Lectures on NRQCD Factorization for Quarkonium Production and Decay

> Eric Braaten Ohio State University

- I. Nonrelativistic QCD
- II. Annihilation decays
- III. Inclusive hard production

NRQCD Factorization for Quarkonium Production and Decay

I. NonRelativistic QCD

- Introduction
- Quarkonium
- Separation of scales
- NonRelativistic QCD
- II. Annihilation decays
- III. Inclusive hard production

Introduction

<u>Heavy quark</u>: Q = c or b (but not t)

mass: $M = m_c \text{ or } m_b$ $m_c \approx 1.5 \text{ GeV}$ $m_b \approx 4.5 \text{ GeV}$

<u>Quarkonium</u>

hadron containing heavy quark Q and heavy antiquark \overline{Q} charmonium: $c \overline{c}$ bottomonium: $b \overline{b}$ B_c meson: $b \overline{c}$

Discovery of Charmonium November 1974

p on Be target at Brookhaven

 $p N \rightarrow J/\psi + X,$ $I/11 \rightarrow e^+e^-$

 $\psi \rightarrow$ hadrons

Discovery of Bottomonium August 1977

p on Be target at Fermilab

Introduction

Nonrelativistic QCD effective field theory for $Q\overline{Q}$ sector of QCD

Factorization: separation of scales

NRQCD Factorization separate hard momenta $\geq M$ from soft momenta < Mapplications to quarkonium: annihilation decays inclusive hard production Quarkonium

Quarkonium is <u>nonrelativistic</u> bound state

v: typical relative velocity of heavy quark in CM frame

> charmonium: $v^2 \approx 0.3$ bottomonium: $v^2 \approx 0.1$

can exploit $v^2 << 1$

Quarkonium

Quarkonium is <u>multi-scale system</u>

important momentum scales

- M: heavy quark mass
- *Mv* : typical momentum of heavy quark
- Mv^2 : typical kinetic energy

or potential energy of heavy quark

Λ_{QCD}: momentum scale below which gluons are strongly interacting

idealized hierarchy of momentum scales $(M \rightarrow \infty)$ $\Lambda_{QCD} << Mv^2 << Mv << M$ <---- "soft" -----> "hard"

Quarkonium is multi-scale system

mass splittings between radial excitations $\sim Mv^2$ $\psi(2S) - J/\psi$: 589 MeV $\Upsilon(2S) - \Upsilon(1S)$: 563 MeV

\implies $Mv^2 \approx 500$ MeV for both charmonium and bottomonium

realistic hierarchy of momentum scales $\Lambda_{QCD} \leq Mv^2 << M$

Quarkonium

QCD interactions

hard momenta $\sim M$ $\alpha_s(m_c) \approx 0.25$ $\alpha_s(m_b) \approx 0.18$ can use perturbative QCD

soft momenta $\leq Mv$ $\alpha_s(Mv) \approx v$ must sum interactions to all orders $\alpha_s(\Lambda_{QCD}) >> 1$ must use Monte Carlo methods

Quantum field theory with hierarchy of scales

K_{soft} << K_{hard}

Strategies for separating scales

- I. Partial Integration
- 2. Effective Field Theory

Hierarchy of scales: K_{soft} << K_{hard}

Partial Integration strategy

- introduce separation scale: $K_{soft} << \Lambda < K_{hard}$
- integrate out hard momenta p > Λ
 to get effective lagrangian for soft momenta p < Λ
 with ultraviolet cutoff Λ

conceptually simple, but difficult in practice

Hierarchy of scales: K_{soft} << K_{hard}

Effective Field Theory strategy

- identify soft degrees of freedom and introduce corresponding fields
- construct most general effective lagrangian L_{eff} for soft fields with no hard scale K_{hard} ultraviolet cutoff $\Lambda \gg K_{soft}$
- identify relative importance of terms in L_{eff} and truncate to desired accuracy
- determine parameters of L_{eff}
 by matching to original theory at soft momenta

QCD with heavy quark

degrees of freedom: gluons light quarks, antiquarks heavy quark, antiquark

Lagrangian:

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{glue}} + \mathcal{L}_{\text{light}} + \bar{\Psi}(i\gamma^{\mu}D_{\mu} - M)\Psi$$

Ψ: 4-component Dirac spinor for heavy quark, antiquark

parameters: α_s , $m_q \approx 0$, M

QCD symmetries

SU(3) gauge symmetry

Poincare symmetry: space-time translation invariance Lorentz invariance

discrete symmetries: charge conjugation C parity P

flavor conservation: heavy quark flavor light quark flavors

$Q\bar{Q}$ sector of QCD near theshold 2M

idealized hierarchy of momentum scales $\Lambda_{QCD} << Mv^2 << Mv << M$

preferred Lorentz frame: CM frame of $Q\overline{Q}$

Strategies for separating hard scale Mfrom soft scales Λ_{QCD} , Mv^2 , Mv

I. Partial Integration

2. Effective Field Theory

$Q\bar{Q}$ sector of QCD near threshold 2M

Partial Integration strategy

- introduce separation scale Λ : Λ_{QCD} , Mv^2 , $Mv << \Lambda < M$
- integrate out hard momenta, energies: gluons, light quarks: $p > \Lambda$, $E > \Lambda$ heavy quarks: $p > \Lambda$, $|E - M| > \Lambda^2/M$
- eliminate energy scale M by

$$\Psi(\vec{r},t) \longrightarrow e^{-iMt} \Psi(\vec{r},t)$$

Partial Integration strategy (cont.)

