Estimate of the h_{c} decay width in NRQCD

Ying Fan
Peking University

In collaboration with Kuang-Ta Chao

August 27th, 2010
Topical Seminar on Fronter of Particle Phyusics 2010: Charm and
Charmonium Physics

Outline

* Introduction
* Determination of he light hadronic and total decay width in NRQCD
* P-wave spin-triplet $X_{\text {cs }}(J=0,1,2)$ light hadronic decay widths revisited
* Summary

Introduction

* P-wave spin-singlet charmonium state
* Mass $3525.42 \pm 0.29 \mathrm{MeV}$ (PDG 10)
* Produced in exclusive decay ψ (2S) $\rightarrow \pi^{0} h_{c}$
* E1 transition \& light hadronic (LH) decay are main decay modes of h.

See talk by BESIII Collaboration at QWG7, Fermilab, 2010 for this figure

Introduction

	BESIII	NRQCD	Comparison
$\Gamma\left(h_{0}\right)$	$0.73 \pm 0.45 \pm 0.28 \mathrm{MeV}$ <1.44 MeV (90\% confidence level)	1.1 MeV (0.53MeV LH) Bodwin et.al.,PRD46,R1914 Kuang,PRD65, 094024	consistent @ LO
	BESIII Collaboration,PRL104, 132002 Talk by BESIII Collaboration at QWG7, Fermilab, 2010	NLO LH exists Huang et.al.,PRD54, 3065 Petrelli et.al., NPB 514, 245 Maltoni, arXiv: hep-ph/ 0007003	NLO more persuasive

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

short-distance

coefficients

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

short-distance
 coefficients

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

physical state

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

physical state

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

LH Decay width in NRQCD

physical state

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

$$
\left|{ }^{1} P_{1}\right\rangle=\mathcal{O}(1)\left|Q \bar{Q}\left({ }^{1} P_{1}^{[1]}\right)\right\rangle+\mathcal{O}(v)\left|Q \bar{Q}\left({ }^{1} S_{0}^{[8]}\right) g\right\rangle+\cdots
$$

LH Decay width in NRQCD

physical state

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

$$
\left|{ }^{1} P_{1}\right\rangle=\mathcal{O}(1)\left|Q \bar{Q}\left({ }^{1} P_{1}^{[1]}\right)\right\rangle+\mathcal{O}(v)\left|Q \bar{Q}\left({ }^{1} S_{0}^{[8]}\right) g\right\rangle+\cdots
$$

LH Decay width in NRQCD

physical state

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

$$
\left|{ }^{1} P_{1}\right\rangle=\mathcal{O}(1)\left|Q \bar{Q}\left({ }^{1} P_{1}^{[1]}\right)\right\rangle+\mathcal{O}(v)\left|Q \bar{Q}\left({ }^{1} S_{0}^{[8]}\right) g\right\rangle+\cdots
$$

LH Decay width in NRQCD

physical state

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

$$
\begin{aligned}
& \left|{ }^{1} P_{1}\right\rangle= \\
& \quad \text { O(1)|Q}\left|Q \bar{Q}\left({ }^{1} P_{1}^{[1]}\right)\right\rangle+\mathcal{O}(v)\left|Q \bar{Q}\left({ }^{1} S_{0}^{[8]}\right) g\right\rangle+\cdots \\
& \quad \text { Model Singlet }
\end{aligned}
$$

LH Decay width in NRQCD

physical state

$$
\Gamma\left(h_{c} \rightarrow L H\right)=\sum_{n} \frac{2 I m f_{n}(\mu)}{m^{d_{n}-4}}\left\langle h_{c}\right| \mathcal{O}_{n}(\mu)\left|h_{c}\right\rangle
$$

$$
\left|{ }^{1} P_{1}\right\rangle=\mathcal{O}(1)\left|Q \bar{Q}\left({ }^{1} P_{1}^{[1]}\right)\right\rangle+\mathcal{O}(v)\left|Q \bar{Q}\left({ }^{1} S_{0}^{[8]}\right) g\right\rangle+\cdots
$$

Color Singlet Model

Color-Octet
Mechanism

How to determine Imfn

How to determine Imfn

How to determine Imfn

adopt optical theorem

How to determine Imfn

adopt optical theorem
f: all possible intermediate particles, gluons, light quarks.

How to determine Imf_{n}

$\left.\mathcal{A}(Q \bar{Q} \rightarrow Q \bar{Q})\right|_{p e r t} Q C D=\left.\sum_{n} \frac{f_{n}(\mu)}{m^{d_{n}-4}}\langle Q \bar{Q}| \mathcal{O}_{n}(\mu)|Q \bar{Q}\rangle\right|_{p e r t N R Q C D}$

How to determine Imf_{n}

adopt optical theorem
f: all possible intermediate particles, gluons, light quarks.

$$
\left.\mathcal{A}(Q \bar{Q} \rightarrow Q \bar{Q})\right|_{p e r t Q C D}=\left.\sum_{n} \frac{f_{n}(\mu)}{m^{d_{n}-4}}\langle Q \bar{Q}| \mathcal{O}_{n}(\mu)|Q \bar{Q}\rangle\right|_{p e r t N R Q C D}
$$

matching condition: connecting full theory and effective theory

The h_{c} light hadronic decay

The h_{c} light hadronic decay

Representative example: divergence cancelled by introducing color-octet mechanism

