BabaYaga: an event generator for luminometry at flavour factories

C.M. Carloni Calame

c.carloni-calame@soton.ac.uk

University of Southampton

The Summer Topical Seminar on Frontier of Particle Physics 2010: Charm and Charmonium Physics

27-31 August, 2010

in collaboration with Pavia Theory Group (Balossini, Barzè, Bignamini, Montagna, Nicrosini, Piccinini)

C.M. Carloni Calame (Southampton)

BabaYaga

Outline

- ⋆ Motivations for precise luminometry
- ⋆ QED scattering processes & radiative corrections
- The event generator BabaYaga
 - theoretical framework
 - from BabaYaga 2.0 to BabaYaga@NLO
- ⋆ Phenomenological results
- ⋆ Independent calculations and tuned comparisons
- ⋆ Theoretical accuracy
- ⋆ Example run
- ⋆ Conclusions and outlook
- I do apologize for not citing complete references in the slides, but please refer to the recently published report
 S. Actis *et al.* (Working Group on RC and MC Generators for Low Energies), Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66 (2010) 585

Why precision luminosity generators?

- Precision measurements require a precise knowledge of the machine luminosity.
- e.g. the measurement of the R(s) ratio is a key ingredient for the predictions of $a_{\mu} = (g_{\mu} 2)/2$ and $\Delta \alpha_{had}(M_Z)$ and in turn for SM precision tests

Reference processes for luminosity

 Instead of getting it from machine parameters, it's more effective to exploit the relation (e.g. LEP!)

$$L = \int \mathcal{L}dt = \frac{N}{\sigma_{th}} \qquad \frac{\delta L}{L} = \frac{\delta N}{N} \oplus \frac{\delta \sigma_{th}}{\sigma_{th}}$$

- Normalization processes are required to have a clean topology, high statistics and be calculable with high theoretical accuracy
- ★ Large-angle QED processes as $e^+e^- \rightarrow e^+e^-$ (Bhabha), $e^+e^- \rightarrow \gamma\gamma$, $e^+e^- \rightarrow \mu^+\mu^-$ are golden processes to achieve a typical precision at the level of $0.1\% \div O(1\%)$
- High theoretical accuracy and comparison with data require precision Monte Carlo (MC) tools, which must include (QED) radiative corrections (RC) at the highest standard as possible
- BabaYaga has been developed to this purpose

Example of QED RC

* some of QED corrected diagrams (next-to-LO, NLO), virtual & real

The Structure Function (SF) approach

 an effective way to account for [some of the] QED RC is the SF approach

 $\sigma_{corrected} = \int dx_- dx_+ dy_- dy_+ \int d\Omega D(x_-, Q^2) D(x_+, Q^2)$

 $\times D(y_{-},Q^{2})D(y_{+},Q^{2})\frac{d\sigma_{0}}{d\Omega}(x_{-}x_{+}s,\theta)\Theta(cuts)$

The Structure Function approach

- D(x, Q²) is the QED SF, to account for QED virtual and real RC up to all orders in α in leading-log (LL) and collinear approximation. It has a probabilistic interpretation
- the (non-singlet) SF is the solution of the DGLAP eq. in QED

$$Q^{2} \frac{\partial}{\partial Q^{2}} D(x, Q^{2}) = \frac{\alpha}{2\pi} \int_{x}^{1} \frac{dy}{y} P_{+}(y) D(\frac{x}{y}, Q^{2})$$
$$P_{+}(x) = \frac{1+x^{2}}{1-x} - \delta(1-x) \int_{0}^{1} dt P(t)$$

- $D(x, Q^2)$ resums (exponentiates) all the (numerically) large collinear, $L = \log \frac{s}{m_e^2}$, and infrared logarithms, which are "universal" and factorize over the kernel x-section
- solutions are analitically known (approximated, or exact with Mellin transform), but "exclusive" information are lost

The QED Parton Shower

- alternatively, DGLAP eq. can be numerically (and exactly) solved by means of the Parton Shower (PS) MC algorithm
- $e \rightarrow e' + \gamma$ branching kinematics recoverable (exclusive photons generation)
- * Sudakov Form Factor $\Pi(s,s') = \exp\left[-\frac{\alpha}{2\pi}\ln\frac{s}{s'}\int_0^{x^+} P(x)dx\right]$
- ★ iterative solution of DGLAP equation

s'=m² x=1

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

⋆ Advantages:

- PS is an exact numerical solution of DGLAP eq. → QED RC are accounted for up to at all orders (at least in LL approx.) → multiple photon effects
- at each branching, kinematical variables are generated (energies, virtualities) to reconstruct the emitted photons' momenta \rightarrow fully exclusive event generation
- it can be truncated at $\mathcal{O}(\alpha),$ to consistently compare with exact $\mathcal{O}(\alpha)$ calculations

Disadvantages:

- initial-final (I-F) state radiation interference effects not naturally included (but they can be included!)
- the theoretical error on the x-section starts already at O(α), at the level of non-log contributions → this requires the *matching* with exact O(α) (NLO) RC
- a matching algorithm has been implemented in BabaYaga@NLO

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Improving photon angular distribution in QED PS