• effective Lagrangian*

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{glue}} + \mathcal{L}_{\text{light}} \qquad \begin{array}{l} \text{importance:} \\ +\bar{\Psi}[i\gamma^0 D_0 - ic_0 \vec{\gamma} \cdot \vec{D}]\Psi \qquad & \mathcal{M} \mathbf{v}^2 \sim (\mathcal{M} \mathbf{v})^2 / \mathcal{M} \\ + \frac{1}{M} \bar{\Psi} \left[c_1 D_0^2 + c_2 \vec{D}^2 + c_3 g \vec{B} \cdot \vec{\gamma} \gamma_5 + c_4 g \vec{E} \cdot [\gamma_0, \vec{\gamma}] \right] \Psi \\ + \frac{1}{M^2} (\text{dimension-6 terms}) + \dots \end{array}$$

• relative importance of terms?

* if cutoff respects SU(3) gauge symmetry

comparable in

Partial Integration strategy (cont.)

 4-component Dirac field for heavy quark can be replaced by 2-component Pauli fields:

$$\Psi(\vec{r},t) = \begin{pmatrix} \psi(\vec{r},t) \\ \chi(\vec{r},t) \end{pmatrix}$$

 Foldy-Wouthuysen transformation can be used to eliminate cross terms:

<u>QQ</u> sector of QCD near threshold 2M

idealized hierarchy of momentum scales $\Lambda_{QCD} << Mv^2 << Mv << M$

separate hard scale Mfrom soft scales Λ_{QCD} , Mv^2 , Mv

Effective Field Theory strategy

NonRelativistic QCD! Caswell and Lepage 1986

organizing principle: scaling with typical velocity v of heavy quark

Effective Field Theory strategy (cont.)

• identify soft degrees of freedom

gluons

light quarks, antiquarks

nonrelativistic heavy quark annihilated by Pauli spinor field ψ

nonrelativistic heavy antiquark created by Pauli spinor field χ

Effective Field Theory strategy (cont.)

• construct most general effective lagrangian L_{eff} for soft fields with no hard scale Multraviolet cutoff $\Lambda \gg Mv$

Symmetries SU(3) gauge symmetry space-time translations rotations invariance discrete symmetries: *C*, *P* light quark flavors heavy quark number (= one) heavy antiquark number (= one)

Effective Field Theory strategy (cont.)

 identify relative importance of terms in L_{eff} and truncate to desired accuracy relative importance of operator O is determined by expectation value (O) in quarkonium state

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_0 + \mathcal{L}_2 + \dots$$

 L_n consists of operators with scaling behavior

 $\langle O \rangle \sim v^{5+n}$

Effective Field Theory strategy (cont.)

• truncate to desired accuracy in powers of v

Leading Order in v²

$$\mathcal{L}_{0} = \mathcal{L}_{\text{glue}} + \mathcal{L}_{\text{light}} + \psi^{\dagger} (iD_{0} + \vec{D}^{2}/2M)\psi + \chi^{\dagger} (iD_{0} - \vec{D}^{2}/2M)\chi$$

only parameters are M and α_s

respects heavy-quark spin symmetry \implies spin-flip amplitudes suppressed by v^2

NonRelativistic QCD

Effective Field Theory strategy (cont.)

• truncate to desired accuracy in powers of v

Next-to-Leading Order in v²

$$\mathcal{L}_{2} = \frac{c_{1}}{8M^{3}} \left[\psi^{\dagger}(\vec{D}^{2})^{2}\psi - \chi^{\dagger}(\vec{D}^{2})^{2}\chi \right] \\ + \frac{c_{2}}{8M^{2}} \left[\psi^{\dagger}(\vec{D} \cdot g\vec{E} - g\vec{E} \cdot \vec{D})\psi + \chi^{\dagger}(\vec{D} \cdot g\vec{E} - g\vec{E} \cdot \vec{D})\chi \right] \\ + \frac{c_{3}}{8M^{2}} \left[\psi^{\dagger}(i\vec{D} \times g\vec{E} - g\vec{E} \times i\vec{D}) \cdot \vec{\sigma}\psi + \chi^{\dagger}(i\vec{D} \times g\vec{E} - g\vec{E} \times i\vec{D}) \cdot \vec{\sigma}\chi \right] \\ + \frac{c_{4}}{2M} \left[\psi^{\dagger}(g\vec{B} \cdot \vec{\sigma})\psi - \chi^{\dagger}(g\vec{B} \cdot \vec{\sigma})\chi \right]$$