$\operatorname{Im} f_{1}\left(1 P_{1}\right):$ full QCD

Huang et.al.,PRD54, 3065 (1996)

$$
\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}=\frac{\pi\left(N_{c}^{2}-4\right)}{4 N_{c}} \alpha_{s}^{2}
$$

$$
\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{I R}}-\gamma_{E}+\ln \frac{4 \pi \mu_{I R}^{2}}{4 m^{2}}\right)+\frac{7 \pi^{2}-112}{48}\right]
$$

$\operatorname{Im} f_{1}\left(P_{1}\right):$ full QCD

Huang et.al.,PRD54, 3065 (1996)

$$
\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{I R}}-\gamma_{E}+\ln \frac{4 \pi \mu_{I R}^{2}}{4 m^{2}}\right)+\frac{7 \pi^{2}-112}{48}\right]
$$

$\operatorname{Imf} f_{1}\left(P_{1}\right):$ full QCD

Huang et.al.,PRD54, 3065 (1996)

No born diagrams for color-singlet ${ }^{1} P_{1}$ component:

 Yang theorem

$$
\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{I R}}-\gamma_{E}+\ln \frac{4 \pi \mu_{I R}^{2}}{4 m^{2}}\right)+\frac{7 \pi^{2}-112}{48}\right]
$$

$\operatorname{Imf} f_{1}\left(P_{1}\right):$ full QCD

Huang et.al.,PRD54, 3065 (1996)

No born diagrams for color-singlet ${ }^{1} P_{1}$ component: Yang theorem

$$
\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{I R}}-\gamma_{E}+\ln \frac{4 \pi \mu_{I R}^{2}}{4 m^{2}}\right)+\frac{7 \pi^{2}-112}{48}\right]
$$

$\operatorname{Imf} f_{1}\left(P_{1}\right):$ full QCD

Huang et.al.,PRD54, 3065 (1996)

No born diagrams for color-singlet ${ }^{1} P_{1}$ component: Yang theorem

FUll QCD result: $\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{I R}}-\gamma_{E}+\ln \frac{4 \pi \mu_{I R}^{2}}{4 m^{2}}\right)+\frac{7 \pi^{2}-112}{48}\right]$

$\operatorname{Imf} f_{1}\left(P_{1}\right):$ full QCD

Huang et.al.,PRD54, 3065 (1996)

No born diagrams for color-singlet ${ }^{1} P_{1}$ component: Yang theorem

Full QCD result: $\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{I R}}-\gamma_{E}+\ln \frac{4 \pi \mu_{I R}^{2}}{4 m^{2}}\right)+\frac{7 \pi^{2}-112}{48}\right]$

$\operatorname{Imf} f_{1}\left(P_{1}\right):$ full QCD

Huang et.al.,PRD54, 3065 (1996)

No born diagrams for color-singlet ${ }^{1} P_{1}$ component: Yang theorem

FUll QCD result: $\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{I R}}-\gamma_{E}+\ln \frac{4 \pi \mu_{I R}^{2}}{4 m^{2}}\right)+\frac{7 \pi^{2}-112}{48}\right]$

$\operatorname{Imf} f_{1}\left(P_{1}\right):$ full QCD

Huang et.al.,PRD54, 3065 (1996)

No born diagrams for color-singlet ${ }^{1} P_{1}$ component: Yang theorem

Full QCD result: $\left.\frac{\left.\left[\operatorname{Im} f_{8}{ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{I R}}\right)-\gamma_{E}+\ln \frac{4 \pi \mu_{I R}^{2}}{4 m^{2}}\right)+\frac{7 \pi^{2}-112}{48}\right]$
expression 1

$\operatorname{Im} f_{1}\left(1 P_{1}\right):$ NRQCD

$$
\mathcal{O}_{1}\left({ }^{1} P_{1}\right)
$$

(c)

(d)

$$
\frac{\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{UV}}^{2}}{4 m^{2}}\right)\right]
$$

$$
\frac{\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)}{m^{2}}+\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\ln \frac{\mu_{\mathrm{UV}}}{2 m}\right]
$$

$\operatorname{Im} f_{1}\left(1 P_{1}\right):$ NRQCD

(d)

$$
\frac{\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{UV}}^{2}}{4 m^{2}}\right)\right]
$$

$$
\frac{\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)}{m^{2}}+\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\ln \frac{\mu_{\mathrm{UV}}}{2 m}\right]
$$

$\operatorname{Im} f_{1}\left(1 P_{1}\right):$ NRQCD

$\mathcal{O}_{1}\left({ }^{1} P_{1}\right) \quad$ tree level matrix

$$
\frac{\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{UV}}^{2}}{4 m^{2}}\right)\right]
$$

real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

$$
\frac{\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)}{m^{2}}+\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{I}}^{2}}{4 m^{2}}\right)+\ln \frac{\mu_{\mathrm{UV}}}{2 m}\right]
$$

$\operatorname{Im} f_{1}\left(1 P_{1}\right):$ NRQCD

$$
\mathcal{O}_{1}\left({ }^{1} P_{1}\right) \quad \text { tree level matrix }
$$

$$
\left.\frac{\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}\right)-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{UV}}^{2}}{4 m^{2}}\right)\right]
$$

real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

$$
\frac{\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)}{m^{2}}+\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{I}}^{2}}{4 m^{2}}\right)+\ln \frac{\mu_{\mathrm{UV}}}{2 m}\right]
$$

$\operatorname{Im} f_{1}\left(1 P_{1}\right):$ NRQCD

$$
\mathcal{O}_{1}\left({ }^{1} P_{1}\right) \quad \text { tree level matrix }
$$

the same divergence

$$
\frac{\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{UV}}^{2}}{4 m^{2}}\right)\right]
$$

