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Charmonium: Spectroscopy and Decays

• Lecture 1: Spectroscopy

• Lecture 2: Transitions

• Lecture 3: Above Threshold and the X,Y,Z States
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General References
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 Charmonium I: Spectroscopy

• QCD  with heavy quarks

– QED -> QCD

– Velocity expansion

• Static energy

– pNRQCD + QCD string

– Potential models + Lattice

• Spin Splittings

• Open issues in Spectroscopy
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QCD with Heavy Quarks

• For heavy quarks mQ >> ΛQCD, nonrelativistic (QQ) bound states form                 

with masses M near 2mQ :

– systematic expansion in powers of v/c

– heavy quark velocity: pQ/mQ ≈ v/c << 1

– binding energy: 2mQ - M ≈ mQ v2/c2

• QED - positronium (e+e-), (true) muonium (μ-μ+), muonium (e-μ+),               

hydrogen atom (e-P); 

• QCD - charmonium (c-cbar), bottomoniun (b-bbar),  “toponium” (t-tbar), (b-cbar), ...

• Let’s look at QED first:

– Nonrelativistic fermions:  four component Ψ -> two component ψand σ2χ* 
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1 Charmonium I: Spectroscopy

1.1 QCD with heavy quarks

∇ ·A = 0; A0 dependent
E = ET + EL; ∇ ·ET = 0

(ET,A); (Q†,Q) ConjugateVariables (1)

exp (iS)Ψ = Ψ� =
�

ψ
σ2χ∗

�
(2)

HQED =
�

d3x

�
1

2e2
(E2 + B2) + A0Ψ†Ψ +Ψ †[α · (p−A) + βm]Ψ

�
(3)

HQED =
�

d3x

�
1

2e2
(E2 + B2) + A0ψ†ψ

+ψ†[m +
(p−A)2

2m
− (p2)2

8m3
]ψ − 1

2m
σ ·B

− i

8m2
σ · (∇ x E)− 1

4m2
σ · (E x p)− 1

8m2
∇ ·E + ...]ψ

�

(4)

H =
�

d3xΨ†[α · (p−A) + A0 + βm]Ψ (5)

i
∂

∂t
exp(−iS)Ψ� = H exp(−iS)Ψ� → i

∂

∂t
Ψ� = {[exp(−iS)]†[H− i

∂

∂t
] exp(−iS)}Ψ� = H

�Ψ�

(6)
exp (−iS) = exp (−iS0) exp (−iS1) exp (−iS2)... (7)
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�

d
3
xΨ†[α · (p−A) + A

0 + βm]Ψ (5)

i
∂

∂t
Ψ =[ H,Ψ]→ i

∂

∂t
Ψ = HΨ

where H = α · (p−A) + A
0 + βm

(6)
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To kth order : Sk ∼ O(m−k) and H

�(leading odd term) ∼ O(m−k)

HQED =
�

d
3
x

�
1

2e2
(E2 + B2) + A

0Ψ†Ψ +Ψ †[α · (p−A) + βm]Ψ
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(8)

HQED =
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3
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+ ...]ψ

ψ†[− 1
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σ · (∇ x ET)− 1

4m2
σ · (ET x p) + ...]ψ

�

+
e2

4π

�
d

3
x

�
d

3
y

�
j0(x)

1
|x− y|

j0(y)
�

(9)

Heff = Hgauge + HQ + HQc (10)
�

d
3
x

�
1

2e2
(�∇A

0)2 + A
0[Q†

Q−Q
†
cQc]

�
→ e2

2π

�
d

3
xd

3
y

�
j
0
EM(x)

1
|x− y|

j
0
EM(y)

�
(11)

Heff =
�

d
3
x

�
1

2e2
(ET

2 + B2)
�

+
�

d
3
x

�
Q

†[m +
(p−A)2

2m
+ ...]Q

+ Q
†[− 1

2m
σ · B− i

8m2
σ · (∇ x ET)− 1

4m2
σ · (ET x p) + ...]Q

�

+ HQc

− e2

4π

�
d

3
x

�
d

3
y

�
Q

†
Q(x)

1
|x− y|

Q
†
cQc(y) + ...

�

(12)

< x|
1
∇2

|y >=
1
4π

1
|x− y|

(13)
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• Foldy-Wouthuysen transformation:

• Goal is to remove odd terms in H’

• Solve iteratively in powers  of 1/m 

• In lowest order:
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S1 is given by solving:

giving

then use S1 to determine the full H1
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• To third order:

– So for a nonrelativistic (Q Qc) system:  (Q = e-,μ-); (Qc = e+, μ+, P): 

• In Coulomb gauge:  

• Eliminate A0
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Bjorken+Drell,                                       
“Relativistic Quantum Mechanics”, Chap. 4 (1964)

Gauge A0j0

Kinetic + corrections magnetic 
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Charmonium: Spectroscopy and Decays

Estia Eichten

1 Charmonium I: Spectroscopy
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• Effective Hamiltonian

7
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• Threshold bound states

– let OA be a local operator coupling to QQc with bare vertex  Γ the full vertex 

function satisfies the equation: 

– where K is the two body irreducible kernel

– if a bound state exists in this channel then for E1 + E2 near the mass M of the 
bound state the pole should dominate.

– So the bound state equation becomes

8

Q (E1, p) 

Qc (E2, -p)
x OA = x OA +

Q (E1, p) 

Qc (E2, -p)
Φ (M, 0; p) = Φ (M, 0; p’) K

p p’
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• Using the nonrelativistic Heff, to leading order in (1/m)

–  the kernel K is just the Coulomb exchang

• But αEM << 1 -> no solutions unless: 

• Nonrelativistic states with natural expansion in v/c ≈αEM 

• SchrÖdinger Equation:   
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•  QCD with heavy quarks we can follow the same steps to obtain:

– Notation

10
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– Result  NRQCD

11

Gauge 

Kinetic

Potential 

Spin Independent

Spin Dependent 

Relativistic 
corrections

Magnetic Spin- Orbit

Darwin
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– Comments
• The coefficients (δmQ, c4, cd, cf, c8 ) are (0, 1, 1, 1, 1) plus perturbative 

corrections associated with matching at scale mQ

• Gribov copies, ordering issues and 1/mQ2 contact terms ignored 

• Adding light quarks

– relativistic form appropriate for (u,d,s) quarks 

– Light quarks have both important effects on charmonium physics

» modify properties of narrow states 

» above threshold allow strong decays to charmed meson pairs 

» more details later

• QCD with sufficiently heavy quarks: αQCD((p-p’)2)  will be small 

– charmonium ~ <v2/c2> ≈ 0.24      bottomonium ~ <v2/c2> ≈ 0.08
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where  



• Can compute the potential at short distance using NRQCD

– In coulomb gauge (using Heff) 

– Three loop calculation:

• Large distance - expect string-like behavior

–  

• Potential models  - V(R) = -κ/R + σR  + C  (Cornell Model)      
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Practical realities

• The scales that enter NR calculations are :

– for heavy quarks: mQ2 - p2 ~ mQv2 ~ (binding energy), p ~ mQv

– for gauge fields: k ~ mQv (“soft” or “potential” gluons) ; k ~ mQv2 (“ultrasoft”)

• In  QED  v~α << 1 so  bound states are always nonrelativistic:  mv2 << mv << 1. 

Corrections to the NR limit Coulomb interaction can be calculated in 
perturbation theory.

• In QCD there is a strong interaction scale ΛQCD  .  

– ΛQCD << mQv2 << mQv << 1  only for the (tt) system. but the top quark decays 

before toponium states form.

– For the (cc), (bb) and (bc)  systems: ΛQCD ~ mQv2 < mQv < mQ at best. 

– Integrate out perturbative scales: mQ (NRQCD) and mQ v (pNRQCD). Still left 
with nonperturbative theory that must be modeled on computed on the lattice.

14
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• Wilson loops W(R,T) and static energy E(R)

• Q and Qc separated by distance R for time T:

• Static states:   H0|n, x1, x2> =  En |n, x1, x2>  where Q at x1 , Qc  at x2;  
H0 = all gauge interactions and no 1/mQ corrections included. 

– Translation invariance:  depends on  R =  x1 - x2

– Ground state for gluonic degrees of freedom: E0 

– States with excited gluonic degrees of freedom (hybrids):  En  n=1,2,...

• Wilson loop: W(R,T) = << 1 >>  with                                                      and

• Euclidean space: W(R,T) = ∑n Cn e-En(R)T  -> C0 e-E0(R)T as T -> ∞
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Static Energy
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• LQCD calculations with and without 3 light quark loops
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FIG. 4. The static quark potential for quenched (octagons) and three flavor (diamonds) QCD,

in units of r1. The solid lines are fits to the Coulomb plus constant plus linear form. The lattice
spacing was matched using r1 as described in the text. As in Fig. 3, the upper two rulers show the

lattice spacing in the two runs, and the lower one shows units of 0.1 fm. The inset expands the
area shown by the box.
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•  Basic to this NR picture is the adiabatic assumption

• Heavy quarks react slowly relative to the 
interactions of the gauge degrees of freedom

• This allows the velocity expansion in NRQCD     
and the 1/mQ expansion in HQET

– So for the (Q Qc) system at rest:

– Phenomenological potential models: 

• V(r)   [Cornell, Richardson, Buchmueller-Tye, Godfrey-Isgur, ...] 

