Estimate of the hc decay width in NRQCD

Ying Fan Peking University

In collaboration with Kuang-Ta Chao

August 27th, 2010 Topical Seminar on Fronter of Particle Phyusics 2010: Charm and Charmonium Physics

* Introduction

- * Determination of h_c light hadronic and total decay width in NRQCD
- * P-wave spin-triplet χ_{cJ} (J=0,1,2) light hadronic decay widths revisited
- * Summary

Introduction

See talk by BESIII Collaboration at QWG7, Fermilab, 2010 for this figure

Introduction

	BESIII	NRQCD	Comparison
rchc	0.73±0.45±0.28 MeV	1.1 MeV (0.53MeV LH)	consistent @ LO
	<1.44 MeV (90% confidence level)	Bodwin et.al.,PRD46,R1914 Kuang,PRD65, 094024	
	BESIII Collaboration,PRL104, 132002	NLO LH exists	
	Talk by BESIII Collaboration at QWG7, Fermilab, 2010	Huang et.al.,PRD54, 3065 Petrelli et.al., NPB 514, 245 Maltoni, arXiv: hep-ph/ 0007003	NLO more persuasive

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

short-distance coefficients

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

short-distance coefficients

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

long-distance matrix elements

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

long-distance matrix elements

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

physical state

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

physical state

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

physical state

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

 $|{}^{1}P_{1}\rangle = \mathcal{O}(1)|Q\bar{Q}({}^{1}P_{1}^{[1]})\rangle + \mathcal{O}(v)|Q\bar{Q}({}^{1}S_{0}^{[8]})g\rangle + \cdots$

physical state

 $\Gamma(h_c \to LH) = \sum \frac{2Im f_n(\mu)}{m^{d_n - 4}} \langle h_c | \mathcal{O}_n(\mu) | h_c \rangle$

 $|{}^{1}P_{1}\rangle = \mathcal{O}(1)|Q\bar{Q}({}^{1}P_{1}^{[1]})\rangle + \mathcal{O}(v)|Q\bar{Q}({}^{1}S_{0}^{[8]})g\rangle + \cdots$

physical state

physical state

physical state

 $2\operatorname{Im}_{k}^{R_{2}} = \sum_{f} \int d\Pi_{f} \left(\sum_{k_{1}}^{k_{2}} f \right) \left(f = \sum_{k_{1}}^{k_{2}} k_{2} \right)$

 $2\operatorname{Im}_{k}^{R_{2}} = \sum_{f} \int d\Pi_{f} \left(\sum_{k_{1}}^{k_{2}} f \right) \left(f = \sum_{k_{1}}^{k_{2}} k_{2} \right)$

adopt optical theorem

 $2\operatorname{Im}_{k}^{R_{2}} = \sum_{f} \int d\Pi_{f} \left(\sum_{k_{1}}^{k_{2}} f \right) \left(f = \sum_{k_{1}}^{k_{2}} k_{2} \right)$

adopt optical theorem

f: all possible intermediate particles, gluons, light quarks.

$$2 \operatorname{Im} \sum_{k_1}^{k_2} = \sum_f \int d\Pi_f \left(\sum_{k_1}^{k_2} f \right) \left(f \xrightarrow{k_2} k_1 \right)$$

adopt optical theorem

f: all possible intermediate particles, gluons, light quarks.

$$\mathcal{A}(Q\bar{Q} \to Q\bar{Q})|_{pertQCD} = \sum_{n} \frac{f_n(\mu)}{m^{d_n-4}} \langle Q\bar{Q}|\mathcal{O}_n(\mu)|Q\bar{Q}\rangle|_{pertNRQCD}$$

$$2 \operatorname{Im} \sum_{k_1}^{k_2} = \sum_f \int d\Pi_f \left(\sum_{k_1}^{k_2} f \right) \left(f \xrightarrow{k_2} k_1 \right)$$

adopt optical theorem

f: all possible intermediate particles, gluons, light quarks.

$$\mathcal{A}(Q\bar{Q} \to Q\bar{Q})|_{pertQCD} = \sum_{n} \frac{f_n(\mu)}{m^{d_n-4}} \langle Q\bar{Q}|\mathcal{O}_n(\mu)|Q\bar{Q}\rangle|_{pertNRQCD}$$

matching condition: connecting full theory and effective theory

The hc light hadronic decay

The hc light hadronic decay

Representative example: divergence cancelled by introducing color-octet mechanism