- BabaYaga 2.0 was based on a pure LL PS, without I-F state radiation interference effects
- these were added in BabaYaga 3.5
- ★ LL recipe ($p_{1,2,3,4}$ → lepton momenta, k → photon momentum)

$$\cos\vartheta_{\gamma} \sim \frac{1}{p_1 \cdot k} + \frac{1}{p_2 \cdot k} + \frac{1}{p_3 \cdot k} + \frac{1}{p_4 \cdot k}$$

 \star Coherent Radiation recipe for the emission of n soft photons

$$d\sigma_n \approx d\sigma_0 \frac{1}{n!} \prod_{l=1}^n \frac{e^2 d^3 \mathbf{k}_l}{(2\pi)^3 2k_l^0} \sum_{i,j} \eta_i \eta_j \frac{p_i \cdot p_j}{(p_i \cdot k_l)(p_j \cdot k_l)}$$
$$= 1:$$

$$\frac{p_{1} \cdot p_{2}}{(p_{1} \cdot k)(p_{2} \cdot k)} + \frac{p_{3} \cdot p_{4}}{(p_{3} \cdot k)(p_{4} \cdot k)} + \\ + \frac{p_{1} \cdot p_{3}}{(p_{1} \cdot k)(p_{3} \cdot k)} - \frac{p_{1} \cdot p_{4}}{(p_{1} \cdot k)(p_{4} \cdot k)} - \frac{p_{2} \cdot p_{3}}{(p_{2} \cdot k)(p_{3} \cdot k)} + \frac{p_{2} \cdot p_{4}}{(p_{2} \cdot k)(p_{4} \cdot k)} \\ \\ \text{LL + I.-F. INTERFERENCES !!}$$

E.g., *n*

Assessing PS theoretical accuracy

- the PS can be truncated at O(α) (1-photon LL RC), allowing a consistent comparison with exact NLO calculations (which are implemented e.g. in LABSPV) to assess its theoretical accuracy
- the exact NLO x-section can be written

$$\sigma_{exact}^{(\alpha)} = \sigma_{S+V}^{(\alpha)}(E_{\gamma} < k_0) + \sigma_H^{(\alpha)}(E_{\gamma} > k_0, \text{cuts})$$

where

1.
$$\sigma_{S+V}^{(\alpha),i} = \sigma_0 \left\{ 1 + 2 \left(\beta_e + \beta_{int} \right) \ln k_0 / E + C_F^i \right\}, \quad i = s, t, s$$
-t

M. Caffo, E. Remiddi et al., CERN Report 89-08

M. Greco, Riv. Nuovo Cim. 11 (1988) 1

F.A. Berends and R. Kleiss, Nucl. Phys. B 186 (1981) 22

2. $\sigma_H^{(\alpha)}$ "exact" hard bremsstrahlung matrix elements

F.A. Berends et al., Nucl. Phys. B 202 (1981) 63

• k_0 is a fictitious (and arbitrary) soft-hard photon separator and $\beta_e \propto rac{lpha}{\pi} \log rac{s}{m^2}$

PS vs. exact NLO

• experimental setup as for KLOE luminometry is considered, $\sqrt{s} = 1.019 \text{ GeV}, E_{min}^{\pm} = 0.4 \text{ GeV}, 20^{\circ} \le \vartheta_{\pm} \le 160^{\circ}, \xi \le 10^{\circ}$

C.M. Carloni Calame (Southampton)

PS accuracy

- distributions can be improved a lot by including I-F interferences
- the th. error is still at the level of NLO non-log corrections
- e.g. in typical setup for KLOE (as a function of the acollinearity cut, for $20^{\circ} 160^{\circ}$ and $50^{\circ} 130^{\circ}$ acceptances) the missing $\mathcal{O}(\alpha)$ terms amount to $\sim 0.5\%$

BabaYaga 2.0 and 3.5 accuracy (for Bhabha) = 0.5%

Multiple-photon effects (higher-order corrections)

• Nevertheless, the PS allows to take into account multiple-photon emissions, which are not negligible at the 1% level

- In order to achieve the desired theoretical accuracy (a few 0.1%), both non-log O(α) and h.o. RC must be included
- This requires the matching of the PS with NLO RC (widely discussed also in QCD)
- A number of highly non-trivial technical issues arises and must be solved (negative weights, double counting, exact *n*-body phase space integration, ...)
- The matching algorithm must preserve the advantages of both PS and exact calculations
 - ★ complete exact $O(\alpha)$ corrections
 - ★ multiple-photon emission (h.o. corrections), at least in LL approx
 - ★ exclusive event generation
 - such an algorithm has been devised and implemented in BabaYaga@NLO

イロト イ理ト イヨト イヨト

PS and exact $\mathcal{O}(\alpha)$ (NLO) matrix elements must be combined and matched. How?

•
$$d\sigma_{LL}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

• $d\sigma_{LL}^{\alpha} = [1 + C_{\alpha,LL}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_{1,LL}|^2 d\Phi_1 \equiv d\sigma_{SV}(\varepsilon) + d\sigma_H(\varepsilon)$

•
$$d\sigma_{exact}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_1|^2 d\Phi_1$$

• $F_{SV} = 1 + (C_{\alpha} - C_{\alpha,LL})$ $F_H = 1 + \frac{|\mathcal{M}_1|^2 - |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

• $d\sigma_{exact}^{\alpha} \stackrel{\text{at }\mathcal{O}(\alpha)}{=} F_{SV}(1+C_{\alpha,LL})|\mathcal{M}_0|^2 d\Phi_0 + F_H|\mathcal{M}_{1,LL}|^2 d\Phi_1$

 $d\sigma_{matched}^{\infty} = F_{SV} \prod(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^{n} F_{H,i}\right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$

PS and exact $\mathcal{O}(\alpha)$ (NLO) matrix elements must be combined and matched. How?