(c)
(d)
real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

$$
\frac{\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)}{m^{2}}+\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{I}}^{2}}{4 m^{2}}\right)+\ln \frac{\mu_{\mathrm{UV}}}{2 m}\right]
$$

$\operatorname{Im} f_{1}\left(1 P_{1}\right):$ NRQCD

the same divergence

$$
\frac{\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{UV}}^{2}}{4 m^{2}}\right)\right]
$$

(c)
(d)
real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

NRQCDresult: $\quad \frac{\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)}{m^{2}}+\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\ln \frac{\mu_{\mathrm{UV}}}{2 m}\right]$

$\operatorname{Im} f_{1}\left(1 P_{1}\right):$ NRQCD

the same divergence

$$
\left.\frac{\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}\right)-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{II}}^{2}}{4 m^{2}}\right)+\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{UV}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{UV}}^{2}}{4 m^{2}}\right)\right]
$$

(c)
(d)
real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

NRQCD result: $\frac{\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)}{m^{2}}+\frac{\left[\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)\right]_{0}}{m^{2}} \frac{4 C_{F} \alpha_{s}}{3 N_{c} \pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\gamma_{E}+\ln \frac{4 \pi \mu_{\mathrm{IR}}^{2}}{4 m^{2}}\right)+\ln \frac{\mu_{\mathrm{UV}}}{2 m}\right]$

expression 2

finite $\operatorname{Im} f_{1}\left({ }^{1} p_{1}\right)$:

$$
\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)=\frac{\left(N_{c}^{2}-4\right) C_{F} \alpha_{s}^{3}}{3 N_{c}^{2}}\left(\frac{7 \pi^{2}-112}{48}-\ln \frac{\mu}{2 m}\right)
$$

finite $\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)$:

matching expression 1 and expression 2

$$
\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)=\frac{\left(N_{c}^{2}-4\right) C_{F} \alpha_{s}^{3}}{3 N_{c}^{2}}\left(\frac{7 \pi^{2}-112}{48}-\ln \frac{\mu}{2 m}\right)
$$

finite $\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)$:

matching expression 1 and expression 2

$$
\operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)=\frac{\left(N_{c}^{2}-4\right) C_{F} \alpha_{s}^{3}}{3 N_{c}^{2}}\left(\frac{7 \pi^{2}-112}{48}-\ln \frac{\mu}{2 m}\right)
$$

residual divergence cancelled by introducing coloroctet mechanism, finite NLO short-distance coefficient of color-singlet ${ }^{1} P_{1}$ component

$\operatorname{lmf} g\left(1 S_{0}\right):$ full QCD

$$
\begin{aligned}
& \frac{\pi\left(N_{c}^{2}-4\right)}{4 N_{c} m^{2}} \alpha_{s}^{2}\left\{1+\frac{\alpha_{s}}{\pi}\left[\left(C_{F}-\frac{C_{A}}{2}\right) \frac{\pi^{2}}{2 v}\right.\right. \\
& \left.\left.\quad+4 b_{0} \ln \frac{\mu}{2 m}+A\right]\right\} \\
& A=C_{F}\left(\frac{\pi^{2}}{4}-5\right)+C_{A}\left(\frac{122}{9}-\frac{17 \pi^{2}}{24}\right)-\frac{8}{9} n_{f}
\end{aligned}
$$

$\operatorname{lmf} g\left(1 S_{0}\right):$ full QCD

Real \& virtual corrections

$$
\begin{gathered}
\frac{\pi\left(N_{c}^{2}-4\right)}{4 N_{c} m^{2}} \alpha_{s}^{2}\left\{1+\frac{\alpha_{s}}{\pi}\left[\left(C_{F}-\frac{C_{A}}{2}\right) \frac{\pi^{2}}{2 v}\right.\right. \\
\left.\left.+4 b_{0} \ln \frac{\mu}{2 m}+A\right]\right\} \\
A=C_{F}\left(\frac{\pi^{2}}{4}-5\right)+C_{A}\left(\frac{122}{9}-\frac{17 \pi^{2}}{24}\right)-\frac{8}{9} n_{f}
\end{gathered}
$$

Imf 8 (${ }^{1} S_{0}$): full QCD

Real \& virtual corrections

$$
\begin{aligned}
\frac{\pi\left(N_{c}^{2}-4\right)}{4 N_{c} m^{2}} \alpha_{s}^{2}\left\{1+\frac{\alpha_{s}}{\pi}\left[\left(C_{F}-\frac{C_{A}}{2}\right)\right.\right. & \frac{\pi^{2}}{2 v} \\
& \left.\left.+4 b_{0} \ln \frac{\mu}{2 m}+A\right]\right\}
\end{aligned}
$$

(a)

(b)

(d)

(g)
(j)

(e)

(c)
(f)

(h)
(i)

(k)
(1)

(m)
(n)
$A=C_{F}\left(\frac{\pi^{2}}{4}-5\right)+C_{A}\left(\frac{122}{9}-\frac{17 \pi^{2}}{24}\right)-\frac{8}{9} n_{f}$