Imfilligic full account of the second second

$$[\mathrm{Im}f_{8}({}^{1}S_{0})]_{0} = \frac{\pi(N_{c}^{2}-4)}{4N_{c}}\alpha_{s}^{2}$$

 $\frac{\left[\mathrm{Im}f_{8}({}^{1}S_{0})\right]_{0}}{m^{2}}\frac{4C_{F}\alpha_{s}}{3N_{c}\pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{IR}}-\gamma_{E}+\ln\frac{4\pi\mu_{IR}^{2}}{4m^{2}}\right)+\frac{7\pi^{2}-112}{48}\right]$

Imfillpi: full QCD Huang et.al., PRD54, 3065 (1996)

 $\frac{\left[\mathrm{Im}f_{8}({}^{1}S_{0})\right]_{0}}{m^{2}}\frac{4C_{F}\alpha_{s}}{3N_{c}\pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{IR}}-\gamma_{E}+\ln\frac{4\pi\mu_{IR}^{2}}{4m^{2}}\right)+\frac{7\pi^{2}-112}{48}\right]$

Imfillpi: full QCD Huang et.al., PRD54, 3065 (1996)

No born diagrams for color-singlet ¹P₁ component: Yang theorem

 $\frac{\left[\mathrm{Im}f_{8}({}^{1}S_{0})\right]_{0}}{m^{2}}\frac{4C_{F}\alpha_{s}}{3N_{c}\pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{IR}}-\gamma_{E}+\ln\frac{4\pi\mu_{IR}^{2}}{4m^{2}}\right)+\frac{7\pi^{2}-112}{48}\right]$

Huang et.al., PRD54, 3065 (1996)

No born diagrams for color-singlet ¹P₁ component: Yang theorem

 $\frac{\left[\mathrm{Im}f_{8}({}^{1}S_{0})\right]_{0}}{m^{2}}\frac{4C_{F}\alpha_{s}}{3N_{c}\pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{IR}}-\gamma_{E}+\ln\frac{4\pi\mu_{IR}^{2}}{4m^{2}}\right)+\frac{7\pi^{2}-112}{48}\right]$

Huang et.al., PRD54, 3065 (1996)

No born diagrams for color-singlet ¹P₁ component: Yang theorem

Full QCD result: $\frac{[\text{Im}f_8({}^1S_0)]_0}{m^2} \frac{4C_F \alpha_s}{3N_c \pi} \left[-\frac{1}{2} \left(\frac{1}{\epsilon_{IR}} - \gamma_E + \ln \frac{4\pi \mu_{IR}^2}{4m^2} \right) + \frac{7\pi^2 - 112}{48} \right]$

Huang et.al., PRD54, 3065 (1996)

No born diagrams for color-singlet ¹P₁ component: Yang theorem

Full QCP result: $\frac{[\text{Im}f_8({}^{1}S_0)]_0}{m^2} \frac{4C_F \alpha_s}{3N_c \pi} \left[-\frac{1}{2} \left(\frac{1}{\epsilon_{IR}} - \gamma_E + \ln \frac{4\pi \mu_{IR}^2}{4m^2} \right) + \frac{7\pi^2 - 112}{48} \right]$

Huang et.al., PRD54, 3065 (1996)

No born diagrams for color-singlet ¹P₁ component: Yang theorem

$Imf_{1}(P_{1}):f_{0}(1006)$

Huang et.al., PRD54, 3065 (1996)

No born diagrams for color-singlet ¹P₁ component: Yang theorem

Imf₁(¹P₁): NRQCD

$\mathcal{O}_1({}^1P_1)$ tree level matrix

$$\frac{\mathrm{Im}f_{1}(^{1}P_{1})}{m^{2}} + \frac{[\mathrm{Im}f_{8}(^{1}S_{0})]_{0}}{m^{2}}\frac{4C_{F}\alpha_{s}}{3N_{c}\pi} \left[-\frac{1}{2} \left(\frac{1}{\epsilon_{\mathrm{IR}}} - \gamma_{E} + \ln\frac{4\pi\mu_{\mathrm{IR}}^{2}}{4m^{2}} \right) + \ln\frac{\mu_{\mathrm{UV}}}{2m} \right]$$