• Many successful predictions 

Narrow States Below Threshold

3 Phenomenology
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•  Below threshold for heavy flavor 
meson pair production
– Narrow states allow precise 

experimental probes of the subtle 
nature of QCD.

– Lattice QCD supports and will 
supplant potential models

– A variety of lattice approaches
• Low-lying states directly calculated        

in Lattice QCD

• Use Lattice calculations to determine 
non-perturbative potentials and 
continuum NRQCD to calculate masses 
and properties of states.   ✓

P
o
S
(
L
A
T
2
0
0
6
)
1
7
5

Update on onium masses with three flavors of dynamical quarks Steven Gottlieb

Figure 3: Splitting between the hc(1P) and spin-
averaged 1S states.

Figure 4: Hyperfine splitting of the 1S states.

Figure 5: Summary of charmonium spectrum.

The !c2(1P) has only been studied on two ensembles so far. We have new results on one fine

ensemble. In Fig. 5, we summarize the results for all the states studied. Except for the !c2(1P),

we plot results from our linear chiral extrapolation for each lattice spacing. For the ground states,

if we focus our attention on the diamonds representing our smallest lattice spacing, we find the

most serious discrepancy between our results and experiment is for the !c1. We have seen that

our linear chiral extrapolation may be the culprit here, as the two more chiral ensembles are in

good agreement with the experimental value. The S wave first excited states are not that well

determined, but are rather heavy compared to the observed values. We have seen that on the finest

lattice spacing, the high slope of the chiral extrapolation is accentuating the difference between our

calculation and observations. Furthermore, the observed states are quite close to the DD̄ threshold,

which makes these states harder to calculate on the lattice without careful attention to finite volume

effects. Thus, we are not seriously concerned about the high masses we are seeing for the 2S states.

4

Narrow States Below Threshold
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Narrow States Below Threshold
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• Consistency between       and      systems 
validates NRQCD approach.

- masses (pNRQCD, LQCD)

- spin splittings (pNRQCD, LQCD)

- EM transitions (ME, LQCD)

- hadronic transitions (ME)

- direct decays (pQCD)
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Narrow States Below Threshold

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.  [Rev. Mod. Phys. 80, 1161 (2008)]
FIG. 1 Known charmonium states and candidates, with selected decay modes and transitions. Red

(dark) arrows denote recent observations.

to charmonium and Section V to the bb̄ levels and includes a brief mention of interpolation

to the bc̄ system. Section VI summarizes.

II. OVERVIEW OF QUARKONIUM LEVELS

Since the discovery of the J/ψ more than thirty years ago, information on quarkonium

levels has grown to the point that more is known about the cc̄ and bb̄ systems than about

their namesake positronium, the bound state of an electron and a positron. The present

status of charmonium (cc̄) levels is shown in Fig. 1, while that of bottomonium (bb̄) levels

is shown in Fig. 2. The best-established states are summarized in Tables I and II.

The levels are labeled by S, P , D, corresponding to relative orbital angular momentum

L = 0, 1, 2 between quark and antiquark. (No candidates for L ≥ 3 states have been

seen yet.) The spin of the quark and antiquark can couple to either S = 0 (spin-singlet)

or S = 1 (spin-triplet) states. The parity of a quark-antiquark state with orbital angular

momentum L is P = (−1)L+1; the charge-conjugation eigenvalue is C = (−1)L+S. Values

5
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Narrow States Below Threshold

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.  [Rev. Mod. Phys. 80, 1161 (2008)]FIG. 2 Transitions among bb̄ levels. There are also numerous electric dipole transitions S ↔ P ↔ D

(not shown). Red (dark) arrows denote objects of recent searches.

of JPC are shown at the bottom of each figure. States are often denoted by 2S+1[L]J , with

[L] = S, P, D, . . .. Thus, L = 0 states can be 1S0 or 3S1; L = 1 states can be 1P1 or 3P0,1,2;

L = 2 states can be 1D2 or 3D1,2,3, and so on. The radial quantum number is denoted by n.

III. THEORETICAL UNDERPINNINGS

A. Quarks and potential models

An approximate picture of quarkonium states may be obtained by describing them as

bound by an interquark force whose short-distance behavior is approximately Coulombic

(with an appropriate logarithmic modification of coupling strength to account for asymptotic

freedom) and whose long-distance behavior is linear to account for quark confinement. An

example of this approach is found in Eichten et al. (1975, 1976, 1978, 1980); early reviews

may be found in Appelquist et al. (1978); Grosse and Martin (1980); Novikov et al. (1978);

Quigg and Rosner (1979). Radford and Repko (2007) presents more recent results.

6

ππ



Why it works so well
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•  Lattice calculation V(r), then SE
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SPECTROSCOPY
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Fig. 3.6: The singlet static energy (quenched and unquenched data) from Ref. [51], see also [143]

2.3.3 The QCD static spectrum and mechanism of confinement18

The spectrum of gluons in the presence of a static quark–antiquark pair has been extensively studied with

high precision using lattice simulations. Such studies involve the calculation of large sets of Wilson loops

with a variety of different spatial paths. Projections onto states of definite symmetries are done, and the

resulting energies are related to the static quark–antiquark potential and the static hybrids potentials. With

accurate results, such calculations provide an ideal testing ground for models of the QCD confinement

mechanism.

The singlet static energy

The singlet static energy is the singlet static potential V (0)
s .

In the plot3.6, we report simulation results both with and without light quark–antiquark pair cre-

ation. Such pair creation only slightly modifies the energies for separations below 1 fm, but dramatically

affects the results around 1.2 fm, at a distance which is too large with respect to the typical heavy quarko-

nium radius to be relevant for heavy quarkonium spectroscopy. At finite temperature, the so-called string

breaking occurs at a smaller distance (cf. corresponding Section in Chapter 7,Media).

One can study possible nonperturbative effects in the static potential at short distances. As it has

already been mentioned in the ”static QCD potential” subsection, the proper treatment of the renormalon

effects has made possible the agreement of perturbation theory with lattice simulations (and potential

models) [78,88–92]. Here we would like to quantify this agreement assigning errors to this comparison.

In particular, we would like to discern whether a linear potential with the usual slope could be added to

perturbation theory. In order to do so we follow here the analysis of Ref. [90, 144], where the potential

is computed within perturbation theory in the Renormalon Subtracted scheme defined in Ref. [81]. The

comparison with lattice simulations [145] in Fig. 3.7 shows that nonperturbative effects should be small

and compatible with zero, since perturbation theory is able to explain lattice data within errors. The

systematic and statistical errors of the lattice points are very small (smaller than the size of the points).

Therefore, the main sources of uncertainty of our (perturbative) evaluation come from the uncertainty in

the value of ΛMS (±0.48 r−1
0 ) obtained from the lattice [146] and from the uncertainty in higher orders

in perturbation theory. We show our results in Fig. 3.7. The inner band reflects the uncertainty in ΛMS
whereas the outer band is meant to estimate the uncertainty due to higher orders in perturbation theory.

We estimate the error due to perturbation theory by the difference between the NNLO and NNNLO

evaluation. The usual confining potential, δV = σr, goes with a slope σ = 0.21GeV2. In lattice units

18Authors: N. Brambilla, C. Morningstar, A. Pineda

91

LQCD calculation of static energy

The leading Born-Oppenheimer approximation

In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-

cian DDD2 by an ordinary Laplacian !!!
2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1

2µ

d2u(r)

dr2
+

{

〈LLL2
QQ̄

〉

2µr2
+VQQ̄(r)

}

u(r) = E u(r), (2)

where u(r) is the radial wavefunction of the quark-antiquark pair. The total angular
momentum is given by

JJJ = LLL+SSS, SSS= sssQ+ sssQ̄, LLL= LLLQQ̄+ JJJg, (3)

where sssQ is the spin of the heavy quark, sssQ̄ is the spin of the heavy antiquark, JJJg is the

total spin of the gluon field, and LLLQQ̄ is the orbital angular momentum of the quark-

antiquark pair. In the LBO, both L and S are good quantum numbers. The expectation

value in the centrifugal term is given by

〈LLL2
QQ̄

〉 = 〈LLL2〉−2〈LLL · JJJg〉+ 〈JJJ2g〉. (4)

The first term yields L(L+1). The second term is evaluated by expressing the vectors in
terms of components in the body-fixed frame. Let Lr denote the component of LLL along

the molecular axis, and L" and L# be components perpendicular to the molecular axis.

Writing L± = L" ± iL# and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
1
2
〈L+Jg− +L−Jg+〉. (5)

Since Jg± raises or lowers the value of $, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2$2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the %+
g level and 〈JJJ

2
g〉= 2 for the&u and %

−
u levels.Wigner rotations are used as usual

to construct |LSJM;'(〉 states, where ' = JJJg · r̂rr and $ = |' |, then JPC eigenstates are
finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)

•  What about the gluon and light quark degrees 
of freedom of QCD?  

•  Two thresholds: 

–  Usual                   decay threshold
–  Excite the string - hybrids

• Hybrid states will appear in the spectrum 
associated with the potential Πu, ...  