4 adjustable parameters: c1, c2, c3, c4

last 2 terms contain Pauli matrix σ break heavy-quark spin symmetry

Effective Field Theory strategy (cont.)

determine parameters of L_{eff}
 by matching to QCD at soft momenta

calculate scattering amplitudes

using perturbative QCD

 (depends on momenta, M, and α_s)

 using perturbative NRQCD

 (depends on momenta, M, α, α, α, α, α, α, α)

(depends on momenta, M, α_s , c_1 , c_2 , c_3 , c_4 , ...)

determine parameters c_i as power series in $\alpha_s(M)$ by demanding that scattering amplitudes in QCD and NRQCD agree

Lattice formulation of NRQCD Lepage et al. hep-lat/9205007

Lattice NRQCD calculations pioneered by NRQCD Collaboration (1992 - 2000) HPQCD Collaboration (2001 - ?) (Davies, Lepage, Shigemitsu, ...)

spectrum: ground states for S-wave and P-wave excited states below open-flavor threshold

precise determination of QCD parameters: α_s , m_b

Lattice NRQCD

semi-quantitative calculations for charmonium <u>only</u> quantitative calculations for bottomonium

v²-improved NRQCD Lagrangian short-distance coefficients: LO in $\alpha_s(M)$ (tree level) lattice spacing *a* restricted to aM < I

spin-averaged spectrum example: $(3M_{J/\psi} + M_{\eta_c})/4$ accuracy: NLO in v² (10% for charmonium, 1% for bottomonium)

spin splittings example: $M_{J/\psi} - M_{\eta_c}$ accuracy: LO in v² (30% for charmonium, 10% for bottomonium)

Fock-State Expansion for Quarkonium

Quark model: Quarkonium is pure color-singlet $Q\overline{Q}$ with definite angular momentum ^{2S+1}L_J

NRQCD: angular momentum of $Q\overline{Q}$ can be changed by emission of soft gluon

emission amplitude is suppressed by v

Quarkonium (in Coulomb gauge) has Fock state expansion $|QQ\rangle$ $|QQ+g\rangle$ $|QQ+g\rangle$...

coefficients have definite scaling with v

Fock-State Expansion for Charmonium (Coulomb gauge) order v² onium order order v $c\bar{c}(\underline{I}, S_0)$ $c\bar{c}(8, P_{1}) + g$ $c\bar{c}(1 \text{ or } 8, S_0) + gg$ η_c $c\bar{c}(lor 8, D_2) + gg$ $c\bar{c}(8, {}^{3}S_{1}) + g$ $c\bar{c}(1, {}^{3}S_{1})$ $c\bar{c}(8, {}^{3}P_{l}) + g$ **Ι/ψ** $c\bar{c}(1 \text{ or } 8, {}^{3}S_{1}) + gg$ $c\bar{c}(1 \text{ or } 8, {}^{3}D_{1}) + gg$ $c\bar{c}(8, S_0) + g$ $c\bar{c}(\underline{I}, {}^{3}P_{I})$ $c\bar{c}(8, {}^{3}S_{1}) + g$ $c\bar{c}(1 \text{ or } 8, {}^{3}P_{1}) + gg$ XcJ $c\bar{c}(1 \text{ or } 8, {}^{3}D_{l'}) + gg$ $c\bar{c}(8, {}^{3}D_{l'}) + g$ $c\bar{c}(1 \text{ or } 8, {}^{3}F_{l'}) + gg$ $c\bar{c}(8, P_1) + g$

Other applications of NRQCD:

annihilation decays

inclusive hard production

require NRQCD Factorization

Final comments

Alternatives to NRQCD

a ``more effective'' EFT?

Potential NRQCD

Brambilla, Pineda, Soto, and Vairo hep-ph/0410047 integrate out soft momentum scale Mv to get EFT for ultrasoft scales A_{QCD}, Mv² Q and Q interact through nonlocal potentials

weakly-coupled pNRQCD: $\Lambda_{QCD} << Mv^2$ applications limited to t t $\eta_b(IS), \Upsilon(IS)$?

strongly-coupled pNRQCD: $\Lambda_{QCD} \sim Mv^2$

Final comments

Alternatives to NRQCD

a ``less effective'' EFT?

Fermilab heavy quarks
 El-Khadra, Kronfeld, and Mackenzie hep-ph/9604004
 EFT with Dirac spinor field Ψ

 instead of Pauli spinor fields ψ and χ
 Q and Q have relativistic dispersion relation

lattice gauge theory calculations for charmonium Fermilab Lattice Collaboration other applications?