•
$$d\sigma_{LL}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

• $d\sigma_{LL}^{\alpha} = [1 + C_{\alpha,LL}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_{1,LL}|^2 d\Phi_1 \equiv d\sigma_{SV}(\varepsilon) + d\sigma_H(\varepsilon)$

•
$$d\sigma_{exact}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_1|^2 d\Phi_1$$

• $F_{SV} = 1 + (C_{\alpha} - C_{\alpha,LL})$ $F_H = 1 + \frac{|\mathcal{M}_1|^2 - |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

• $d\sigma_{exact}^{\alpha} \stackrel{\text{at }\mathcal{O}(\alpha)}{=} F_{SV}(1+C_{\alpha,LL})|\mathcal{M}_0|^2 d\Phi_0 + F_H|\mathcal{M}_{1,LL}|^2 d\Phi_1$

 $d\sigma_{matched}^{\infty} = F_{SV} \prod(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^{n} F_{H,i}\right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$

PS and exact $\mathcal{O}(\alpha)$ (NLO) matrix elements must be combined and matched. How?

•
$$d\sigma_{LL}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

•
$$d\sigma_{LL}^{\alpha} = [1 + C_{\alpha,LL}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_{1,LL}|^2 d\Phi_1 \equiv d\sigma_{SV}(\varepsilon) + d\sigma_H(\varepsilon)$$

•
$$d\sigma_{exact}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_1|^2 d\Phi_1$$

•
$$F_{SV} = 1 + (C_{\alpha} - C_{\alpha,LL})$$
 $F_H = 1 + \frac{|\mathcal{M}_1|^2 - |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

•
$$d\sigma_{exact}^{\alpha} \stackrel{\text{at }\mathcal{O}(\alpha)}{=} F_{SV}(1+C_{\alpha,LL})|\mathcal{M}_0|^2 d\Phi_0 + F_H|\mathcal{M}_{1,LL}|^2 d\Phi_1$$

$$d\sigma_{matched}^{\infty} = F_{SV} \prod(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^{n} F_{H,i}\right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

< ロ > < 同 > < 回 > < 回 >

PS and exact $\mathcal{O}(\alpha)$ (NLO) matrix elements must be combined and matched. How?

•
$$d\sigma_{LL}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

•
$$d\sigma_{LL}^{\alpha} = [1 + C_{\alpha,LL}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_{1,LL}|^2 d\Phi_1 \equiv d\sigma_{SV}(\varepsilon) + d\sigma_H(\varepsilon)$$

•
$$d\sigma_{exact}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_1|^2 d\Phi_1$$

•
$$F_{SV} = 1 + (C_{\alpha} - C_{\alpha,LL})$$
 $F_H = 1 + \frac{|\mathcal{M}_1|^2 - |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

•
$$d\sigma_{exact}^{\alpha} \stackrel{\text{at }\mathcal{O}(\alpha)}{=} F_{SV}(1+C_{\alpha,LL})|\mathcal{M}_0|^2 d\Phi_0 + F_H|\mathcal{M}_{1,LL}|^2 d\Phi_1$$

 $d\sigma_{matched}^{\infty} = F_{SV} \prod(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^n F_{H,i} \right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$

PS and exact $\mathcal{O}(\alpha)$ (NLO) matrix elements must be combined and matched. How?

•
$$d\sigma_{LL}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

•
$$d\sigma_{LL}^{\alpha} = [1 + C_{\alpha,LL}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_{1,LL}|^2 d\Phi_1 \equiv d\sigma_{SV}(\varepsilon) + d\sigma_H(\varepsilon)$$

•
$$d\sigma_{exact}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_1|^2 d\Phi_1$$

•
$$F_{SV} = 1 + (C_{\alpha} - C_{\alpha,LL})$$
 $F_H = 1 + \frac{|\mathcal{M}_1|^2 - |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

•
$$d\sigma_{exact}^{\alpha} \stackrel{\text{at }\mathcal{O}(\alpha)}{=} F_{SV}(1+C_{\alpha,LL})|\mathcal{M}_0|^2 d\Phi_0 + F_H|\mathcal{M}_{1,LL}|^2 d\Phi_1$$

$$d\sigma_{\underline{matched}}^{\infty} = F_{SV} \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^{n} F_{H,i} \right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

イロト イ理ト イヨト イヨト

Contents of the matched formula

- F_{SV} and $F_{H,i}$ are infrared safe and account for missing $\mathcal{O}(\alpha)$ non-logs, avoiding double counting of LL
- $\left[\sigma_{matched}^{\infty}\right]_{\mathcal{O}(\alpha)} = \sigma_{exact}^{\alpha}$
- resummation of higher orders LL contributions is preserved
- the cross section is still fully differential in the momenta of the final state particles $(e^+, e^- \text{ and } n\gamma)$
- as a by-product, part of photonic $\alpha^2 L$ included by means of terms of the type $F_{SV \mid H,i} \times LL$