• In the static limit this occurs at separation:        
r ≈ 1.2 fm.           Between 3S-4S in        ;              
just above the 5S in        .
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 Relativistic Corrections

•  In order 1/mQ2  masses have both spin dependent and spin independent 
corrections. First the spin dependent terms:

– D1 term 

• Define in terms of Wilson loop

Magnetic Spin-Orbit

Q  m1   ta

Qc m2  ta*
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3 Phenomenology

Ψ(R) =
unl(r)

r
Ylm(θ, φ) µ =

m1m2

m1 + m2
(30)

where the wavefunction is determined by the Schroedinger Equation:

− 1
2µ

d
2
unl(r)
dr2

+
�

L2

2µr2
+ VQQ̄(r)

�
unl(r) = Enlunl(r) (31)

M = Eo + Enl (32)

H1(x1) = −cf
1

2m1
s1 · B− D1

2

2m1
− cs

i

8m
2
1

σ·(D1 x E + E x D1) + ...

H2(x2) = −cf
1

2m2
s2 · B− D2

2

2m2
− cs

i

8m
2
2

σ·(D2 x E + E x D2) + ...
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�
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�
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(33)
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V. HEAVY QUARKONIUM POTENTIAL AND WILSON LOOPS

In this section we express the heavy-quarkonium potential in terms of Wilson-loop op-
erators. These kinds of expressions are quite convenient for lattice simulations or for QCD-
vacuum-model studies (see, for instance, [14,16]). We shall use the following definitions. The
angular brackets 〈. . .〉 will stand for the average value over the Yang–Mills action, W! for
the rectangular static Wilson loop of dimensions r × TW :

W! ≡ P exp
{

−ig
∮

r×TW

dzµAµ(z)
}

,

and 〈〈. . .〉〉 ≡ 〈. . .W!〉/〈W!〉; P is the path-ordering operator. Moreover, we define the
connected Wilson loop with O1(t1), O2(t2), ..., On(tn) operator insertions for TW /2 ≥ t1 ≥
t2 ≥ . . . ≥ tn ≥ −TW /2 by:

〈〈O1(t1)O2(t2)〉〉c = 〈〈O1(t1)O2(t2)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉, (27)

〈〈O1(t1)O2(t2)O3(t3)〉〉c = 〈〈O1(t1)O2(t2)O3(t3)〉〉

−〈〈O1(t1)〉〉〈〈O2(t2)O3(t3)〉〉c − 〈〈O1(t1)O2(t2)〉〉c〈〈O3(t3)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉〈〈O3(t3)〉〉, (28)

〈〈O1(t1)O2(t2)O3(t3)O4(t4)〉〉c = 〈〈O1(t1)O2(t2)O3(t3)O4(t4)〉〉

−〈〈O1(t1)〉〉〈〈O2(t2)O3(t3)O4(t4)〉〉c − 〈〈O1(t1)O2(t2)〉〉c〈〈O3(t3)O4(t4)〉〉c
−〈〈O1(t1)O2(t2)O3(t3)〉〉c〈〈O4(t4)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉〈〈O3(t3)O4(t4)〉〉c
−〈〈O1(t1)〉〉〈〈O2(t2)O3(t3)〉〉c〈〈O4(t4)〉〉 − 〈〈O1(t1)O2(t2)〉〉c〈〈O3(t3)〉〉〈〈O4(t4)〉〉

−〈〈O1(t1)〉〉〈〈O2(t2)〉〉〈〈O3(t3)〉〉〈〈O4(t4)〉〉, (29)

· · ·

We also define in a short-hand notation

lim
T→∞

≡ lim
T→∞

lim
TW →∞

, (30)

where TW is the time length of the Wilson loop and T the time length appearing in the time
integrals. By performing first the TW → ∞, the averages 〈〈. . .〉〉 become independent of TW

and thus invariant under global time translations.
By using the matching condition (26) and the quantum-mechanical expressions (20), it

has already been proved in [5] that the quarkonium singlet static potential and the O(1/m)
potential can be expressed in terms of Wilson loops with field strength insertions in it as

V (0)(r) = lim
T→∞

i

T
ln〈W!〉, (31)

V (1,0)(r) = −
1

2
lim

T→∞

∫ T

0
dt t 〈〈gE1(t) · gE1(0)〉〉c. (32)

Owing to invariance under charge conjugation plus m1 ↔ m2 transformation we have

V (1,0)(r) = V (0,1)(r).
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3 Phenomenology
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�
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i

8m
2
1

σ·(D1 x E + E x D1) + ...
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1

2m2
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i
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�
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�
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1
(En − E0)

|n >< n|E|0 >
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�

n�=0

1
(En − E0)

< 0|Ei
1|n >< n|Ei
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< 0|Bi
1B

j
2|0 > = −

�

n�=0

1
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< 0|Bi
1|n >< n|Bj

2|0 >

dV2(r)
dr

− dV1(r)
dr

=
dE(r)

dr
(34)
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 Relativistic Corrections

–   

– Calculations in perturbation theory:

• General results:

– The spin-spin terms

3 Phenomenology
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Ylm(θ, φ) µ =

m1m2

m1 + m2
(30)

where the wavefunction is determined by the Schroedinger Equation:

− 1
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dr2
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�

L2

2µr2
+ VQQ̄(r)

�
unl(r) = Enlunl(r) (31)

M = Eo + Enl (32)
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�
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�
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8

while the spin-dependent part contains the following operators:

V (1,1)
SD = V (1,1)

L1S2
(r)L1 · S2 − V (1,1)

L2S1
(r)L2 · S1 + V (1,1)

S2 (r)S1 · S2 + V (1,1)
S12

(r)S12(r̂), (45)

where S12(r̂) ≡ 3r̂ · σ1 r̂ · σ2 − σ1 · σ2. Because of the invariance under charge conjugation
plus m1 ↔ m2 transformation, we have

V (1,1)
L1S2

(r) = V (1,1)
L2S1

(r; m1 ↔ m2).

By using Eqs. (26) and (23) we get, in terms of Wilson loop operators:

V (1,1)
p2 (r) = ir̂ir̂j lim

T→∞

∫ T

0
dt t2〈〈gEi

1(t)gE
j
2(0)〉〉c, (46)

V (1,1)
L2 (r) = i

δij − 3r̂ir̂j

2
lim

T→∞

∫ T

0
dt t2〈〈gEi

1(t)gE
j
2(0)〉〉c, (47)

V (1,1)
r (r) = −

1

2
(∇2

rV
(1,1)
p2 ) (48)

−i lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)

2〈〈gE1(t1) · gE1(t2)gE2(t3) · gE2(0)〉〉c

+
1

2

(

∇
i
r lim

T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)

2〈〈gEi
1(t1)gE2(t2) · gE2(0)〉〉c

)

+
1

2

(

∇
i
r lim

T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)

2〈〈gEi
2(t1)gE1(t2) · gE1(0)〉〉c

)

−
i

2

(

∇
i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)

3〈〈gEi
1(t1)gE2(t2) · gE2(0)〉〉c

−
i

2

(

∇
i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)

3〈〈gEi
2(t1)gE1(t2) · gE1(0)〉〉c

−
1

2
lim

T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)

2〈〈[D1., gE1](t1)gE2(t2) · gE2(0)〉〉c

+
1

2
lim

T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)

2〈〈[D2., gE2](t1)gE1(t2) · gE1(0)〉〉c

−
i

4
lim

T→∞

∫ T

0
dt t2〈〈[D1., gE1](t)[D2., gE2](0)〉〉c

+
i

4

(

∇
i
r lim

T→∞

∫ T

0
dt t2

{

〈〈gEi
1(t)[D2., gE2](0)〉〉c − 〈〈gEi

2(t)[D1., gE1](0)〉〉c
}

)

−
1

4
lim

T→∞

∫ T

0
dt t3

{

〈〈[D1., gE1](t)gE
j
2(0)〉〉c − 〈〈[D2., gE2](t)gE

j
1(0)〉〉c

}

(∇j
rV

(0))

+
1

4

(

∇
i
r lim

T→∞

∫ T

0
dt t3

{

〈〈gEi
1(t)gE

j
2(0)〉〉c + 〈〈gEi

2(t)gE
j
1(0)〉〉c

}

(∇j
rV

(0))

)

−
i

6
lim

T→∞

∫ T

0
dt t4〈〈gEi

1(t)gE
j
2(0)〉〉c(∇

i
rV

(0))(∇j
rV

(0))

+(dss + dvs lim
TW →∞

〈〈T a
1 T a

2 〉〉) δ(3)(x1 − x2)
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 Relativistic Corrections

•  Define in terms of Wilson loops

3 Phenomenology
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r
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where the wavefunction is determined by the Schroedinger Equation:
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σ·(D1 x E + E x D1) + ...

H2(x2) = −cf
1

2m2
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2

2m2
− cs

i

8m
2
2

σ·(D2 x E + E x D2) + ...