$\operatorname{lmf} g\left(1 S_{0}\right): ~ f u l l ~ Q C D$

Real \& virtual corrections

After renormalized

$$
\begin{gathered}
\frac{\pi\left(N_{c}^{2}-4\right)}{4 N_{c} m^{2}} \alpha_{s}^{2}\left\{1+\frac{\alpha_{s}}{\pi}\left[\left(C_{F}-\frac{C_{A}}{2}\right) \frac{\pi^{2}}{2 v}\right.\right. \\
\left.\left.+4 b_{0} \ln \frac{\mu}{2 m}+A\right]\right\} \\
A=C_{F}\left(\frac{\pi^{2}}{4}-5\right)+C_{A}\left(\frac{122}{9}-\frac{17 \pi^{2}}{24}\right)-\frac{8}{9} n_{f}
\end{gathered}
$$

(a)

(b)
(d)
(g)
(j)

(e)

(c)

(f)

(h)
(i)

(k)
(1)

(m)
(n)

$\operatorname{lmf} g\left(1 S_{0}\right): ~ f u l l ~ Q C D$

Real \& virtual corrections

After renormalized

$$
\begin{gathered}
\frac{\pi\left(N_{c}^{2}-4\right)}{4 N_{c} m^{2}} \alpha_{s}^{2}\left\{1+\frac{\alpha_{s}}{\pi}\left[\left(C_{F}-\frac{C_{A}}{2}\right)\right.\right. \\
\frac{\pi^{2}}{2 v} \\
\left.\left.+4 b_{0} \ln \frac{\mu}{2 m}+A\right]\right\} \\
A=C_{F}\left(\frac{\pi^{2}}{4}-5\right)+C_{A}\left(\frac{122}{9}-\frac{17 \pi^{2}}{24}\right)-\frac{8}{9} n_{f}
\end{gathered}
$$

(a)

(b)
(d)
(g)
(j)

(e)

(c)

(f)

(h)
(i)

(k)
(1)

(m)
(n)

$\operatorname{lmf} g\left(1 S_{0}\right): ~ f u l l ~ Q C D$

Real \& virtual corrections

After renormalized

$$
\begin{aligned}
\frac{\pi\left(N_{c}^{2}-4\right)}{4 N_{c} m^{2}} \alpha_{s}^{2}\left\{1+\frac{\alpha_{s}}{\pi}\left[\left(C_{F}-\frac{C_{A}}{2}\right)\right.\right. & \frac{\pi^{2}}{2 v} \\
& \left.\left.+4 b_{0} \ln \frac{\mu}{2 m}+A\right]\right\}
\end{aligned}
$$

(a)

(b)
(d)
(g)
(j)

(e)

(c)

(f)

(h)
(i)

(k)
(1)

(m)
(n)
$A=C_{F}\left(\frac{\pi^{2}}{4}-5\right)+C_{A}\left(\frac{122}{9}-\frac{17 \pi^{2}}{24}\right)-\frac{8}{9} n_{f}$
$n 0 n=n n_{3}^{3} n+n^{n} 3 n+n O n$

$\operatorname{lmf} g\left(1 S_{0}\right): ~ f u l l ~ Q C D$

Real \& virtual corrections

$$
\begin{aligned}
& \text { After renormalized singularity } \\
& \begin{array}{r}
\frac{\pi\left(N_{c}^{2}-4\right)}{4 N_{c} m^{2}} \alpha_{s}^{2}\left\{1+\frac{\alpha_{s}}{\pi}\left[\left(C_{F}-\frac{C_{A}}{2}\right) \frac{\pi^{2}}{2 v}\right.\right. \\
\left.\left.+4 b_{0} \ln \frac{\mu}{2 m}+A\right]\right\} \\
A=C_{F}\left(\frac{\pi^{2}}{4}-5\right)+C_{A}\left(\frac{122}{9}-\frac{17 \pi^{2}}{24}\right)-\frac{8}{9} n_{f}
\end{array}
\end{aligned}
$$

(a)

(d)

(g)

(j)

(m)
$n 0 n=n n_{3}^{3} n+n^{n} 3 n+n O n$

Imf 8 (${ }^{1} S_{0}$): full QCD

Real \& virtual corrections

Coulomb
singularity

$\operatorname{Imf} \mathrm{g}_{8}\left(\mathrm{I}_{0}\right):$ NRQCD

$\left.\operatorname{Imf} \mathrm{g}_{8}{ }^{1} \mathrm{~S}_{0}\right):$ NRQCD

$L 0$ matrix

$\operatorname{Imf} 8\left({ }^{1} S_{0}\right):$ NRQCD

10 matrix

NLO matrix

(b)

$\left.\operatorname{Imf} \mathrm{g}_{8}{ }^{1} \mathrm{~S}_{0}\right):$ NRQCD

10 matrix

NLO matrix

gluon lines connecting between incoming or outgoing heavy quark pairs

$\left.\operatorname{Imf} \mathrm{g}_{8}{ }^{1} \mathrm{~S}_{0}\right):$ NRQCD

10 matrix

NLO matrix

gluon lines connecting between incoming or outgoing heavy quark pairs

$$
\frac{\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)}{m^{2}}\left[1+\frac{\alpha_{s}}{\pi}\left(C_{F}-\frac{C_{A}}{2}\right) \frac{\pi^{2}}{2 v}\right]
$$

$\left.\operatorname{Imf} \mathrm{g}_{8}{ }^{1} \mathrm{~S}_{0}\right):$ NRQCD

10 matrix

NLO matrix

gluon lines connecting between incoming or outgoing heavy quark pairs

$$
\frac{\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)}{m^{2}}\left[1+\frac{\alpha_{s}}{\pi}\left(C_{F}-\frac{C_{A}}{2}\right)\left(\frac{\pi^{2}}{2 v}\right]\right.
$$