G. Montagna et al., PLB 385 (1996)

• the th. error is shifted to $\mathcal{O}(\alpha^2)$ (NNLO, 2 loop) not infrared terms: very naively and roughly (for photonic corrections)

$$\frac{1}{2}\alpha^2 L \equiv \frac{1}{2}\alpha^2 \log \frac{s}{m^2} \sim 5 \times 10^{-4}$$

Vacuum Polarization (and *Z* exchange)

- $\alpha \to \alpha(q^2) \equiv \frac{\alpha}{1 \Delta \alpha(q^2)}$ $\Delta \alpha = \Delta \alpha_{e,\mu,\tau,\mathsf{top}} + \Delta \alpha_{\mathsf{had}}^{(5)}$
- $\Delta \alpha_{had}^{(5)}$ is a non-perturbative contribution. Evaluated with recently updated HADR5N by F. Jegerlehner or HMNT by Hagiwara, Teubner et al. They return also an error associated with exp. data.
- VP included both in lowest order and (at best) in one-loop diagrams ⇒ part of the 2 loop factorizable corrections are included
- Z exchange included at lowest order in e^+e^- and $\mu^+\mu^-$ FS. Its effect is $\mathcal{O}(0.1\%) @ 10$ GeV for Bhabha

< ロ > < 同 > < 回 > < 回 >

- The matching procedure is now implemented in BabaYaga@NLO
- It is applied to Bhabha, $\gamma\gamma$ and $\mu^+\mu^-$ final states
- The (Fortran 77 [!]) code can be downloaded from http://www.pv.infn.it/hepcomplex/babayaga.html
- Relevant papers for all the details and phenomenological studies:
 - G. Balossini et al., Matching perturbative and Parton Shower corrections to Bhabha process at flavour factories, Nucl. Phys. B 758, 227 (2006)
 - G. Balossini et al., Photon pair production at flavour factories with per mille accuracy, Phys. Lett. B 663:209 (2008)
 - 3 C.M. Carloni Calame, An improved Parton Shower algorithm in QED, Phys. Lett. B 520, 16 (2001)
 - C.M. Carloni Calame et al., Large-angle Bhabha scattering and luminosity at flavour factories, Nucl. Phys. B 584, 459 (2000)

・ロト ・ 四ト ・ ヨト ・ ヨト

Results with BabaYaga@NLO

 as examples to show the features of the EG, the following setups and definitions are used (for Bhabha)

a
$$\sqrt{s} = 1.02 \text{ GeV}, E_{min} = 0.408 \text{ GeV}, 20^{\circ} < \theta_{\pm} < 160^{\circ}, \xi_{max} = 10^{\circ}$$

b $\sqrt{s} = 1.02 \text{ GeV}, E_{min} = 0.408 \text{ GeV}, 55^{\circ} < \theta_{\pm} < 125^{\circ}, \xi_{max} = 10^{\circ}$
c $\sqrt{s} = 10 \text{ GeV}, E_{min} = 4 \text{ GeV}, 20^{\circ} < \theta_{\pm} < 160^{\circ}, \xi_{max} = 10^{\circ}$
d $\sqrt{s} = 10 \text{ GeV}, E_{min} = 4 \text{ GeV}, 55^{\circ} < \theta_{\pm} < 125^{\circ}, \xi_{max} = 10^{\circ}$

$$\delta_{VP} \equiv \frac{\sigma_{0,VP} - \sigma_{0}}{\sigma_{0}} \qquad \qquad \delta_{\alpha} \equiv \frac{\sigma_{\alpha}^{NLO} - \sigma_{0}}{\sigma_{0}}$$

$$\delta_{HO} \equiv \frac{\sigma_{matched}^{PS} - \sigma_{\alpha}^{NLO}}{\sigma_{0}} \qquad \qquad \delta_{HO}^{PS} \equiv \frac{\sigma_{\alpha}^{PS} - \sigma_{\alpha}^{PS}}{\sigma_{0}}$$

$$\delta_{\alpha}^{non-log} \equiv \frac{\sigma_{\alpha}^{NLO} - \sigma_{\alpha}^{PS}}{\sigma_{0}} \qquad \qquad \delta_{\infty}^{non-log} \equiv \frac{\sigma_{matched}^{PS} - \sigma_{\alpha}^{PS}}{\sigma_{0}}$$

< 47 ▶

3 D 🖌 🕀 🖻

Results with BabaYaga@NLO

set up	(a)	(b)	(C)	(d)
δ_{VP}	1.76	2.49	4.81	6.41
δ_{lpha}	-11.61	-14.72	-16.03	-19.57
δ_{HO}	0.39	0.82	0.73	1.44
δ^{PS}_{HO}	0.35	0.74	0.68	1.34
$\delta^{non-log}_{lpha}$	-0.34	-0.56	-0.34	-0.56
$\delta_{\infty}^{non-log}$	-0.30	-0.49	-0.29	-0.46

Table: Relative corrections (in per cent) to the Bhabha cross section for the four setups