Denote the static state |n,x1,x2 > by |n > then

D1|0 > = ∇1|0 > +i

�

n�=0

|n >< n|A|0 >

= ∇1|0 > +
�

n�=0

1
(En − E0)

|n >< n|E|0 >

< 0|Bi
1B

j
2|0 > =

�

n�=0

1
(En − E0)2

< 0|Bi
1|n >< n|Bj

2|0 >
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R

T

Q

Qc

Bi

X

Bj

X

t

(here and in the following formulas the two colour matrices in 〈〈T a
1 T a

2 〉〉 are inserted in the
Wilson loop at the same time: −TW /2 ≤ t ≤ TW /2; the t dependence disappears in the
TW → ∞ limit),

V (1,1)
L2S1

(r) = −
c(1)
F

r2
ir · lim

T→∞

∫ T

0
dt t 〈〈gB1(t) × gE2(0)〉〉 , (49)

V (1,1)
S2 (r) =

2c(1)
F c(2)

F

3
i lim

T→∞

∫ T

0
dt 〈〈gB1(t) · gB2(0)〉〉 (50)

−4(dsv + dvv lim
TW →∞

〈〈T a
1 T a

2 〉〉) δ(3)(x1 − x2) ,

V (1,1)
S12

(r) =
c(1)
F c(2)

F

4
ir̂ir̂j lim

T→∞

∫ T

0
dt

[

〈〈gBi
1(t)gB

j
2(0)〉〉 −

δij

3
〈〈gB1(t) · gB2(0)〉〉

]

. (51)

We now compare our results with previous ones. For the spin-dependent potentials we
find agreement with the Eichten–Feinberg results [8] (once the NRQCD matching coefficients

have been taken into account) except for the 1/m1m2 spin-orbit potential V (1,1)
L2S1

. Since the
Eichten–Feinberg results have been checked by, at least, three independent groups [10,12,13],
we perform a more detailed comparison in Appendix B. We show that our expression in terms
of Wilson loops and theirs give different results in terms of intermediate states and, more
important, we show that they give different perturbative results at leading order in αs. Ours
coincides with the well-known tree-level calculation, whereas the Eichten–Feinberg expression
gives 1/2 the expected result. Moreover, our perturbative result fulfils the Gromes relation
[10]. The fact that the same mistake has been done by several groups can only be explained
by a systematic error. We believe that their systematic error has to do with the common
assumption in the literature that one may neglect, in general, the dependence of the Wilson
loops on the gluonic strings, or on any other gluonic operator, at t = ±TW /2. An analysis of
the calculation done by Eichten and Feinberg in [8] supports this belief. Finally, we would like
to mention that several different expressions for the spin-dependent potentials, in particular
the correct one, can be found in the literature dealing with the lattice evaluation of them
[30–32,3,14]. All these refer to the work of Eichten and Feinberg [8] for the derivation. We
believe that our result makes mandatory a clarification of all previous lattice evaluations of
the spin-dependent potentials.

The spin-independent potentials have only been computed before by Barchielli, Bram-
billa, Montaldi and Prosperi in [12] (the analysis done in [11], which appears to be incon-
clusive, has never been published). We agree (once the NRQCD matching coefficients have
been taken into account) with their results for the momentum-dependent terms, but not
for the momentum-independent terms, where we find new contributions. Moreover, since
the potential we get here is complete up to order 1/m2, it is not affected by the ordering
ambiguity, which affects the derivation in [12]. In this context, we would like to mention
that our result may be of particular relevance for the study of the properties of the QCD
vacuum in the presence of heavy sources. So far the lattice data for the spin-dependent and
spin-independent potentials are consistent with a flux-tube picture, whereas it is only for the
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V (2,0)
r (r) = −

c(1)′
D

8
lim

TW →∞
〈〈[D1, gE1](t)〉〉c (41)

−
ic(1) 2

F

4
lim

T→∞

∫ T

0
dt〈〈gB1(t) · gB1(0)〉〉c +

1

2
(∇2

rV
(2,0)
p2 )

−
i

2
lim

T→∞

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)

2〈〈gE1(t1) · gE1(t2)gE1(t3) · gE1(0)〉〉c

+
1

2

(

∇
i
r lim

T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)

2〈〈gEi
1(t1)gE1(t2) · gE1(0)〉〉c

)

−
i

2

(

∇
i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)

3〈〈gEi
1(t1)gE1(t2) · gE1(0)〉〉c

−
1

2
lim

T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)

2〈〈[D1., gE1](t1)gE1(t2) · gE1(0)〉〉c

+
i

8
lim

T→∞

∫ T

0
dt t2〈〈[D1., gE1](t)[D1., gE1](0)〉〉c

−
i

4

(

∇
i
r lim

T→∞

∫ T

0
dt t2〈〈gEi

1(t)[D1., gE1](0)〉〉c

)

−
1

4
lim

T→∞

∫ T

0
dt t3〈〈[D1., gE1](t)gE

j
1(0)〉〉c(∇

j
rV

(0))

+
1

4

(

∇
i
r lim

T→∞

∫ T

0
dt t3〈〈gEi

1(t)gE
j
1(0)〉〉c(∇

j
rV

(0))

)

−
i

12
lim

T→∞

∫ T

0
dt t4〈〈gEi

1(t)gE
j
1(0)〉〉c(∇

i
rV

(0))(∇j
rV

(0))

−d(1)′
3 fabc

∫

d3x lim
TW →∞

g〈〈Ga
µν(x)Gb

µα(x)Gc
να(x)〉〉

(note that, although, formally the first and last terms depend on the time where the operator
insertion is made, this is not so after doing the TW → ∞ limit2),

V (2,0)
LS (r) = −

c(1)
F

r2
ir · lim

T→∞

∫ T

0
dt t 〈〈gB1(t) × gE1(0)〉〉 +

c(1)
S

2r2
r · (∇rV

(0)). (42)

For the V (1,1) potential we define

V (1,1) = V (1,1)
SD + V (1,1)

SI . (43)

The spin-independent part can be written as

V (1,1)
SI = −

1

2

{

p1 · p2, V
(1,1)
p2 (r)

}

−
V (1,1)

L2 (r)

2r2
(L1 · L2 + L2 · L1) + V (1,1)

r (r), (44)

2V (0) could also be written in a similar way:

V (0) =
1

2

∫

d3x lim
TW→∞

〈〈(ΠaΠa + BaBa) (x)〉〉.

15

(here and in the following formulas the two colour matrices in 〈〈T a
1 T a

2 〉〉 are inserted in the
Wilson loop at the same time: −TW /2 ≤ t ≤ TW /2; the t dependence disappears in the
TW → ∞ limit),

V (1,1)
L2S1

(r) = −
c(1)
F

r2
ir · lim

T→∞

∫ T

0
dt t 〈〈gB1(t) × gE2(0)〉〉 , (49)

V (1,1)
S2 (r) =

2c(1)
F c(2)

F

3
i lim

T→∞

∫ T

0
dt 〈〈gB1(t) · gB2(0)〉〉 (50)

−4(dsv + dvv lim
TW →∞

〈〈T a
1 T a

2 〉〉) δ(3)(x1 − x2) ,

V (1,1)
S12

(r) =
c(1)
F c(2)

F

4
ir̂ir̂j lim

T→∞

∫ T

0
dt

[

〈〈gBi
1(t)gB

j
2(0)〉〉 −

δij

3
〈〈gB1(t) · gB2(0)〉〉

]

. (51)

We now compare our results with previous ones. For the spin-dependent potentials we
find agreement with the Eichten–Feinberg results [8] (once the NRQCD matching coefficients

have been taken into account) except for the 1/m1m2 spin-orbit potential V (1,1)
L2S1

. Since the
Eichten–Feinberg results have been checked by, at least, three independent groups [10,12,13],
we perform a more detailed comparison in Appendix B. We show that our expression in terms
of Wilson loops and theirs give different results in terms of intermediate states and, more
important, we show that they give different perturbative results at leading order in αs. Ours
coincides with the well-known tree-level calculation, whereas the Eichten–Feinberg expression
gives 1/2 the expected result. Moreover, our perturbative result fulfils the Gromes relation
[10]. The fact that the same mistake has been done by several groups can only be explained
by a systematic error. We believe that their systematic error has to do with the common
assumption in the literature that one may neglect, in general, the dependence of the Wilson
loops on the gluonic strings, or on any other gluonic operator, at t = ±TW /2. An analysis of
the calculation done by Eichten and Feinberg in [8] supports this belief. Finally, we would like
to mention that several different expressions for the spin-dependent potentials, in particular
the correct one, can be found in the literature dealing with the lattice evaluation of them
[30–32,3,14]. All these refer to the work of Eichten and Feinberg [8] for the derivation. We
believe that our result makes mandatory a clarification of all previous lattice evaluations of
the spin-dependent potentials.