Imf₁(¹P₁): NRQCD

$\mathcal{O}_1({}^1P_1)$ tree level matrix

real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

$$\frac{\mathrm{Im}f_{1}({}^{1}P_{1})}{m^{2}} + \frac{[\mathrm{Im}f_{8}({}^{1}S_{0})]_{0}}{m^{2}}\frac{4C_{F}\alpha_{s}}{3N_{c}\pi} \left[-\frac{1}{2} \left(\frac{1}{\epsilon_{\mathrm{IR}}} - \gamma_{E} + \ln\frac{4\pi\mu_{\mathrm{IR}}^{2}}{4m^{2}} \right) + \ln\frac{\mu_{\mathrm{UV}}}{2m} \right]$$

Imf₁(¹P₁): NRQCD

$\mathcal{O}_1({}^1P_1)$ tree level matrix

real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

$$\frac{\mathrm{Im}f_{1}({}^{1}P_{1})}{m^{2}} + \frac{[\mathrm{Im}f_{8}({}^{1}S_{0})]_{0}}{m^{2}}\frac{4C_{F}\alpha_{s}}{3N_{c}\pi} \left[-\frac{1}{2} \left(\frac{1}{\epsilon_{\mathrm{IR}}} - \gamma_{E} + \ln\frac{4\pi\mu_{\mathrm{IR}}^{2}}{4m^{2}} \right) + \ln\frac{\mu_{\mathrm{UV}}}{2m} \right]$$

Imf1(¹P1): NRQCD

 $\mathcal{O}_1({}^1P_1)$ tree level matrix

real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

$$\frac{\mathrm{Im}f_{1}({}^{1}P_{1})}{m^{2}} + \frac{[\mathrm{Im}f_{8}({}^{1}S_{0})]_{0}}{m^{2}}\frac{4C_{F}\alpha_{s}}{3N_{c}\pi} \left[-\frac{1}{2} \left(\frac{1}{\epsilon_{\mathrm{IR}}} - \gamma_{E} + \ln\frac{4\pi\mu_{\mathrm{IR}}^{2}}{4m^{2}} \right) + \ln\frac{\mu_{\mathrm{UV}}}{2m} \right]$$

Imf₁(¹P₁): NRQCD

 $\mathcal{O}_1({}^1P_1)$ tree level matrix

real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

NRQCP result:
$$\frac{\text{Im}f_{1}({}^{1}P_{1})}{m^{2}} + \frac{[\text{Im}f_{8}({}^{1}S_{0})]_{0}}{m^{2}}\frac{4C_{F}\alpha_{s}}{3N_{c}\pi}\left[-\frac{1}{2}\left(\frac{1}{\epsilon_{\text{IR}}} - \gamma_{E} + \ln\frac{4\pi\mu_{\text{IR}}^{2}}{4m^{2}}\right) + \ln\frac{\mu_{\text{UV}}}{2m}\right]$$

Imf1(¹P1): NRQCD

 $\mathcal{O}_1({}^1P_1)$ tree level matrix

real corrections: gluon line connecting with incoming and outgoing quark or antiquark lines

expression 2

finite Imf1(1P1):

 $\operatorname{Im} f_{1}({}^{1}P_{1}) = \frac{(N_{c}^{2} - 4)C_{F}\alpha_{s}^{3}}{3N_{c}^{2}} \left(\frac{7\pi^{2} - 112}{48} - \ln\frac{\mu}{2m}\right)$

finite Imf1(1P1):

matching expression 1 and expression 2

$$\operatorname{Im} f_{1}({}^{1}P_{1}) = \frac{(N_{c}^{2} - 4)C_{F}\alpha_{s}^{3}}{3N_{c}^{2}} \left(\frac{7\pi^{2} - 112}{48} - \ln\frac{\mu}{2m}\right)$$

finite Imf1(1P1):

matching expression 1 and expression 2

$$\operatorname{Im} f_{1}({}^{1}P_{1}) = \frac{(N_{c}^{2} - 4)C_{F}\alpha_{s}^{3}}{3N_{c}^{2}} \left(\frac{7\pi^{2} - 112}{48} - \ln\frac{\mu}{2m}\right)$$

residual divergence cancelled by introducing coloroctet mechanism,finite NLO short-distance coefficient of color-singlet ¹P₁ component

$$\frac{\pi (N_c^2 - 4)}{4N_c m^2} \alpha_s^2 \bigg\{ 1 + \frac{\alpha_s}{\pi} \bigg[\bigg(C_F - \frac{C_A}{2} \bigg) \frac{\pi^2}{2v} \bigg]$$

$$+4b_0\ln\frac{\mu}{2m}+A$$

$$A = C_F \left(\frac{\pi^2}{4} - 5\right) + C_A \left(\frac{122}{9} - \frac{17\pi^2}{24}\right) - \frac{8}{9}n_f$$