- * in short, the fact that $\delta_{\alpha}^{non-log} \simeq \delta_{\infty}^{non-log}$ and $\delta_{HO} \simeq \delta_{HO}^{PS}$ means that the matching algorithm preserves both the advantages of exact NLO calculation and PS approach:
 - \rightarrow it includes the missing NLO RC to the PS
 - \rightarrow it adds the missing higher-order RC to the NLO

Results with BabaYaga@NLO

• acollinearity distribution, setup (a)

< 🗇 🕨

• e^+e^- invariant-mass distribution, setup (a)

< A

Results with BabaYaga@NLO for $\gamma\gamma$ final state

- γγ final state has a lower x-section, but it does not depend on hadronic VP, which is a source of th. error
- Similar setups and definitions were used to study $\gamma\gamma$ FS

$$\begin{cases} \sqrt{s} = 1. - 3. - 10.\text{GeV} \\ E_{\gamma}^{\min} = 0.3 \times \sqrt{s} \\ \vartheta_{\gamma}^{\min} = 45^{\circ}, \quad \vartheta_{\gamma}^{\max} = 135^{\circ} \\ \xi_{\max} = 10^{\circ} \end{cases}$$
$$\delta_{\alpha} = 100 \times \frac{\sigma_{\alpha}^{\text{NLO}} - \sigma}{\sigma} \qquad \delta_{\infty} = 100 \times \frac{\sigma_{\exp} - \sigma}{\sigma} \\ \delta_{\exp} = 100 \times \frac{\sigma_{\exp} - \sigma_{\alpha}^{\text{NLO}}}{\sigma_{\alpha}^{\text{NLO}}} \qquad \delta_{\alpha}^{\text{NLL}} = 100 \times \frac{\sigma_{\alpha}^{\text{NLO}} - \sigma_{\alpha}^{\text{PS}}}{\sigma_{\alpha}^{\text{PS}}} \\ \delta_{\infty}^{\text{NLL}} = 100 \times \frac{\sigma_{\exp} - \sigma_{\exp}^{\text{PS}}}{\sigma_{\exp}^{\text{PS}}} \end{cases}$$

Results with BabaYaga@NLO for $\gamma\gamma$

\sqrt{s} (GeV)	1	3	10
σ	137.53	15.281	1.3753
$\sigma^{\mathrm{PS}}_{lpha}$	128.55	14.111	1.2529
$\sigma_{lpha}^{ m NLO}$	129.45	14.211	1.2620
σ_{\exp}^{PS}	128.92	14.169	1.2597
$\sigma_{\rm exp}$	129.77	14.263	1.2685
δ_{lpha}	-5.87	-7.00	-8.24
δ_{∞}	-5.65	-6.66	-7.77
δ_{exp}	0.24	0.37	0.51
$\delta_{lpha}^{ m NLL}$	0.70	0.71	0.73
$\delta_{\infty}^{\mathrm{NLL}}$	0.66	0.66	0.69

Table: Photon pair production cross sections (in nb) to different accuracy levels and relative corrections (in per cent)

A D b 4 A b

Results with BabaYaga@NLO for $\gamma\gamma$

most-energetic photon angle and energy, acollinearity distribution

Estimating the theoretical accuracy

- It is of utmost importance to compare with independent calculations/implementations, in order to
 - * asses the technical precision, spot bugs (with the same th. ingredients)
 - ★ estimate the theoretical "error" when including partial/incomplete higher-order corrections
- Generators exist on the marked and are used by exp. coll., some of them including QED h.o. and NLO corrections according to different approaches (collinear SF + NLO, YFS exponentiation,...)

Generator	Processes	Theory	Accuracy	Web address
BHAGENF/BKQED	$e^+e^-/\gamma\gamma, \mu^+\mu^-$	$\mathcal{O}(\alpha)$	1%	www.lnf.infn.it/~graziano/bhagenf/bhabha.html
BabaYaga v3.5	$e^+e^-, \gamma\gamma, \mu^+\mu^-$	Parton Shower	$\sim 0.5\%$	www.pv.infn.it/~hepcomplex/babayaga.html
BabaYaga@NLO	$e^+e^-, \gamma\gamma, \mu^+\mu^-$	$\mathcal{O}(\alpha) + PS$	$\sim 0.1\%$	www.pv.infn.it/~hepcomplex/babayaga.html
BHWIDE	e ⁺ e ⁻	$\mathcal{O}(\alpha)$ YFS	0.5%(LEP1)	placzek.home.cern.ch/placzek/bhwide
MCGPJ	$e^+e^-, \gamma\gamma, \mu^+\mu^-$	$\mathcal{O}(\alpha) + SF$	< 0.2%	cmd.inp.nsk.su/~sibid

Tuned comparisons

Without vacuum polarization, to compare consistenly

At the Φ and τ -charm factories (cross sections in nb)

By BabaYaga people, Wang Ping and A. Sibidanov

setup	BabaYaga@NLO	BHWIDE	MCGPJ	$\delta(\%)$
$\sqrt{s} = 1.02 \text{ GeV}, 20^{\circ} \le \vartheta_{\mp} \le 160^{\circ}$	6086.6(1)	6086.3(2)	_	0.005
$\sqrt{s} = 1.02 \mathrm{GeV}, 55^\circ \le \vartheta_{\mp} \le 125^\circ$	455.85(1)	455.73(1)	—	0.030
$\sqrt{s} = 3.5 \mathrm{GeV}, \vartheta_+ + \vartheta \pi \le 0.25 \mathrm{rad}$	35.20(2)	—	35.181(5)	0.050