The spin-independent potentials have only been computed before by Barchielli, Bram-
billa, Montaldi and Prosperi in [12] (the analysis done in [11], which appears to be incon-
clusive, has never been published). We agree (once the NRQCD matching coefficients have
been taken into account) with their results for the momentum-dependent terms, but not
for the momentum-independent terms, where we find new contributions. Moreover, since
the potential we get here is complete up to order 1/m2, it is not affected by the ordering
ambiguity, which affects the derivation in [12]. In this context, we would like to mention
that our result may be of particular relevance for the study of the properties of the QCD
vacuum in the presence of heavy sources. So far the lattice data for the spin-dependent and
spin-independent potentials are consistent with a flux-tube picture, whereas it is only for the

17
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Determination of the relativistic corrections to the static potential from lattice QCD Miho Koma

1. Introduction

A possible strategy of studying heavy quarkonium in QCD is to employ potential nonrela-
tivistic QCD (pNRQCD) [1, 2], which is obtained by integrating out the scale above the heavy
quark mass m ! ΛQCD and the scale mv, where v is quark velocity. The effective hamiltonian of
pNRQCD up to O(1/m2) [2] is then given by

H =
!p 2

1
2m1

+
!p 2

2
2m2

+V (0)(r)+
1

m1
V (1,0)(r)+

1
m2

V (0,1)(r)

+
1

m2
1
V (2,0)(r)+

1
m2

2
V (0,2)(r)+

1
m1m2

V (1,1)(r)+O(1/m3) , (1.1)

where m1 and m2 denote the masses of quark and antiquark, placed at !r1 and !r2, respectively.
The static inter-quark potential V (0)(r ≡ |!r1−!r2|) emerges, accompanied by relativistic corrections
classified in powers of 1/m. The potentials V (1,0)(r) = V (0,1)(r) (≡V (1)(r)) are the corrections at
O(1/m). The potentials V (2,0)(r), V (0,2)(r), and V (1,1)(r) are the corrections at O(1/m2), which
contain the leading order velocity-dependent potentials [3, 4] and spin-dependent potentials [5, 6].
The spin-dependent potentials are conventionally parametrized as

VSD(r) =

(
!s1 ·!l1
2m2

1
−!s2 ·!l2

2m2
2

)(
V (0)′(r)

r
+2

V ′
1(r)
r

)
+

(
!s2 ·!l1
2m1m2

− !s1 ·!l2
2m1m2

)
V ′

2(r)
r

+
1

m1m2

(
(!s1 ·!r)(!s2 ·!r)

r2 −!s1 ·!s2

3

)
V3(r)+

!s1 ·!s2

3m1m2
V4(r), (1.2)

where!s1 and!s2 denote the spins, and!l1 = −!l2 =!l the orbital angular momenta.
Once these potentials are determined from QCD, various properties of heavy quarkonium can

be investigated systematically by solving the Schrödinger equation. Since the binding energy of a
quark-antiquark system is typically of the scale mv2, which can be of the same order as ΛQCD due
to the nonrelativistic nature of the system, v % 1, as well as the fact that perturbation theory cannot
incorporate quark confinement, it is essential to determine the potentials nonperturbatively.

Monte Carlo simulations of lattice QCD offer a powerful tool for the nonperturbative determi-
nation of the potentials. Recently, we investigated the O(1/m) potential [7, 8], and the O(1/m2)
spin-dependent [9, 10] and momentum-dependent potentials [8] on a lattice utilizing the multi-
level algorithm [11], and obtained remarkably clean signals up to distances of around 0.6 fm. In
certaincases we observed deviations from the perturbative potentials.

In this report we present updated results of the O(1/m) potential and O(1/m2) spin-dependent
potentials. In particular, we aim to clarify the long-distance behavior of these corrections.

2. Formulation and Numerical Procedures

According to pNRQCD, the O(1/m) and O(1/m2) potentials can generally be expressed by
the matrix elements and the energy gaps which appear in the spectral representation of the color-
electric and color-magnetic field strength correlators (FSCs) on the quark-antiquark source [1, 2],
where we adopt the Polyakov loop correlation function (PLCF) as a quark-antiquark source. By
utilizing the multilevel algorithm [11], we measure these FSCs of various geometries on a V = L3T

2

V’ = dV/dr
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Figure 3: The quantity 1− (V ′
2 −V ′

1)/V (0)′ is plot-
ted as a function of r. If the Gromes relation is ex-
actly satisfied, this quantity should be zero at all r.

representation of the correlator, we have obtained a very clean signal for these potentials in the
region 0.5r0 ! r ! 2.4r0.
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Gromes relation:

D. Gromes,  Z. Phys. C 22, 265 (1984)

Follows from Lorentz invariance 
under infinitesimal  boosts

3 Phenomenology

Ψ(R) =
unl(r)

r
Ylm(θ, φ) µ =

m1m2

m1 + m2
(31)

where the wavefunction is determined by the Schroedinger Equation:

− 1
2µ

d
2
unl(r)
dr2

+
�

L2

2µr2
+ VQQ̄(r)

�
unl(r) = Enlunl(r) (32)

M = Eo + Enl (33)

H1(x1) = −cf
1

2m1
s1 · B− D1

2

2m1
− cs

i

8m
2
1

σ·(D1 x E + E x D1) + ...

H2(x2) = −cf
1

2m2
s2 · B− D2

2

2m2
− cs

i

8m
2
2

σ·(D2 x E + E x D2) + ...

Denote the static state |n,x1,x2 > by |n > then

D1|0 > = ∇1|0 > +i

�

n�=0

|n >< n|A|0 >

= ∇1|0 > +
�

n�=0

1
(En − E0)

|n >< n|E|0 >

< 0|Bi
1B

j
2|0 > = −

�

n�=0

1
(E0 − En)

< 0|Bi
1|n >< n|Bj

2|0 >

dV2(r)
dr

− dV1(r)
dr

=
dE(r)

dr
(34)
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Figure 2: The spin-dependent potentials V ′
1(r),V

′
2(r),V3(r), and V4(r).

In Fig. 2, we present the spin-dependent potentials, V ′
1(r),V

′
2(r),V3(r), and V4(r)1. The O(1/m2)

spin-orbit potentials, V ′
1(r) and V ′

2(r), are non-vanishing up to r = 2.23r0. The finite tail of V ′
2(r) is

an example of the observed deviation from perturbative potentials [10]. The Gromes relation, which
is an important analytic relation derived from the Lorentz invariance, V (0)′(r) =V ′

2(r)−V ′
1(r) [6], is

approximately satisfied as shown in Fig. 3, where the deviation from the relation 1−(V ′
2−V ′

1)/V (0)′

is plotted. The deviation is 10 to 12 % at a = 0.123 fm, while 4 to 10 % at a = 0.093 fm. It will be
interesting to study whether the deviation vanishes after taking the continuum limit. For the spin-
spin potentials, V3(r) and V4(r), we confirm that they have no long-range contribution. In order to
investigate their functional form, we definitely need data at r ! 0.5r0.

4. Summary

We have investigated the relativistic corrections to the static potential, the O(1/m) potential
and the O(1/m2) spin-dependent potentials, in SU(3) lattice gauge theory. They are important
ingredients of the pNRQCD hamiltonian for heavy quarkonium. By evaluating the color-electric
and color-magnetic FSCs on the PLCF with the multilevel algorithm, and exploiting the spectral

1The data at β = 6.0 and 6.3 are already published in Ref. [10].

4

dV1/dr

V3 V4

dV2/dr

• Calculated from r = 0.25 to 1.2 fm

• The spin-spin (V3) and tensor (V4) potentials are indeed short range

•  The spin-orbit potential V’2 shows a long range piece 
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•  hc (1P1) spin singlet charmonium state 

– Observation:  CLEOc,  BESIII 

– Partial widths and decay modes agree with 
expectations: 

– Spin -dependent forces:

Over the past 30 years charmonium spectroscopy has
provided valuable insight into the quark-antiquark interac-
tion of quantum chromodynamics (QCD). QCD-based po-
tential models have been quite successful in predicting
masses, widths, and dominant decays of several charmo-
nium states. The central potential in most of these calcu-
lations is assumed to be composed of a vector Coulombic
potential (!1=r) and a scalar confining potential (!r).
Under these assumptions, the spin-spin interaction in the
lowest order is finite only for L " 0 states. It leads to the
hyperfine splittings !Mhf#nS$ % M#n3S1$ &M#n1S0$ be-
tween spin-triplet and spin-singlet S-wave states of char-
monium, which have been measured as !Mhf#1S$ "
M#J= $ & M#!c$ " 115 ' 2 MeV [1], !Mhf#2S$ "
M! #2S$" & M#!0

c$ " 48 ' 5 MeV [1,2]. It also
leads to the prediction that the hyperfine splitting
!Mhf!hM#3PJ$i&M#1P1$" for P-wave states should be
zero. Higher-order corrections are expected to provide no
more than a few-MeV deviation from this result [3–5].
Lattice QCD calculations [6] predict !Mhf#1P$ " (1:5 to
(3:7 MeV, but with uncertainties at the few-MeV level.
Larger values of !Mhf#1P$ could result if the confinement
potential had a vector component or if coupled channel
effects were important. In order to discriminate between
these possibilities, it is necessary to identify the hc#1P1$
state and to measure its mass to O#1 MeV$ as the mass of
the 3PJ centroid is very well known, hM#3PJ$i "
3525:36' 0:06 MeV [7].