$\left.\operatorname{Imf} \mathrm{g}_{8}{ }^{1} \mathrm{~S}_{0}\right):$ NRQCD

$L 0$ matrix

NLO matrix

gluon lines connecting between incoming or outgoing heavy quark pairs
expression $4 \quad \frac{\operatorname{Im} f_{s}\left(S_{0}\right)}{m^{2}}\left[1+\frac{\alpha_{s}}{\pi}\left(C_{F}-\frac{C_{A}}{2}\right)\left(\frac{\pi^{2}}{2 v}\right)\right.$
finite $\operatorname{lmf} f_{8}\left({ }^{1} S_{0}\right)$:

finite $\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)$:

matching expression 3 and expression 4

finite $\operatorname{lm} f_{8}\left({ }^{1} S_{0}\right)$:

matching expression 3 and expression 4

$$
\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)=\frac{\left(N_{c}^{2}-4\right) \pi \alpha_{s}^{2}}{4 N_{c}}\left[1+\frac{\alpha_{s}}{\pi}\left(4 b_{0} \ln \frac{\mu}{2 m}+A\right)\right]
$$

finite $\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)$:

matching expression 3 and expression 4

$$
\operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)=\frac{\left(N_{c}^{2}-4\right) \pi \alpha_{s}^{2}}{4 N_{c}}\left[1+\frac{\alpha_{s}}{\pi}\left(4 b_{0} \ln \frac{\mu}{2 m}+A\right)\right]
$$

Coulomb singularity cancelled,finite NLO short-distance coefficient of color-octet ${ }^{1}{ }^{\text {S }}$ component

finite LH decay width of hc

$$
\begin{aligned}
\Gamma\left(h_{c} \rightarrow L H\right) & =2 \operatorname{Im} f_{1}\left({ }^{1} P_{1}^{[1]}\right) H_{1}+2 \operatorname{Im} f_{8}\left({ }^{1} S_{0}^{[8]}\right) H_{8} \\
& =\frac{2\left(N_{c}^{2}-4\right) C_{F} \alpha_{s}^{3}}{3 N_{c}^{2}}\left(\frac{7 \pi^{2}-112}{48}-\ln \frac{\mu}{2 m}\right) H_{1} \\
& +\frac{\left(N_{c}^{2}-4\right) \pi \alpha_{s}^{2}(\mu)}{2 N_{c}}\left[1+\frac{\alpha_{s}}{\pi}\left(4 b_{0} \ln \frac{\mu}{2 m}+A\right)\right] H_{8}(\mu)
\end{aligned}
$$

long-distance matrix elements

long-distance matrix elements

Method I

long-distance matrix elements

Method I

 Method II
long-distance matrix elements

Method II

Method II

long-distance matrix elements

Method I

Method II

long-distance matrix elements

Method I

Method II

long-distance matrix elements

Method I

Method II

long-distance matrix elements

Method I

 Method IITwo input parameters: $X_{\text {cl }}, X_{\text {c2 }} \rightarrow$ LH
two unknown ones:
$\mathrm{H}_{1}, \mathrm{H}_{8}$
process dependent

long-distance matrix elements

Method I

 Method IIexperimental extraction
$\Gamma\left(\chi_{J} \rightarrow L H\right)=2 \operatorname{Im} f_{1}\left({ }^{3} P_{J}\right)+2 \operatorname{Hm} f_{8}\left({ }^{3} S_{1}\right)+H_{8}+O\left(v^{2} \Gamma\right)$,
$\Gamma(h \rightarrow L H)=2 \operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)+H_{1}+2 \operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)+O\left(v^{2} \Gamma\right)$

Two input parameters:

 $X_{\mathrm{cl}}, X_{\mathrm{C} 2} \rightarrow$ LHtwo unknown ones:
$\mathrm{H}_{1}, \mathrm{H}_{8}$
process dependent

long-distance matrix elements

Method I

 Method II
experimental extraction

$\Gamma\left(\chi_{J} \rightarrow L H\right)=2 \operatorname{Im} f_{1}\left({ }^{3} P_{J}\right)+2 \operatorname{Hm} f_{8}\left({ }^{3} S_{1}\right)+H_{8}+O\left(v^{2} \Gamma\right)$,
$\Gamma(h \rightarrow L H)=2 \operatorname{Im} f_{1}\left({ }^{1} P_{1}\right)+H_{1}+2 \operatorname{Im} f_{8}\left({ }^{1} S_{0}\right)+O\left(v^{2} \Gamma\right)$
Two input parameters: $\chi_{\mathrm{cl}}, X_{\mathrm{c} 2} \rightarrow$ LH
two unknown ones:

$\mathrm{H}_{1}, \mathrm{H}_{8}$
 process dependent

operator evolution
equation

NLO LH decay width in NRQCD

NLO LH decay width in NRQCD

shaded region: method I single curve: method II

NLO LH decay width in NRQCD

At renormalization scale
$\mu=2 m$
shaded region: method I single curve: method II

NLO LH decay width in NRQCD

At renormalization scale $\mu=2 m$
$0.597 \pm 0.032 \mathrm{MeV}$ by Method I
-
0.895 MeV by Method II
shaded region: method I single curve: method II

El transition width

El transition width

spin-symmetry

E1 transition width

spin-symmetry

$$
\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)
$$

El transition width

spin-symmetry

$\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)$
(Maltoni, arXiv: hep-ph/0007003)

El transition width

spin-symmetry

$\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)$

plug into PDEI 0

(Maltoni, arXiv: hep-ph/0007003)

