential $\mathrm{V}^{\prime} 2$ shows a long range piece

Open issues in Spectroscopy

- $h_{c}\left({ }^{1} P_{1}\right)$ spin singlet charmonium state $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \pi^{0} h_{c}, \quad h_{c} \rightarrow \gamma \eta_{c}, \quad \pi^{0} \rightarrow \gamma \gamma$.
- Observation: CLEOc, BESIII

$$
\begin{array}{cc}
M\left(h_{c}\right)=3525.28 \pm 0.19 \pm 0.12 \mathrm{MeV} & \text { CLEOc } \\
M\left(h_{c}\right)=3525.40 \pm 0.13 \pm 0.18 \mathrm{MeV} & \text { BESIII } \\
\Gamma\left(h_{c}\right)=0.73 \pm 0.45 \pm 0.28 \mathrm{MeV} & \\
\mathcal{B}\left(\psi(2 S) \rightarrow \pi^{0} h_{c}\right)=[8.4 \pm 1.3 \pm 1.0] \times 10^{-4} & \text { BESIII } \\
\left.\mathcal{B}\left(h_{c}\right) \rightarrow \gamma \eta_{c}\right)=[54.3 \pm 6.7 \pm 5.2] \% &
\end{array}
$$

- Partial widths and decay modes agree with expectations:
J. L. Rosner et al., PRL 95, 102003 (2005)
- Spin-dependent forces:

BES III: PRL 104, 132002 (2010)

Confirms the short range nature of spin-spin and tensor potentials. Phenomenological models which closely follow pert QCD are best.
S. Godfrey [hep-ph/0501083]

- $\left(1^{3} D_{J}\right)_{b}$ spin-triplet bottomonium state
- Observation: $\left(1^{3} D_{J}\right)_{b} \rightarrow \pi \pi \Upsilon(B A B A R)$

$$
\begin{aligned}
& M\left({ }^{3} D_{3}\right)=10172.9 \pm 1.7 \pm 0.5 \mathrm{MeV} \\
& M\left({ }^{3} D_{2}\right)=10161.1 \pm 0.6 \pm 1.6 \mathrm{MeV} \\
& M\left({ }^{3} D_{1}\right)=10151.6 \pm 1.4 \pm 0.5 \mathrm{MeV}
\end{aligned}
$$

- Useful to check spin-splittings in charmonium system
- $\eta_{c}\left(1^{1} \mathrm{~S}_{0}\right)$ spin-singlet charmonium state
- Mass splitting (CLEO)

$$
\begin{aligned}
M\left(\eta_{c}\right) & =2976.7 \pm 0.6 \mathrm{MeV} / c^{2} \quad \text { Breit - Wigner } \\
& =2982.2 \pm 0.6 \mathrm{MeV} / c^{2} \text { Modified Breit - Wigner }
\end{aligned}
$$

Figure 4: Hyperfine splitting of the $1 S$ states.

FIG. 1: The $\pi^{+} \pi^{-} \ell^{+} \ell^{-}$mass spectrum and fit results. The two peaks near $10.25 \mathrm{GeV} / c^{2}$ arise from $\chi_{b J^{\prime}}(2 P) \rightarrow \omega \Upsilon(1 S)$ background events with $\omega \rightarrow \pi^{+} \pi^{-}$
long tail

S. Gottlieb et al., PoS LAT2006

- $\eta^{\prime}{ }_{c}\left(2^{1} S_{0}\right)$ spin-singlet charmonium state
- Spin splitting
- Effects of light quark loops significant

$$
\Delta M=M(\psi(2 S))-M\left(\eta_{c}^{\prime}\right)=49 \pm 4 \mathrm{MeV} / c^{2} \text { PDG } 2008
$$

Too small - scaling from 1S; most models.
Are we seeing threshold effects?

Effects on spectrum seen in LQCD
C. T. H. Davies et al. [HPQCD, Fermilab Lattice, MILC, and UKQCD Collaborations], PRL 92, 022001 (2004)

- Strong coupling to virtual decay channels induces spin-dependent forces in charmonium near threshold, because $M\left(D^{*}\right)>M(D)$
- Spin dependent shifts small far below threshold