In this Letter we report the successful identification of hc
in the isospin-violating reaction

e(e& !  #2S$!"0hc; hc ! #!c; "0 ! ##: (1)

Two methods are used: one in which the !c decays are
reconstructed (exclusive), which has an advantage in sig-
nal purity, and the other in which the !c is measured
inclusively, which has larger signal yield. Together these
approaches provide a result of unambiguous significance,
and allow a precise determination of the mass of hc and
the branching fraction product B Bh, where B %
B! #2S$ ! "0hc" and Bh % B#hc ! #!c$. Theoretical
estimates of the product B Bh vary by nearly 2 orders
of magnitude, #0:5–40$ ) 10&4 [4,5].

The Crystal Ball Collaboration at SLAC searched for hc
using the reaction of Eq. (1) but were only able to set a 95%
confidence upper limit B Bh < 16) 10&4 in the mass
range M#hc$ " #3515–3535$ MeV [8]. The FNAL E760
Collaboration searched for hc in the reaction p "p! hc !
"0J= , J= ! e(e&, and reported a statistically signifi-
cant enhancement with M#hc$ " 3526:2' 0:15'
0:2 MeV, ##hc$ * 1:1 MeV [9]. The measurement was
repeated twice by the successor experiment E835 with
!2) and !3) larger luminosity, but no confirming signal
for hc was observed in hc ! "0J= decay [5].

A data sample consisting of 3:08) 106  #2S$ decays
was obtained with the CLEO III and CLEO-c detector

configurations [10–13] at the Cornell Electron Storage
Ring. The CLEO III detector features a solid angle cover-
age for charged and neutral particles of 93%. The charged
particle tracking system achieves a momentum resolution
of !0:6% at 1 GeV, and the calorimeter photon energy
resolution is 2.2% for E# " 1 GeV and 5% at 100 MeV.
Two particle identification systems, one based on energy
loss (dE=dx) in the drift chamber and the other a ring
imaging Cherenkov (RICH) detector, are used to distin-
guish pions from kaons.

Half of the  #2S$ data were accumulated with a newer
detector configuration, CLEO-c [13], in which the silicon
strip vertex detector was replaced with an all-stereo six-
layer wire chamber. The two detector configurations also
correspond to different accelerator lattices. Studies of
Monte Carlo simulations and the data reveal no significant
differences in the capabilities of the two detector configu-
rations; therefore the CLEO III and CLEO-c datasets are
analyzed together.

The inclusive and exclusive analyses share a com-
mon initial sample of events and numerous selection cri-
teria. Details of the analyses are provided in a companion
paper [14]. Event selection for both analyses requires at
least three electromagnetic showers and two charged
tracks, each selected with standard CLEO criteria. For
showers, E# > 30 MeV is required. Candidates for ##
decays of "0 or ! mesons satisfy the requirement that
M###$ be within 3 standard deviations ($) of the known
"0 or ! mass, respectively. These candidates are kinemati-
cally fit, constraining M###$ to the appropriate mass to
improve "0=! energy resolution. Charged tracks are re-
quired to have well-measured momenta and to satisfy
criteria based on the track fit quality. They must also be
consistent with originating from the interaction point in
three dimensions.

Both techniques identify hc as an enhancement in the
spectrum of neutral pions from the reaction  #2S$ ! "0hc
[15]. For this purpose, it is useful to remove neutral pions
originating from any other reaction. It is easy to remove
most of the "0 arising from  #2S$ ! "("&J= , with
J= ! "0 ( hadrons and "0"0J= , with J= ! any.
The recoil spectra against M#"("&$ (both analyses) and
M#"0"0$ (inclusive only) show prominent peaks for J= ;
these events are removed by appropriate selection around
M#J= $.

In the exclusive analysis, !c are reconstructed in
seven channels: K0

SK
'"+, K0

LK
'"+, K(K&"("&,

"("&"("&, K(K&"0, "("&!#! ##$, and
"("&!#! "("&"0$. The sum of the branching fractions
is #9:7' 2:7$% [7]. The decay chain in Eq. (1) as well as
these !c decays are identified from reconstructed charged
particles, "0 and ! mesons. For ! decays to "("&"0, the
three-pion invariant mass is required to be within 20 MeV
of the nominal ! mass. The K0

S candidates are selected
from pairs of oppositely charged and vertex-constrained
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QM: MR83
PQCD: HOOS92
PQCD: PT88
PQCD: PTN86

QM: MB83

Figure 1. Comparison of the measured and
predicted 13Pcog − 11P1(cc̄) mass splitting.
The horizontal lines show the 1-sigma bounds
using the CLEO hc mass measurement [2].
The theoretical predictions correspond to:
GI85 [10], CP-PACS00 [14], MR83 [15],
HOOS92 [17], PT88 [13], PTN86 [16], MB83
[11], PJF92 [12].

In quark potential models the 1-gluon-exchange spin-spin interaction is described by:

Hhyp
qq̄ =

32π

9

αs

mqmq̄

#Sq · #Sq̄ δ3(#r) (1)

The δ-function is short range but will be smeared out by relativistic effects. The Godfrey-Isgur
quark model [10] smeares the δ-function with a Gaussian and predicts M(3Pcog) > M(1P1).
In contrast, McClary and Byers [11] include spin-independent relativistic corrections and find
M(3Pcog) < M(1P1). Finally, Franzini [12] includes a Lorentz vector confining potential and
finds M(3Pcog) < M(1P1) with a large splitting.

Pantaleone and Tye [13] calculated the splitting using perturbative QCD and also found a
small splitting with M(3Pcog) < M(1P1) but noted that other contributions such as relativisitic
corrections and coupled channel effects could alter this result. Lattice QCD finds M(3Pcog) >
M(1P1) but with large errors [14]. Ultimately LQCD will provide the definetive result but more
precise results are needed.

The point of these examples is that there is a wide variation in the predictions. There is a
strong need for experimental data to test these results.

3. Production of Singlet P -wave States
There are a number of ways to produce and detect the singlet P -wave states. The hc was
recently observed in the reaction ψ′ → π0hc → (γγ)(γηc) by the CLEO collaboration [2]
and a less convincing signal was seen in p̄p → hc → ηcγ by E835 at FNAL [3]. It has been
suggested that the singlet P -waves states could also be produced in the radiative cascades

n3S1

M1
→ n′1S0 + γ

E1
→ (11P1) + γγ [5] and in B-meson decay, B → hc + X [6, 7, 8, 9].

In all cases the radiative decay hc,b → ηc,b + γ results in a clean final state. To estimate the
BR requires knowing all important partial decay widths. The E1 width for the hc is given by

 Confirms the short range nature of spin-spin 
and tensor potentials.  Phenomenological 
models which closely follow pert QCD are best.  
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M(hc) = 3525.28± 0.19± 0.12 MeV
M(hc) = 3525.40± 0.13± 0.18 MeV
Γ(hc) = 0.73± 0.45± 0.28 MeV

(35)

B(ψ(2S)→ π0hc) = [8.4± 1.3± 1.0]× 10−4

B(hc)→ γηc) = [54.3± 6.7± 5.2]%
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∆Mhf (< M(3PJ) > −M(1P1)) = −0.4± 0.25 MeV
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• (13DJ)b spin-triplet bottomonium state 

– Observation:   (13DJ)b -> ππ ϒ  (BABAR)

• Useful to check spin-splittings in 
charmonium system

• ηc (11S0) spin-singlet charmonium state
– Mass splitting (CLEO) 
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P. del Amo Sanchez et al. (BABAR Collaboration)
arXiv:1004.0175 [hep-ex]

5

the nominal [9] (for Υ (3S) → γχbJ′(2P )) or expected [2]

(for χbJ′(2P ) → γΥ (13DJ)) photon energies that corre-

spond to one of the six possible Υ (3S) → γχbJ′(2P ) →

γγΥ (13DJ) transition paths allowed by angular momen-

tum conservation, with Ei
γ and σEi

γ
the measured en-

ergies and resolutions. The requirements placed on the

Υ (3S) candidate are very loose, so that the final results

are not sensitive to the choice ofEi
exp within a wide range.

The Υ (13DJ) candidate is combined with the two pho-

tons to form a Υ (3S) candidate, whose CM momentum

is required to be less than 0.3 GeV/c. The Υ (3S) mass is

then constrained to its nominal value [9]. The Υ (3S) lab-

oratory energy (resolution 25 MeV) is required to equal

the summed e+ and e− beam energies to within 0.1 GeV.

We identify four background categories within our fit

interval 10.11 < mπ+π−#+#− < 10.28 GeV/c2: Υ (3S)

decays to (I) γχbJ′(2P ) with χbJ′(2P ) → ωΥ (1S) and

ω → π+π−(π0), (II) π+π−Υ (1S) with FSR, (III) ηΥ (1S)

with η → π+π−π0(γ), and (IV) γγΥ (2S) or π0π0Υ (2S)

with Υ (2S) → π+π−Υ (1S). Categories I and II are the

main backgrounds.

An extended unbinned maximum likelihood (ML) fit

is applied to the sample of 263 selected events that fall

within the fit interval. The ML fit has a component for

each of the three Υ (13DJ) signal states and four back-

ground categories. The likelihood function has the form

L = exp
(

−
∑

j nj

)

∏N
i=1

[

∑

j njPj (mi)
]

, with N the

number of events, nj the yield of component j, Pj the

probability density function (PDF) for component j, and

m the π+π−(+(− invariant mass.