 \star Agreement well below 0.1%! \star

At BaBar (cross sections in nb)

By A. Hafner and A. Denig

angular acceptance cuts	BabaYaga@NLO	BHWIDE	$\delta(\%)$
$15^{\circ} \div 165^{\circ}$	119.5(1)	119.53(8)	0.025
$40^{\circ} \div 140^{\circ}$	11.67(3)	11.660(8)	0.086
$50^{\circ} \div 130^{\circ}$	6.31(3)	6.289(4)	0.332
$60^{\circ} \div 120^{\circ}$	3.554(6)	3.549(3)	0.141

 \star Agreement at the \sim 0.1% level! \star

Tuned comparisons

distributions: BabaYaga@NLO vs. Bhwide (at KLOE)

æ

Tuned comparisons

MCGPJ vs. BabaYaga@NLO and Bhwide (at CMD2)

18

0.

Fig. 23 Relative differences between BHWIDE and MCGPJ Bhabha cross sections as a function of the acollinearity cut, for the CMD-2 experiment at VEPP-2M

Fig. 24 Relative differences between BabaYaga@NLO and MCGPJ Bhabha cross sections as a function of the acollinearity cut, for the CMD-2 experiment at VEPP-2M

- The three generators agree within 0.1% for the typical experimental acollinearity cut $\Delta \theta \sim 0.2 \div 0.3$ rad
- Main conclusion from tuned comparisons: technical precision of the generators well under control, the small remaining differences being due to slightly different details in the calculation of the same theoretical ingredients [additive vs factorized formulations, different scales for higher-order leading log corrections]

Theoretical accuracy, comparisons with NNLO calculations

- After including the exact NLO RC, the theoretical error starts at *O*(α²) (NNLO) (although large NNLO corrections are already included by means of multiple photon emission)
- ★ The NNLO QED corrections to Bhabha scattering have been calculated in the last years → it's very important to measure the impact of the missing (non-leading) terms of order α^2 within typical setups for luminometry, to asses the MC accuracy
- The estimate of the theoretical accuracy will be sound and robust
- e.g., BabaYaga formulae can be truncated at $\mathcal{O}(\alpha^2)$ to be consistently compared with all the classes of NNLO corrections

.

- the $\mathcal{O}(\alpha^2)$ content of BabaYaga cross section can be cast in the form

$$\sigma^{\alpha^2} = \sigma^{\alpha^2}_{\rm SV} + \sigma^{\alpha^2}_{\rm SV,H} + \sigma^{\alpha^2}_{\rm HH}$$

where

- $\sigma_{SV}^{\alpha^2}$: soft+virtual photonic corrections up to $\mathcal{O}(\alpha^2) \longrightarrow$ compared with the corresponding available NNLO QED calculation
- $\sigma_{SV,H}^{\alpha^2}$: one-loop soft+virtual corrections to single hard bremsstrahlung \rightarrow presently estimated relying upon existing (partial) results
- $\sigma_{\text{HH}}^{\alpha^2}$: double hard bremsstrahlung \longrightarrow compared with the exact $e^+e^- \rightarrow e^+e^-\gamma\gamma$ cross section, to register really negligible differences (at the 1×10^{-5} level)

・ロト ・ 四ト ・ ヨト ・ ヨト …

NNLO calculations

Photonic corrections A. Penin, PRL 95 (2005) 010408 & Nucl. Phys. B734 (2006) 185

Electron loop corrections R. Bonciani *et al.*, Nucl. Phys. **B701** (2004) 121 & Nucl. Phys.
 B716 (2005) 280 / S. Actis, M. Czakon, J. Gluza and T. Riemann, Nucl. Phys. **B786** (2007) 26

Heavy fermion and hadronic corrections R. Bonciani, A. Ferroglia and A. Penin,

PRL 100 (2008) 131601 / S. Actis, M. Czakon, J. Gluza and T. Riemann, PRL 100 (2008) 131602 /

J.H. Kühn and S. Uccirati, Nucl. Phys. **B806** (2009) 300

C.M. Carloni Calame (Southampton)

Differences from Penin & Bonciani et al.

diff. between Penin and Bonciani et al. and the corresponding
 BabaYaga content, as f(ε) and g(log(m_e)). E.g. LABS at 1 GeV

- differences are infrared safe
- * $\delta\sigma(phot.)/\sigma_0 \propto \alpha^2 L$ $\delta\sigma(N_F = 1)/\sigma_0 \propto \alpha^2 L^2$
- * Numerically, in LABS and VLABS,

 $\delta\sigma(phot.) + \delta\sigma(N_F = 1) < 0.015\% \times \sigma_0$

• • • • • • • • • • • • •

Pair corrections

- A Desy–Zeuthen & Katowice collaboration [H. Czyz, J. Gluza, M. Gunia, T. Riemann and M. Worek] did a new, exact calculation of pair corrections, based on exact NNLO soft+virtual corrections and $2 \rightarrow 4$ matrix elements $e^+e^- \rightarrow e^+e^-(l^+l^-, l = e, \mu, \tau), e^+e^-(\pi^+\pi^-)$
- Results: in comparison with the approximation of BabaYaga@NLO and using realistic KLOE and BaBar luminosity cuts (cross sections in nb)