	State	Mass	Centroid	Splitting (Potential)	Splitting (Induced)
	$1^{1} \mathrm{~S}_{0}$	$2979.9^{\text {a }}$	$3067.6{ }^{\text {b }}$	-90.5^{e}	+2.8
	$1^{3} \mathrm{~S}_{1}$	$3096.9^{\text {a }}$	3067.6	$+30.2{ }^{e}$	-0.9
Less that 1 MeV shift $\quad \Rightarrow$	$1^{3} \mathrm{P}_{0}$	$3415.3{ }^{\text {a }}$	$3525.3^{\text {c }}$	$-114.9{ }^{\text {e }}$	+5.9
	$1^{3} \mathrm{P}_{1}$	$3510.5^{\text {a }}$		-11.6^{e}	-2.0
	$1_{1}{ }^{1}{ }_{1}$	$3524.4{ }^{f}$		$+0.6{ }^{e}$	+0.5
	$1^{3} \mathrm{P}_{2}$	$3556.2^{\text {a }}$		$+31.9^{e}$	-0.3
Reduces $\Delta M(2 S)$ by $21 \mathrm{MeV} \Rightarrow$	$2^{1} \mathrm{~S}_{0}$	$\begin{gathered} 3638^{a} \\ 36860^{a} \end{gathered}$	$3674^{\text {b }}$	$-50.1^{e}-$	$+15.7$
	$1^{3} \mathrm{D}_{1}$	3686.0 3769.9	$(3815)^{d}$	+16.7 -40	-5.2 -39.9
	$1^{3} \mathrm{D}_{2}$	3830.6		0	-2.7
	$1^{1} \mathrm{D}_{2}$	3838.0		0	+4.2
	$1^{3} \mathrm{D}_{3}$	3868.3		+20	+19.0
	$2^{3} \mathrm{P}_{0}$	3881.4	$(3922){ }^{\text {d }}$	-90	+27.9
	$2^{3} \mathrm{P}_{1}$	3920.5		-8	+6.7
	$2^{1} \mathrm{P}_{1}$	3919.0		0	-5.4
	$2^{3} \mathrm{P}_{2}$	$3931{ }^{\text {g }}$		+25	-9.6
	$3^{1} \mathrm{~S}_{0}$	3943^{h}	$(4015)^{i}$	$-66{ }^{\text {e }}$	-3.1
ELQ PRD 73:014014 (2006)	$3^{3} \mathrm{~S}_{1}$	4040^{a}		$+22^{e}$	+1.0

- $\eta_{b}\left(1^{1} S_{0}\right)$ spin-singlet bottomonium state
- Observed by BaBar in $\curlyvee(3 S)$ radiative decays

$$
\begin{aligned}
& E_{\gamma}=921.2_{-2.8}^{+2.1} \pm 2.4 \\
& M\left(\eta_{b}\right)=9388.9_{-2.3}^{+3.1} \pm 2.7 \mathrm{MeV}
\end{aligned}
$$

- Hyperfine splitting:

$$
\begin{aligned}
M(\Upsilon(1 S)) & -M\left(\eta_{b}\right)=71.4_{-3.1}^{+2.3} \pm 2.7 \mathrm{MeV} \\
\text { Naive } & : \frac{\alpha_{s}\left(m_{b}^{2}\right)}{\alpha_{s}\left(m_{c}^{2}\right)} \frac{4 \Gamma_{e^{+} e^{-}}(\Upsilon)}{\Gamma_{e^{+} e^{-}}(J / \Psi)}\left[M(J / \Psi)-M\left(\eta_{c}\right)\right] \approx 68(\mathrm{MeV}) \\
\text { QCD NNL } & : 39 \pm 11{ }_{-8}^{+9}(\mathrm{MeV}) \quad[\mathrm{PRL} 92242001(2004)] \\
\text { LQCD } & : 61 \pm 14(\mathrm{MeV}) \quad[\mathrm{PR} \mathrm{D72:094507(2005)]}
\end{aligned}
$$

BaBar [PRL 101, 071801

- Hindered M1 Transitions:
- Relativistic corrections poorly understood. Phenomenological models for $Y(3 S)$-> $\gamma \eta_{b}$ and $\left.Y(2 S) \rightarrow\right\rangle \eta_{b}$ varied greatly.
- Narrow states still missing
- Charmonium - 3-1D2,3D2, and 3D3
- Bottomonium - 21 - 13FJ, 23DJ, 13GJ, 33PJ, 11P1, 21S0,11D2, 21P1, 31S0, 11F3, 21D2, 11G4, 31P1
- The wealth of precision data has solidified our confidence in the NRQCD approach for narrow states below threshold.
- In lecture 2 we will look into the more detailed properties of the states probed by radiative and hadronic transitions