Real & virtual corrections

$$\frac{\pi (N_c^2 - 4)}{4N_c m^2} \alpha_s^2 \bigg\{ 1 + \frac{\alpha_s}{\pi} \bigg[\bigg(C_F - \frac{C_A}{2} \bigg) \frac{\pi^2}{2v} \bigg]$$

$$+4b_0\ln\frac{\mu}{2m}+A$$

$$A = C_F \left(\frac{\pi^2}{4} - 5\right) + C_A \left(\frac{122}{9} - \frac{17\pi^2}{24}\right) - \frac{8}{9}n_f$$

Imfs(¹So): NRQCD

Imfs(1So): NRQCD

Imfs(1So): NRQCD LO matrix (a) NLO matrix (b) (c)

$$\frac{\mathrm{Im}f_8({}^1S_0)}{m^2} \left[1 + \frac{\alpha_s}{\pi} \left(C_F - \frac{C_A}{2} \right) \frac{\pi^2}{2v} \right]$$

$$\frac{\mathrm{Im}f_8({}^1S_0)}{m^2} \left[1 + \frac{\alpha_s}{\pi} \left(C_F - \frac{C_A}{2} \right) \frac{\pi^2}{2v} \right]$$

$$\frac{\mathrm{Im}f_8({}^1S_0)}{m^2} \left[1 + \frac{\alpha_s}{\pi} \left(C_F - \frac{C_A}{2} \right) \frac{\pi^2}{2v} \right]$$

finite Imfs(1S0):

matching expression 3 and expression 4

finite Imfs(1S0):

matching expression 3 and expression 4

$$\operatorname{Im} f_{8}({}^{1}S_{0}) = \frac{(N_{c}^{2} - 4)\pi\alpha_{s}^{2}}{4N_{c}} \left[1 + \frac{\alpha_{s}}{\pi} \left(4b_{0}ln\frac{\mu}{2m} + A\right)\right]$$

finite Imfs(1So):

matching expression 3 and expression 4

 $\operatorname{Im} f_{8}({}^{1}S_{0}) = \frac{(N_{c}^{2} - 4)\pi\alpha_{s}^{2}}{4N_{c}} \left[1 + \frac{\alpha_{s}}{\pi} \left(4b_{0}ln\frac{\mu}{2m} + A \right) \right]$

Coulomb singularity cancelled, finite NLO short-distance coefficient of color-octet ¹So component

finite LH decay width of hc

$$\Gamma(h_c \to LH) = 2 \operatorname{Im} f_1({}^1P_1^{[1]})H_1 + 2 \operatorname{Im} f_8({}^1S_0^{[8]})H_8$$

-

$$\frac{2(N_c^2-4)C_F\alpha_s^3}{3N_c^2} \left(\frac{7\,\pi^2-112}{48} - \ln\frac{\mu}{2m}\right)H_1$$

$$+\frac{(N_c^2-4)\pi\alpha_s^2(\mu)}{2N_c}\left[1+\frac{\alpha_s}{\pi}\left(4b_0\ln\frac{\mu}{2m}+A\right)\right]H_8(\mu)$$

experimental extraction

operator evolution equation

Method I

operator evolution equation

Method I

Method II

Method I

experimental extraction

Method II

operator evolution equation

 $\Gamma(\chi_J \to LH) = 2 \,\mathrm{Im} f_1({}^3P_J) H_1 + 2 \,\mathrm{Im} f_8({}^3S_1) H_8 + O(v^2 \Gamma)$

Method I

Method II

operator evolution equation

 $\Gamma(\chi_J \to LH) = 2 \operatorname{Im} f_1({}^3P_J)H_1 + 2 \operatorname{Im} f_8({}^3S_1)H_8 + O(v^2\Gamma)$ $\Gamma(h \to LH) = 2 \operatorname{Im} f_1({}^1P_1)H_1 + 2 \operatorname{Im} f_8({}^1S_0)H_8 + O(v^2\Gamma)$
Method I

Method II

operator evolution equation

 $\Gamma(\chi_J \to LH) = 2 \operatorname{Im} f_1({}^3P_J)H_1 + 2 \operatorname{Im} f_8({}^3S_1)H_8 + O(v^2\Gamma)$ $\Gamma(h \to LH) = 2 \operatorname{Im} f_1({}^1P_1)H_1 + 2 \operatorname{Im} f_8({}^1S_0)H_8 + O(v^2\Gamma)$