		Ele	ectron pair correcti	ons
	$\sigma_{\rm Born}$	$\sigma_{\mathrm{pairs}}^{\mathrm{exact}}$	$\sigma_{ m pairs}^{ m BabaYaga@NLO}$	$(\sigma^{\text{ex.}} - \sigma^{\text{BabaYaga}}) / \sigma_{\text{Born}}(\%)$
KLOE	529.469	-1.794	-1.570	0.04
BaBar	6.744	-0.008	-0.008	0.00
		N	luon pair correctio	ns
	$\sigma_{\rm Born}$	$\sigma_{\mathrm{pairs}}^{\mathrm{exact}}$	$\sigma_{ m pairs}^{ m BabaYaga@NLO}$	$(\sigma^{\text{ex.}} - \sigma^{\text{BabaYaga}}) / \sigma_{\text{Born}}(\%)$
KLOE	529.469	-0.241	-0.250	0.002
BaBar	6.744	-0.004	-0.003	0.015
		F	Pion pair correctior	าร
	$\sigma_{\rm Born}$	$\sigma_{\mathrm{pairs}}^{\mathrm{exact}}$	$\sigma_{ m pairs}^{ m BabaYaga@NLO}$	$(\sigma^{\text{ex.}} - \sigma^{\text{BabaYaga}}) / \sigma_{\text{Born}}(\%)$
KLOE	529.469	-0.186	in progress	_
BaBar	6.744	-0.003	in progress	

* The uncertainty due to lepton and hadron pair corrections is at the level of a few units in 10^{-4} [further comparisons in progress] *

$\Delta \alpha_{\rm had}^{(5)}$ and other ${\cal O}(\alpha^2)$ uncertainties

 the exact 1-loop virtual corrections to the 1-photon real emission for Bhabha only recently has been made available (comparisons in progress)

Actis et al., Phys. Lett. B 682 (419) 2010

- $\star\,$ relying on the LEP experience and being the error at the $\alpha^2 L$ level, the missing corrections are $\leq 0.05\%$
- the double real bremsstrahlung contribution is in principle approximated in BabaYaga@NLO
 - * observed really negligible differences with the exact matrix elements, calculated with the **ALPHA** (Caravaglios and Moretti ('95)) algorithm/routine
- $\Delta \alpha_{had}^{(5)}$ is affected by the experimental error, which is returned by the routines in use (HADR5N and HMNT)
- ★ The total error budget for Bhabha can be summarized as follow (from G. Montagna's talk at the "International Workshop on e^+e^- collisions from Φ to Ψ ", Beijing, October 2009)

Status of the MC theoretical accuracy

Main conclusion of the Luminosity Section of the WG Report "Radiative Corrections & MC Tools" Putting the various sources of uncertainties (for large–angle Bhabha) all together...

Source of error (%)	$\Phi-factories$	\sqrt{s} = 3.5 GeV	B-factories
$\left \delta_{\mathrm{VP}}^{\mathrm{err}} \right $ [Jegerlehner]	0.00	0.01	0.03
$\left \delta_{\mathrm{VP}}^{\mathrm{err}} \right $ [HMNT]	0.02	0.01	0.02
$\left \delta_{\mathrm{SV},\alpha^2}^{\mathrm{err}}\right $	0.02	0.02	0.02
$ \delta_{\mathrm{HH},\alpha^2}^{\mathrm{err}} $	0.00	0.00	0.00
$\left \delta_{\mathrm{SV,H},\alpha^{2}}^{\mathrm{err}}\right $ [conservative?]	0.05	0.05	0.05
$ \delta_{ m pairs}^{ m err} $ [in progress]	$\sim\!0.05$	$\sim 0.1^{1}$	$\sim \! 0.02^2$
$ \delta_{ m total}^{ m err} $ linearly	0.12÷0.14	0.18	0.11÷0.12
$ \delta_{ m total}^{ m err} $ in quadrature	0.07÷0.08	0.11	0.06÷0.07

- Comparisons with the Novosibirsk $\Delta \alpha_{had}^{(5)}(q^2)$ parameterization routine and with the calculation by Actis *et al.* for $e^+e^-\gamma$ at one loop would put the evaluation of the $|\delta_{VP}^{err}|$ and $|\delta_{SV,H,\alpha^2}^{err}|$ uncertainties on firmer grounds
- The present error estimate appears to be rather robust and sufficient for high-precision luminosity measurements. It is comparable with that achieved about ten years ago for small-angle Bhabha luminosity monitoring at LEP/SLC

¹Very preliminary, work in progress using realistic BES-III and CLEO-c luminosity cuts

2 Preliminary and assuming BaBar cuts. Work in progress for BELLE event selection

Resummation beyond α^2

 \star with a complete 2-loop generator at hand, (leading-log) resummation beyond α^2 can be neglected?

Figure: Impact of α^2 (solid line) and resummation of higher order ($\geq \alpha^3$) (dotted) corrections on the acollinearity distribution

\star resummation beyond α^2 still important!