El transition width

spin-symmetry

$\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)$
(Maltoni, arXiv: hep-ph/0007003)

plug into PDEI 0

average among $X_{c s}$

El transition width

spin-symmetry

$\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)$
(Maltoni, arXiv: hep-ph/0007003)
plug into PDGI 0
average among $X_{c s}$

El transition width

spin-symmetry

$\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)$
(Maltoni, arXiv: hep-ph/0007003)
plug into PDEI 0
average among $X_{C J}$

El transition width

spin-symmetry

$\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)$
(Maltoni, arXiv: hep-ph/0007003)

plug into PDEI 0

average among $X_{C J}$

0.600 MeV

(Chao et.al., PLB301, 282)

El transition width

spin-symmetry
$\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)$
(Maltoni, arXiv: hep-ph/0007003)
plug into PDE1 0
average among Xos

0.600 MeV

(Chao et.al., PLB301, 282)

El transition width

spin-symmetry
$\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)$
(Maltoni, arXiv: hep-ph/0007003)
plug into PDG1 0
average among $X_{\text {os }}$

0.600 MeV

Leading order: 0.646 MeV
relativistic correction
(Chao et.al., PLB301, 282)

El transition width

spin-symmetry
$\Gamma\left({ }^{1} P_{1} \rightarrow \gamma^{1} S_{0}\right)=\left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma\left({ }^{3} P_{J} \rightarrow \gamma^{3} S_{1}\right)$
(Maltoni, arXiv: hep-ph/0007003)
relativistic correction
(Chao et.al., PLB301, 282)
plug into PDG1 0
average among Xos
0.600 MeV
next-to-leading order: 0.383 MeV

Total width of h_{c} in NRQCD

Total width of h_{c} in NRQCD

$$
\Gamma_{\mathrm{TOT}}=\Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right)
$$

Total width of h_{c} in NRQCD

$$
\Gamma_{\mathrm{TOT}}=\Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right)
$$

$$
=0.597+
$$

Total width of h_{c} in NRQCD

$$
\begin{aligned}
& \Gamma_{\text {тот }}= \Gamma\left(h_{c} \rightarrow \mathrm{LH}\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
&=0.597+0.600 \\
& 0.646
\end{aligned}
$$

Total width of h_{c} in NRQCD

$$
\begin{aligned}
& \Gamma_{\mathrm{TOT}}= \Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
&=0.597+0.600 \\
& 0.646 \mathrm{MeV} \\
& 0.383
\end{aligned}
$$

Total width of h_{c} in NRQCD

$$
\begin{aligned}
& \Gamma_{\text {тот }}=\Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
&=0.597+\begin{array}{l}
0.600 \\
\\
\end{array} \\
& 0.386 \mathrm{MeV} \\
&=
\end{aligned}
$$

Total width of h_{c} in NRQCD

$$
\begin{aligned}
\Gamma_{\text {тот }}= & \Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
& =0.600 \\
& 0.597+\begin{array}{l}
0.646 \mathrm{MeV} \\
0.383
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
1.20 \\
=1.24 \\
0.980
\end{array}
$$

Total width of h_{c} in NRQCD

$$
\begin{aligned}
& \Gamma_{\text {тот }}= \Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
& 0.600 \\
&=0.597+\begin{array}{l}
0.646 \mathrm{MeV} \\
0.383
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1.20 \\
& = \\
& 1.24 \\
& 0.980
\end{aligned} \mathrm{MeV}
$$

Total width of h_{c} in NRQCD

$$
\begin{aligned}
\Gamma_{\text {TOT }} & =\Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
& 0.600 \\
& =0.597+\begin{array}{l}
0.646 \mathrm{MeV} \\
0.383
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1.20 \\
& = \\
& 1.24 \\
& 0.980
\end{aligned} \mathrm{MeV}
$$

0.597 MeV

Total width of h_{c} in NRQCD

$$
\begin{aligned}
& \Gamma_{\text {тот }}= \Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
&=0.600 \\
&=0.597+\begin{array}{l}
0.646 \mathrm{MeV} \\
0.383
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1.20 \\
& =1.24 \\
& 0.980
\end{aligned}
$$

0.597 MeV

$$
\mathcal{B}\left(h_{c} \rightarrow \gamma \eta_{c}\right)=(54.3 \pm 6.7 \pm 5.2) \%
$$

Total width of h_{c} in NRQCD

$$
\begin{aligned}
& \Gamma_{\text {тот }}= \Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
& 0.600 \\
&=0.597+\begin{array}{l}
0.646 \mathrm{MeV} \\
0.383
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1.20 \\
& =1.24 \\
& 0.980
\end{aligned}
$$

0.597 MeV

$$
\mathcal{B}\left(h_{c} \rightarrow \gamma \eta_{c}\right)=(54.3 \pm 6.7 \pm 5.2) \%
$$

BESIII Collaboration,PRL104, 132002

Total width of h_{c} in NRQCD

$$
\begin{aligned}
& \Gamma_{\text {тот }}= \Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
&=0.600 \\
&=0.597+\begin{array}{l}
0.646 \mathrm{MeV} \\
0.383
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1.20 \\
& =1.24 \\
& 0.980
\end{aligned} \mathrm{MeV}
$$

$$
0.597 \mathrm{MeV} \quad \begin{aligned}
& \mathcal{B}\left(h_{c} \rightarrow \gamma \eta_{c}\right)=(54.3 \pm 6.7 \pm 5.2) \% \\
& \text { BESIII Collaboration,PRL104, } 132002
\end{aligned}
$$