Method I

Method II

operator evolution equation

 $\Gamma(\chi_J \to LH) = 2 \operatorname{Im} f_1({}^3P_J)H_1 + 2 \operatorname{Im} f_8({}^3S_1)H_8 + O(v^2\Gamma)$ $\Gamma(h \to LH) = 2 \operatorname{Im} f_1({}^1P_1)H_1 + 2 \operatorname{Im} f_8({}^1S_0)H_8 + O(v^2\Gamma)$

Method I

operator evolution equation

Method II

 $\Gamma(\chi_J \to LH) = 2 \operatorname{Im} f_1({}^3P_J)H_1 + 2 \operatorname{Im} f_8({}^3S_1)H_8 + O(v^2\Gamma)$ $\Gamma(h \to LH) = 2 \operatorname{Im} f_1({}^1P_1)H_1 + 2 \operatorname{Im} f_8({}^1S_0)H_8 + O(v^2\Gamma)$

> Two input parameters: $\chi_{c1}, \chi_{c2} \rightarrow LH$ two unknown ones: H_{1}, H_{8} process dependent

Method I

experimental extraction

 $\Gamma(\chi_J \to LH) = 2 \operatorname{Im} f_1({}^3P_J)H_1 + 2 \operatorname{Im} f_8({}^3S_1)H_8 + O(v^2\Gamma)$ $\Gamma(h \to LH) = 2 \operatorname{Im} f_1({}^1P_1)H_1 + 2 \operatorname{Im} f_8({}^1S_0)H_8 + O(v^2\Gamma)$

> Two input parameters: $\chi_{c1}, \chi_{c2} \rightarrow LH$ two unknown ones: H_{1}, H_{8} process dependent

Method II

operator evolution equation

 $\mu \frac{\partial \mathcal{O}_8({}^1S_0)}{\partial \mu} = \alpha_s(\mu) \frac{4C_F}{3\pi N_c m^2} \mathcal{O}_1({}^1P_1)$

Method I

experimental extraction

 $\Gamma(\chi_J \to LH) = 2 \operatorname{Im} f_1({}^3P_J)H_1 + 2 \operatorname{Im} f_8({}^3S_1)H_8 + O(v^2\Gamma)$ $\Gamma(h \to LH) = 2 \operatorname{Im} f_1({}^1P_1)H_1 + 2 \operatorname{Im} f_8({}^1S_0)H_8 + O(v^2\Gamma)$

> Two input parameters: $\chi_{c1}, \chi_{c2} \rightarrow LH$ two unknown ones: H_{1}, H_{8} process dependent

Method II

operator evolution equation

 $\mu \frac{\partial \mathcal{O}_8({}^1S_0)}{\partial \mu} = \alpha_s(\mu) \frac{4C_F}{3\pi N_c m^2} \mathcal{O}_1({}^1P_1)$

based on operator mixing evolution by renormalization scale µ

shaded region: method l single curve: method ll

spin-symmetry

spin-symmetry

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

spin-symmetry

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

spin-symmetry

plug into PDG10

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

spin-symmetry

plug into PDG10

average among XcJ

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

spin-symmetry

plug into PDG10

average among XcJ

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

spin-symmetry

plug into PDG10

average among XcJ

0.600 MeV

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

spin-symmetry

plug into PDG10

average among XcJ

0.600 MeV

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

(Maltoni, arXiv: hep-ph/0007003)

(Chao et.al., PLB301, 282)

spin-symmetry

average among XcJ

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

(Maltoni, arXiv: hep-ph/0007003)

Leading order: 0.646 MeV

0.600 MeV

(Chao et.al., PLB301, 282)

spin-symmetry

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

(Maltoni, arXiv: hep-ph/0007003)

plug into PDG10

average among XcJ

Leading order: 0.646 MeV

0.600 MeV

relativistic correction

(Chao et.al., PLB301, 282)

plug into PDG10

average among XcJ

spin-symmetry

$$\Gamma({}^{1}P_{1} \to \gamma {}^{1}S_{0}) = \left(\frac{E_{\gamma}^{h}}{E_{\gamma}^{\chi}}\right)^{3} \Gamma({}^{3}P_{J} \to \gamma {}^{3}S_{1})$$

(Maltoni, arXiv: hep-ph/0007003)