The "dark" side of BabaYaga

- Recently, the process e⁺e⁻ → γ, U → e⁺e⁻γ (or → μ⁺μ⁻γ) has been implemented, including LL collinear RC, for the search of a light, weakly-interacting, photon-like vector boson at flavour factories
- \star the U boson is a candidate for dark matter

FIG. 1. Examples of Feynman diagrams with dark photon exchange contributing to the process $e^+e^-\to\gamma, U\to l^+l^-\gamma,$ $l=e,\mu.$

- The details can be found in arXiv:1007.4984 [hep-ph] by L. Barzè et al., submitted to PRD
- for the moment being, forget about it!

- Download the package babayaga-NLO.tar.gz
- Unpack it tar -xzvf babayaga-NLO.tar.gz
- cd babayaga-NLO/
- Read the file README !
- ./configure
- make
- ./babayaga
- On the shell prompt, it should appear an "interactive" menu like this...

Using BabaYaga@NLO

*********	********
******	******
****** Welcome to BabaYaga	*****
****	****
** It is an event generator for (ED processes **
**** at low energies, matching a (ED PS with ****
****** exact order alpha corr	ections *****
******	******
******	********
***************	*****
[[it simulates: e+e>> g>> e+	e- or mu+mu- or gg]]
[[: e+e>> g,U>> e+	e-gormu+mu-g]]
rincipal Menu:	
[type "run" to start generation,	
"legenda" for help or "quit" to quit]
[fs] final state = ee	
[ecms]CoMenergy = 1.020 0	ieV .
[thmin]min.angle = 20.000 c	leg
[thmax] max. angle = 160.000 c	leg
[zmax] acollinearity = 10.000 c	leg
[emin] min.energy = 0.408 (ieV .
[nev] 10000000. events will be	generated
<pre>path] files saved in test-run/</pre>	
[ntuple] ntuple creation no	
[ntuple] ntuple creation no [menu2] the second menu is off	

æ

- In the main menu a number of parameter can be modified, most notably
 - ★ final state: ee, mm or gg
 - ★ center of mass energy
 - acceptance cuts (modify cuts.f for more elaborate event selection criteria)
 - ⋆ directory where to save the outputs
 - ★ enabling a 2nd menu, to modify inner parameters (order of RC, running of α , ...)
 - * type legenda for a quick explanation of the parameters and possible options, type run to start BabaYaga run
- The results are saved in a separate directory (test-run/ by default), which contains
 - \star the unweighted events if their storage was requested
 - * a number of simple text files with some relevant distributions (files to be fed to gnuplot for example)
 - ★ the file statistics.txt where the information (statistics, input parameters, results) of the run is saved →

The statistics.txt file

Generating 10000000, weighted events ~ :::::>>>>>> weighted events <<<<<:::::: 0 photons: 3324.86157302 +- ----1.09820485 (53,6282 %) 1 photons: 2079.28199279 +- 1.20356346 2 photons: 641.97792104 +- 0.87462503 (33.5377 %) (10.3547 %) 3 photons: 131.27112769 +-0.48134411 (2.1173 %) 4 photons: 19.88891842 +-0.22678749 0.3208 %) 5 photons: 2.30523354 +-0.08724946 0.0372 %) 6 photons: 0.22980637 +-0.02961113 (0.0037 %) 7 photons: 0.02691640 +- 0.01406802 0.0004 %) 0.00000183 +- 0.00000183 8 photons: 0.0000 %) total: 6199.84349111 +-1.20348763 nb 10000000 of 10000000. cut points 11.78 % :::::>>>>>> unweighted events <<<<<::::: hit or miss efficiency 3.03 % unweighted events generated 151323. 6205.88699138 +-15.71006625 + total (nb): 0.00493666 +- U// 0.00391866 (bias over fmax) + -0.00000000 +- 0.00000000 (bias negative) 15.71398491 total + biases: 6205.89192804 +-N. points with w > fmax (bias): 2 bias/hit and bias/(hit+missed): 0.0013217 % and 0.0000400 % N. points with w < 0: biases for w < 0: 0.00000 % and 0.00000 % Upper limits fmax and sdifmax 205054.320605 223691.434065 when there were 4 photons

C.M. Carloni Calame (Southampton)

Conclusions & Outlook

- Remarkable progress to reduce the theoretical error in luminosity measurement at flavour factories down to $\sim 0.1\%$
- Both exact NLO and multiple photon corrections are needed to reach such an accuracy and they are implemented in the most precise MC tools
- ★ At least 3 EG for Bhabha scattering (BabaYaga@NLO, Bhwide, MCGPJ) agree within 0.2% for integrated x-section and ~1% (or better) for distributions
- Precision generators are also available for $\gamma\gamma$ and $\mu^+\mu^-$ final states
- NNLO QED calculations allow to assess the MC theoretical accuracy at the 0.1% level
- Possible and in progress improvements concern
 - → Tuned comparisons: extend the study done in Bhabha to $\gamma\gamma$ and $\mu^+\mu^-[\gamma]$ processes
 - → Theoretical accuracy: deeper analysis of pair corrections, 1-loop RC to $e^+e^- \rightarrow e^+e^-\gamma$ and hadronic VP