The PDFs are derived from MC simulations. Each sig-

nal PDF is parameterized by the sum of two Gaussians

and a Crystal Ball (CB) function [10]. For background

category I, we use the sum of a CB function, which de-

scribes the ω → π+π−π0 events, and two Gaussians,

which model the two peaks from χb1,2(2P ) decays to

ωΥ (1S) with ω → π+π−. A bifurcated Gaussian, a high

statistics histogram, and a Gaussian, model the PDFs

for background categories II, III, and IV, respectively. A

data control sample of Υ (3S) → γχbJ′(2P ) → γγΥ (2S)

events with Υ (2S) → π+π−Υ (1S) and Υ (1S) → (+(− is

used to verify the simulation of the reconstructed Υ (2S)

mass and its resolution and the Υ (3S) energy. We find

the reconstructed Υ (2S) mass to be shifted downwards

by 0.70 ± 0.15 (stat.) MeV/c2 compared to its nominal

value [9]. We apply this shift as a correction to the fitted

Υ (13DJ) mass results presented below.

Eleven parameters are determined in the fit: the three
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FIG. 1: The π+π−"+"− mass spectrum and fit results. The

two peaks near 10.25 GeV/c2 arise from χbJ′(2P ) → ωΥ (1S)

background events with ω → π+π−.

signal yields and three masses, the yields of background

categories I and II, and – within background category I –

the χb1(2P ) mass and the relative yields of the χb1(2P )

and χb2(2P ) peaks from ω → π+π− decays. The mass

difference between the χb1(2P ) and χb2(2P ) peaks is

fixed to its measured value [9]. The yields of background

categories III and IV are fixed to their expected values

based on the measured branching fractions [9, 11].

Figure 1 shows the π+π−(+(− mass distribution and

fit results. We find 10.6+5.7
−4.9 Υ (13D1), 33.9

+8.2
−7.5 Υ (13D2),

and 9.4+6.2
−5.2 Υ (13D3) events, corresponding to 53.8+10.2

−9.5

summed Υ (13DJ) events. The two fitted background

yields agree with MC expectations. The fitted χb1(2P )

mass of 10255.0±0.7 (stat.) MeV/c2 agrees with its nomi-

nal value [9]. The statistical significance of each Υ (13DJ)

state is given by the square root of the difference between

the value of−2 lnL for zero signal events and the value at

its minimum, with the masses of the other two states held

at their fit values. These results are validated with fre-

quentist techniques. Systematics (see below) are included

by convoluting L with a Gaussian whose standard devi-

ation (σ) equals the total systematic uncertainty. The

significances of the Υ (13D1), Υ (13D2), Υ (13D3), and

summed Υ (13DJ) observations are 2.0 (1.8), 6.5 (5.8),

1.7 (1.6), and 7.6 (6.2) σ without (with) systematics in-

cluded, respectively. The significance for the sum of the

J = 1 and 3 states is 2.6 (2.4) σ.

Potential fit biases are evaluated by applying the ML

fit to an ensemble of 2000 simulated experiments con-

structed by randomly extracting events from MC sam-

ples, where the numbers of signal and background events

and the Υ (13DJ) masses correspond to those of the fit.

4 Open Issues

M(hc) = 3525.28± 0.19± 0.12 MeV
M(hc) = 3525.40± 0.13± 0.18 MeV
Γ(hc) = 0.73± 0.45± 0.28 MeV

(35)

B(ψ(2S)→ π0hc) = [8.4± 1.3± 1.0]× 10−4

B(hc)→ γηc) = [54.3± 6.7± 5.2]%

∆Mhf (< M(3PJ) > −M(1P1)) = −0.4± 0.25 MeV

M(3D3) = 10172.9± 1.7± 0.5 MeV
M(3D2) = 10161.1± 0.6± 1.6 MeV
M(3D1) = 10151.6± 1.4± 0.5 MeV

9

*

FIG. 1: Fits to the photon spectrum in exclusive J/ψ → γηc decays using Breit-Wigner (dotted)
and modified (solid) signal line shapes convolved with a 4.8 MeV wide resolution function. Total

background is given by the dashed line. The dot-dashed curves indicate two major background
components described in the text.

Fig. 3a. Several small nonlinear backgrounds below 560 MeV are apparent and are due
to a combination of (i) ψ(2S) → π0hc; hc → γηc; (ii) ψ(2S) → γχcJ ; χcJ → γJ/ψ; and
(iii) ψ(2S) → π0J/ψ. Based on detailed MC studies, all other backgrounds are linear, the
largest being ψ(2S) → π0Xi.

Fits to the ψ(2S) → γηc photon energy spectrum with a Breit-Wigner convolved with an
experimental resolution function (with a resolution of 5.1MeV after the kinematic fit) were
unsuccessful. For a hindered M1 transition the matrix element acquires terms proportional
to E2

γ , which, when combined with the usual E3
γ term for the allowed transitions, lead to

contributions in the radiative width proportional to E7
γ [2]. We find that if we assume a

linear background, as indicated by MC simulations, we are not able to obtain a good fit to
our Eγ spectrum for the sum of exclusive ψ(2S) → γηc modes with a pure E7

γ dependence.
We therefore use the empirical procedure described below to extract the ψ(2S) → γηc yield.

Extensive cross-checks have been performed to prove that the line shape asymmetry is
not an experimental artifact. Events selected without the aid of a kinematic fit indicate
an asymmetric line shape independently in both the photon energy and the hadronic mass.
The asymmetric line shape is not correlated with ηc decay modes that include π0, K0

S, or
η candidates. No indication of either asymmetry or peaking background has been found in
detailed MC studies, where all known decays in the charmonium and light quark systems
are simulated and unknown decays are modeled with the EvtGen generator [7]. The photon

5

P
o
S
(
L
A
T
2
0
0
6
)
1
7
5

Update on onium masses with three flavors of dynamical quarks Steven Gottlieb

Figure 3: Splitting between the hc(1P) and spin-
averaged 1S states.

Figure 4: Hyperfine splitting of the 1S states.

Figure 5: Summary of charmonium spectrum.

The !c2(1P) has only been studied on two ensembles so far. We have new results on one fine

ensemble. In Fig. 5, we summarize the results for all the states studied. Except for the !c2(1P),

we plot results from our linear chiral extrapolation for each lattice spacing. For the ground states,

if we focus our attention on the diamonds representing our smallest lattice spacing, we find the

most serious discrepancy between our results and experiment is for the !c1. We have seen that

our linear chiral extrapolation may be the culprit here, as the two more chiral ensembles are in

good agreement with the experimental value. The S wave first excited states are not that well

determined, but are rather heavy compared to the observed values. We have seen that on the finest

lattice spacing, the high slope of the chiral extrapolation is accentuating the difference between our

calculation and observations. Furthermore, the observed states are quite close to the DD̄ threshold,

which makes these states harder to calculate on the lattice without careful attention to finite volume

effects. Thus, we are not seriously concerned about the high masses we are seeing for the 2S states.

4

 long tail
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•  η’c (21S0) spin-singlet charmonium state
– Spin splitting   

– Effects of light quark loops significant 

 Too small - scaling from 1S; most models.
Are we seeing threshold effects?

 Effects on spectrum 
 seen in LQCD

Lattice QCD
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Figure 13. Radial and orbital splittings in the Υ spectrum from lattice QCD in the

quenched approximation and including a realistic light quark vacuum polarisation. In

these plots the b quark mass was fixed from the Υ mass and the lattice spacing from

the splitting between the Υ′ and the Υ. Neither of these masses is predicted. (Top) The
spectrum of S, P andD levels in theΥ system obtained from coarse (filled red triangles)

and fine (open black triangles) quenched lattice calculations and from coarse (filled red

squares) and fine (open black squares) unquenched calculations. Experimental results

are shown as lines. (Bottom) Results for different splittings as a function of light u/d
quark mass. The leftmost points, at lightest u/d quark mass, are the ones included in the
top plot for the unquenched results. (Gray et al. 2003)

momentum transfer inside an Υ is larger than any of the u, d, or s masses and so we

expect these splittings simply to ‘count’ the presence of the light quarks. This lack of

variation with light quark mass is evident in Figure 13.

C. T. H. Davies et al. [HPQCD, Fermilab 
Lattice, MILC, and UKQCD Collaborations], 
PRL 92, 022001 (2004)  
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5

threshold region occupies our interest in this study. How-
ever, analogous effects are present in the bb̄ states near
BB̄ threshold and cb̄ states near DB threshold. A de-
tailed comparison of different heavy-quark systems could
provide valuable insight into the correct form for the cou-
pling to light-quark pairs.

The C3 formalism generalizes the cc̄ model without in-
troducing new parameters, writing the interaction Hamil-
tonian in second-quantized form as

HI = 3
8

∑8
a=1

∫

: ρa(r)V (r − r′)ρa(r′) : d3r d3r′ , (2)

where V is the charmonium potential and ρa(r) =
1
2
ψ†(r)λaψ(r) is the color current density, with ψ the

quark field operator and λa the octet of SU(3) matrices.
To generate the relevant interactions, ψ is expanded in
creation and annihilation operators (for charm, up, down,
and strange quarks), but transitions from two mesons to
three mesons and all transitions that violate the Zweig
rule are omitted. It is a good approximation to neglect all
effects of the Coulomb piece of the potential in (2). This
simple model for the coupling of charmonium to charmed-
meson decay channels gives a qualitative understanding
of the structures observed above threshold while preserv-
ing the successes of the single-channel cc̄ analysis below
threshold [58, 59].