Total width of h_{c} in NRQCD

$$
\begin{aligned}
& \Gamma_{\text {TOT }}= \Gamma\left(h_{c} \rightarrow \mathrm{~L} H\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
&=0.600 \\
&=0.597+\begin{array}{l}
0.646 \mathrm{MeV} \\
0.383
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1.20 \\
& =1.24 \\
& 0.980
\end{aligned}
$$

$$
0.597 \mathrm{MeV} \underset{\text { BESIII Collaboration,PRLL04, } 132002}{\mathcal{B}\left(h_{c} \rightarrow \gamma \eta_{c}\right)=(54.3 \pm 6.7 \pm 5.2) \%} \quad 1.31 \mathrm{MeV}
$$

Total width of h_{c} in NRQCD

$$
\begin{aligned}
& 1.20 \\
& =1.24 \\
& 0.980
\end{aligned}
$$

$$
0.597 \mathrm{MeV} \underset{\text { BESIII Collaboration,PRL104, } 132002}{\mathcal{B}\left(h_{c} \rightarrow \gamma \eta_{c}\right)=(54.3 \pm 6.7 \pm 5.2)_{c}}>1.31 \mathrm{MeV}
$$

larger than BESIII central value 0.73 MeV

$$
\begin{aligned}
& \Gamma_{\text {тот }}=\Gamma\left(h_{c} \rightarrow \mathrm{LH}\right)+\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right) \\
& 0.600 \\
& =0.597+\begin{array}{l}
0.646 \mathrm{MeV} \\
0.383
\end{array}
\end{aligned}
$$

Total width of h_{c} in NRQCD

0.895 MeV by Method II, error 30% compared to 0.597 MeV by Method I

Evolution equation is a good method to evaluate P -wave longdistance matrix element, and can be extended to D-wave LH decay, non- $D \bar{D}$ decay which are lack of data.

Error Estimate

Error Estimate

* For method I, experimental data errors;
* For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

Error Estimate

* For method I, experimental data errors:
* For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

$$
H_{1}=\frac{3 N_{c}}{2 \pi} \frac{\left|R_{1 p}(0)\right|^{2}}{m^{4}}
$$

Error Estimate

* For method I, experimental data errors;
 * For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

TABLE I. Radial wave functions at the origin and related quantities for $c \bar{c}$ mesons.

Error Estimate

* For method I, experimental data errors;
 * For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

Eichten et.al., PRD52, 1726
TABLE I. Radial wave functions at the origin and related quantities for $c \bar{c}$ mesons.

$$
H_{1}=\frac{3 N_{c}}{2 \pi} \frac{\left|R_{1 p}(0)\right|^{2}}{m^{4}}
$$

Level	$\left\|R_{n \ell}^{(\ell)}(0)\right\|^{2}$		Logarithmic [7]	Cornell [8]
	QCD (BT).[5]	Power law [6]	$0.815 \mathrm{GeV}^{3}$	$1.454 \mathrm{GeV}^{3}$
$1 S$	$0.810 \mathrm{GeV}^{3}$	$0.999 \mathrm{GeV}^{3}$	$0.078 \mathrm{GeV}^{5}$	$0.131 \mathrm{GeV}^{5}$
$2 P$	$0.075 \mathrm{GeV}^{5}$	$0.125 \mathrm{GeV}^{5}$	$0.078 \mathrm{GeV}^{3}$	$0.418 \mathrm{GeV}^{3}$
$2 S$	$0.529 \mathrm{GeV}^{3}$	$0.559 \mathrm{GeV}^{3}$	$0.927 \mathrm{GeV}^{3}$	
$3 D$	$0.015 \mathrm{GeV}^{7}$	$0.026 \mathrm{GeV}^{7}$	$0.012 \mathrm{GeV}^{7}$	$0.031 \mathrm{GeV}^{7}$
$3 P$	$0.102 \mathrm{GeV}^{5}$	$0.131 \mathrm{GeV}^{5}$	$0.076 \mathrm{GeV}^{5}$	$0.186 \mathrm{GeV}^{5}$
$3 S$	$0.455 \mathrm{GeV}^{3}$	$0.410 \mathrm{GeV}^{3}$	$0.286 \mathrm{GeV}^{3}$	$0.791 \mathrm{GeV}^{3}$

Error Estimate

* For method I, experimental data errors;
 * For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

Eichten et.al., PRD52, 1726
TABLE I. Radial wave functions at the origin and related quantities for $c \bar{c}$ mesons.

$$
H_{1}=\frac{3 N_{c}}{2 \pi} \frac{\left|R_{1 p}(0)\right|^{2}}{m^{4}}
$$

Level	$\left\|R_{n \ell}^{(\ell)}(0)\right\|^{2}$			
	QCD (BT).[5]	Power law [6]	Logarithmic [7]	Cornell [8]
$1 S$	$0.810 \mathrm{GeV}^{3}$	$0.999 \mathrm{GeV}^{3}$	$0.815 \mathrm{GeV}^{3}$	$1.454 \mathrm{GeV}^{3}$
$2 P$	$0.075 \mathrm{GeV}^{5}$	$0.125 \mathrm{GeV}^{5}$	$0.078 \mathrm{GeV}^{5}$	$\left.0.131 \mathrm{GeV}^{5}\right)$
$2 S$	$0.529 \mathrm{GeV}^{3}$	$0.559 \mathrm{GeV}^{3}$	$0.418 \mathrm{GeV}^{3}$	$0.927 \mathrm{GeV}^{3}$
$3 D$	$0.015 \mathrm{GeV}^{7}$	$0.026 \mathrm{GeV}^{7}$	$0.012 \mathrm{GeV}^{7}$	$0.031 \mathrm{GeV}^{7}$
$3 P$	$0.102 \mathrm{GeV}^{5}$	$0.131 \mathrm{GeV}^{5}$	$0.076 \mathrm{GeV}^{5}$	$0.186 \mathrm{GeV}^{5}$
$3 S$	$0.455 \mathrm{GeV}^{3}$	$0.410 \mathrm{GeV}^{3}$	$0.286 \mathrm{GeV}^{3}$	$0.791 \mathrm{GeV}^{3}$

Error Estimate

* For method I, experimental data errors;
 * For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

Eichten et.al., PRD52, 1726
TABLE I. Radial wave functions at the origin and related quantities for $c \bar{c}$ mesons.