A. Mass Shifts

In the presence of coupling to two-light-quark decay
channels, the mass ω of the quarkonium state Ψ is defined
by the eigenvalue equation

[H0 + H2 + HI ]Ψ = ωΨ. (3)

Above the flavor threshold, ω is a complex eigenvalue.
The basic coupled-channel interaction HI given by

(2) is independent of the heavy quark’s spin, but the
hyperfine splittings of D and D∗, Ds and D∗

s , induce
spin-dependent forces that affect the charmonium states.
These spin-dependent forces give rise to S-D mixing that
contributes to the electronic widths of 3D1 states and in-
duces additional spin splitting among the physical states.

The masses that result from the full coupled-channel
analysis are shown in the second column of Table II,
which revises and extends our previously published re-
sults [8]. The new version presented here includes the
3S levels and takes account of Belle’s evidence [14] for
Z(3930), interpreted as a 23P2 state (cf. §II E 3). As
in our earlier analysis, the parameters of the potential-
model sector governed by H0 must be readjusted to fit
the physical masses, ω, to the observed experimental val-
ues. The centroids of the 1D and 2P spin-triplet masses
are pegged to the observed masses of 13D1 ψ(3770) and
23P2 (Z(3930)), respectively. The assumed spin split-
tings in the single-channel potential model are shown in
the penultimate column and the induced coupled-channel
spin splittings for initially unsplit multiplets are pre-
sented in the rightmost column of Table II. The shifts

TABLE II: Charmonium spectrum, including the influence
of open-charm channels. All masses are in MeV. The penul-
timate column holds an estimate of the spin splitting due
to tensor and spin-orbit forces in a single-channel potential
model. The last column gives the spin splitting induced by
communication with open-charm states, for an initially un-
split multiplet.

State Mass Centroid
Splitting

(Potential)
Splitting
(Induced)

11S0

13S1

2 979.9a

3 096.9a 3 067.6b −90.5e

+30.2e
+2.8
−0.9

13P0

13P1

11P1

13P2

3 415.3a

3 510.5a

3 524.4f

3 556.2a

3 525.3c

−114.9e

−11.6e

+0.6e

+31.9e

+5.9
−2.0
+0.5
−0.3

21S0

23S1

3 638a

3 686.0a 3 674b −50.1e

+16.7e
+15.7
−5.2

13D1

13D2

11D2

13D3

3 769.9a

3 830.6
3 838.0
3 868.3

(3 815)d

−40
0
0

+20

−39.9
−2.7
+4.2
+19.0

23P0

23P1

21P1

23P2

3 881.4
3 920.5
3 919.0
3 931g

(3 922)d

−90
−8
0

+25

+27.9
+6.7
−5.4
−9.6

31S0

33S1

3 943h

4 040a (4 015)i
−66e

+22e
−3.1
+1.0

aObserved mass, from Review of Particle Physics, Ref. [20].
bInput to potential determination.
cObserved 13PJ centroid.
dComputed centroid.
eRequired to reproduce observed masses.
fObserved mass from CLEO [3].
gObserved mass from Belle [14].
hObserved mass from Belle [13].
iObserved 3S centroid.

induced in the low-lying 1S and 1P levels are small. For
all the other states, coupled-channel effects are noticeable
and interesting.

An important consequence of coupling the open-charm
threshold is that the ψ′ receives a downward shift through
its communication with the nearby DD̄ channel; the un-
natural parity η′

c does not couple to DD̄, and so is not
depressed in the same degree. This effect is implicitly
present in the early Cornell papers [58, 59], but the shift
of spin-singlet states was not calculated there. The first
explicit mention—and the first calculation—of the un-
equal effects on the masses of the 2S hyperfine partners
is due to Martin and Richard [61]. In the framework of
the C3 model, we found [8, 9] (cf. Table II) that the
induced shifts draw ψ′ and η′

c closer by 20.9 MeV, sub-
stantially improving the agreement between theory and
experiment. This suggests that the ψ′-η′

c splitting reflects
the influence of virtual decay channels. In the case of the
3S system, both the 31S0 η′′

c and the 33S1 ψ(4040) com-

32
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 ELQ PRD 73:014014 (2006)

- Strong coupling to virtual decay channels induces spin-dependent 
forces in charmonium near threshold, because  M(D*) > M(D) 

Reduces ΔM(2S) by 21 MeV 

Less that 1 MeV shift 

- Spin dependent shifts small far below threshold 
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• ηb (11S0) spin-singlet bottomonium state  
- Observed by BaBar in ϒ(3S) radiative decays  

- Hyperfine splitting: 

- Hindered M1 Transitions: 

-  Relativistic corrections poorly understood. Phenomenological 
models for ϒ(3S) -> γηb and ϒ(2S) -> γηb varied greatly. 
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FIG. 2: (a) Inclusive photon spectrum in the region 0.50 <
Eγ < 1.1 GeV. The component PDFs determined from the fit
are overlaid on the data points. A prominent χbJ (2P ) peak is
clearly seen. The dashed line corresponds to the non-peaking
background component. (b) Inclusive photon spectrum af-
ter subtracting the non-peaking background, with PDFs for
χbJ (2P ) peak (solid), ISR Υ (1S) (dot), ηb signal (dash) and
the sum of all three (solid). (c) Inclusive photon spectrum
after subtracting all components except the ηb signal. The
CB function shape describes the data points well.

from the fit is 147/113 = 1.3. Finally Figure 2(c) shows
the data points with all components except the ηb signal
subtracted, overlaid with the ηb signal PDF. The fitted ηb

signal yield is 19200±2000±2100 events, where the first
error is statistical and the second systematic. A total
systematic uncertainty of 11% is estimated by varying
the Breit-Wigner width in the ηb PDF to 5, 15, and 20
MeV, setting the ISR Υ (1S) component to ±1 σ of the
nominal rate, and varying the PDF parameters fixed in
the fit by ±1 σ. The largest contribution (10%) is from
the ηb width variation.

The ηb signal significance is estimated using the ratio
log(Lmax/L0), where Lmax and L0 are the likelihood val-
ues obtained from the nominal fit and from a fit with the
ηb PDF removed, respectively. Fits have been performed
where the parameters entering the systematic uncertain-
ties have been varied within their errors. Data have then
been fitted with all parameters simultaneously moved by
one standard deviation in the direction of lower signifi-
cance. This conservative approach yields a signal signif-
icance greater than 10 standard deviations.

As a cross check, we also perform a fit where the yield
of the ISR Υ (1S) component is left free, and we obtain
24800±2300 events for this component. This is consistent
with the estimate using the below-Υ (4S) data and pro-
vides an important validation of the χbJ (2P ) line shape
parameterization. The yield and peak position of the ηb

signal from this fit are unchanged.
The Eγ signal peak value from the fit is 917.4+2.1

−2.8 MeV.
We apply a photon energy calibration shift of 3.8 ± 2.0
MeV, obtained by comparing the fitted position of the
χbJ(2P ) peak to the known PDG value. After including
an additional systematic uncertainty of 1.3 MeV from
the fit variations described above, we obtain a value of
Eγ = 921.2+2.1

−2.8 ± 2.4 MeV for the ηb signal.
The ηb mass derived from the Eγ signal is M(ηb) =

9388.9+3.1
−2.3 ± 2.7 MeV/c2. Using the PDG value of

9460.3 ± 0.3 MeV/c2 for the Υ (1S) mass, we determine
the Υ (1S)-ηb mass splitting to be 71.4+2.3

−3.1±2.7 MeV/c2.
The value we measure for the splitting is larger than

most predictions based on potential models [2], but rea-
sonably in agreement with predictions from lattice calcu-
lations [13]. The mass splitting between the Υ (1S) and
the ηb(1S) is a key ingredient in many theoretical cal-
culations. The precision of our measurement will allow,
among others, a more precise determination of the lattice
spacing [13] and new precision determinations of αs [14].

We estimate the branching fraction by correcting the
signal yield with the reconstruction efficiency (ε) from
simulated signal MC events, and then dividing it by the
number of Υ (3S) events in the data sample. The branch-
ing fraction of the decay Υ (3S) → γ ηb is found to be
(4.8±0.5±1.2)×10−4, where the first uncertainty is sta-
tistical and the second systematic. The systematic uncer-
tainty of 25% comes from uncertainties in the signal yield
(11%) and ε (22%). The latter is obtained by comparing
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•  Narrow states still missing 

– Charmonium -  3 - 1D2, 3D2, and 3D3 

– Bottomonium - 21 -  13FJ, 23DJ, 13GJ, 33PJ, 11P1, 21S0, 11D2, 21P1, 31S0, 
11F3, 21D2, 11G4, 31P1

• The wealth of precision data has solidified our confidence in the NRQCD 
approach for narrow states below threshold.

• In lecture 2  we will look into the more detailed properties of the states 
probed by radiative and hadronic transitions