> error~40\%

Error Estimate

Error Estimate

$$
H_{8}=\frac{4 C_{F}}{3 N_{c} \beta_{0}} \ln \left[\frac{\alpha_{s}\left(\Lambda_{0}\right)}{\alpha_{s}(\Lambda)}\right] H_{1}
$$

Error Estimate

$\Lambda_{0}=m v=0.822 \mathrm{GeV}, \Lambda=2 m=3 \mathrm{GeV}$

$$
H_{8}=\frac{4 C_{F}}{3 N_{c} \beta_{0}} \ln \left[\frac{\alpha_{s}\left(\Lambda_{0}\right)}{\alpha_{s}(\Lambda)}\right] H_{1}
$$

Error Estimate

$\Lambda_{0}=m v=0.822 \mathrm{GeV}, \Lambda=2 m=3 \mathrm{GeV}$

$$
H_{8}=\frac{4 C_{F}}{3 N_{c} \beta_{0}} \ln \left[\frac{\alpha_{s}\left(\Lambda_{0}\right)}{\alpha_{s}(\Lambda)}\right] H_{1}
$$

$\Lambda_{0}=1 \mathrm{GeV}$

Error Estimate

$\Lambda_{0}=m v=0.822 \mathrm{GeV}, \Lambda=2 m=3 \mathrm{GeV}$

$$
H_{8}=\frac{4 C_{F}}{3 N_{c} \beta_{0}} \ln \left[\frac{\alpha_{s}\left(\Lambda_{0}\right)}{\alpha_{s}(\Lambda)}\right] H_{1}
$$

$\Lambda_{0}=$ GeV (Brambilla et.al., PRL88:012003,2002)

Error Estimate

$\Lambda_{0}=m v=0.822 \mathrm{GeV}, \Lambda=2 m=3 \mathrm{GeV}$

$$
H_{8}=\frac{4 C_{F}}{3 N_{c} \beta_{0}} \ln \left[\frac{\alpha_{s}\left(\Lambda_{0}\right)}{\alpha_{s}(\Lambda)}\right] H_{1}
$$

$\Lambda_{0}=1 G e V$
(Brambilla et.al., PRL88:012003,2002)

error~40\%

$x_{c o}$ LH decay width in NRQCD

$x_{\text {co }}$ LH decay width in NRQCD

$x_{\text {co }}$ LH decay width in NRQCD

* $7.76+0.67 \mathrm{MeV}$ by Method I
* 13.1 MeV by Method II

$X_{\mathrm{cl} 1}, X_{\mathrm{c} 2}$ LH decay width in NRQCD

$X_{\mathrm{cl} 1}, X_{\mathrm{c} 2}$ LH decay width in NRQCD

$X_{\text {cl }}, X_{\text {c2 }}$ LH decay width in NRQCD

$X_{\text {cl }}, X_{\text {c2 }}$ LH decay width in NRQCD

filled belts :PDG 10 data; curves: NRQCD predictions using Method II

$X_{\text {cl }}, X_{\text {c2 }}$ LH decay width in NRQCD

filled belts :PDG 10 data; curves: NRQCD predictions using Method II

At perturbative energy
scale $\mu=2 \mathrm{~m}$

$X_{\mathrm{cl}}, X_{\mathrm{c} 2}$ LH decay width in NRQCD

filled belts :PDG 10 data; curves: NRQCD predictions using Method II

At perturbative energy
scale $\mu=2 \mathrm{~m}$

$$
\begin{array}{ll}
\Gamma\left(\chi_{c 1} \rightarrow L H\right)=0.834 & \mathrm{MeV} \\
\Gamma\left(\chi_{c 2} \rightarrow L H\right) & =2.57 \\
\mathrm{MeV}
\end{array}
$$

$X_{\text {cl }}, X_{\text {c2 }}$ LH decay width in NRQCD

filled belts: PDG 10 dała;
curves: NRQCD predictions using Method II
At perturbative energy
scale $\mu=2 \mathrm{~m}$

$$
\begin{array}{ll}
\Gamma\left(\chi_{c 1} \rightarrow L H\right)=0.834 & \mathrm{MeV} \\
\Gamma\left(\chi_{c 2} \rightarrow L H\right)=2.57 & \mathrm{MeV}
\end{array}
$$

could be compared with experimental values by BESIII

Summary

* We estimate h_{c} light hadronic decay width up to NLO in a_{s} in NRQCD, and together with E1 transition width, the total width of h_{c} is larger than the central value of BESIII.
* Operator evolution equation is a good method to evaluate P-wave long-distance matrix element. and can be extended to D-wave case, which is lack of data.
* NLO NRQCD predictions for $X_{\text {cJ }}(J=0,1,2)$ are also given, which could be compared with BESIII results.

Thank you!