Leading order: 0.646 MeV

0.600 MeV

relativistic correction

(Chao et.al., PLB301, 282) next-to-leading order: 0.383 MeV

 $\Gamma_{\rm TOT} = \Gamma(h_c \to LH) + \Gamma(h_c \to \gamma \eta_c)$

 $\Gamma_{\rm TOT} = \Gamma(h_c \to LH) + \Gamma(h_c \to \gamma \eta_c)$

= 0.597 +

 $\Gamma_{\rm TOT} = \Gamma(h_c \to LH) + \Gamma(h_c \to \gamma \eta_c)$ 0.600 = 0.597 + 0.646 0.383

Total width of h_c in NRQCD

$$\begin{split} \Gamma_{\rm TOT} &= \Gamma(h_c \to {\rm L}H) + \Gamma(h_c \to \gamma \eta_c) \\ & 0.600 \\ &= 0.597 + 0.646 & {\rm MeV} \\ & 0.383 \end{split}$$

$$\begin{split} \Gamma_{\rm TOT} &= \Gamma(h_c \to {\rm L}H) + \Gamma(h_c \to \gamma \eta_c) \\ & 0.600 \\ &= 0.597 + 0.646 & {\rm MeV} \\ & 0.383 \end{split}$$

3

$$\begin{split} \Gamma_{\rm TOT} &= \Gamma(h_c \to {\rm L}H) + \Gamma(h_c \to \gamma \eta_c) \\ & \textbf{0.600} \\ &= \textbf{0.597 + 0.646 MeV} \\ & \textbf{0.383} \end{split}$$

Total width of h_c in NRQCD

$$\begin{split} \Gamma_{\rm TOT} &= \Gamma(h_c \to {\rm L}H) + \Gamma(h_c \to \gamma \eta_c) \\ & \textbf{0.600} \\ &= \textbf{0.597 + 0.646 MeV} \\ & \textbf{0.383} \end{split}$$

1.20 = 1.24 MeV 0.980

Total width of h_c in NRQCD

$$\begin{split} \Gamma_{\rm TOT} &= \Gamma(h_c \to {\rm L}H) + \Gamma(h_c \to \gamma \eta_c) \\ & 0.600 \\ &= 0.597 + 0.646 & {\rm MeV} \\ & 0.383 \end{split}$$

1.20 = 1.24 MeV 0.980

0.597 MeV

$$\mathcal{B}(h_c \to \gamma \eta_c) = (54.3 \pm 6.7 \pm 5.2)\%$$
597 MeV

$$\mathcal{B}(h_c \to \gamma \eta_c) = (54.3 \pm 6.7 \pm 5.2)\%$$

BESIII Collaboration, PRL104, 132002

$$\mathcal{B}(h_c \to \gamma \eta_c) = (54.3 \pm 6.7 \pm 5.2)\%$$

BESIII Collaboration, PRL104, 132002

$$\mathcal{B}(h_c \to \gamma \eta_c) = (54.3 \pm 6.7 \pm 5.2)\%$$

1.31 MeV

BESIII Collaboration, PRL104, 132002

$$B(h_c \to \gamma \eta_c) = (54.3 \pm 6.7 \pm 5.2)\%$$

1.31 MeV

0.597 MeV

BESIII Collaboration, PRL104, 132002

larger than BESIII central value 0.73 MeV

0.895 MeV by Method II , error~30% compared to 0.597 MeV by Method I

Evolution equation is a good method to evaluate P-wave longdistance matrix element, and can be extended to D-wave LH decay, non- $D\bar{D}$ decay which are lack of data.

- * For method I, experimental data errors;
- For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

- * For method I, experimental data errors;
- For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

 $H_1 = \frac{3N_c}{2\pi} \frac{|R_{1p}(0)|^2}{m^4}$

* For method I, experimental data errors;

For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

	Level	$ R_{r}^{(\ell)}(0) ^2$			
		QCD (BT) [5]	Power law [6]	Logarithmic [7]	Cornell [8]
2	15	0.810 GeV ³	$0.999 { m ~GeV}^3$	0.815 GeV^3	1.454 GeV^3
	2P	$0.075 \mathrm{GeV^5}$	$0.125 \mathrm{GeV^5}$	$0.078 { m ~GeV}^5$	$0.131~{ m GeV^5}$
-	25	$0.529 { m ~GeV}^3$	$0.559 { m ~GeV}^3$	$0.418 { m ~GeV}^3$	$0.927 { m ~GeV^3}$
	3D	$0.015~{ m GeV}^7$	$0.026~{ m GeV}^7$	$0.012~{ m GeV}^7$	$0.031~{ m GeV}^7$
	3P	$0.102~{ m GeV}^5$	$0.131 { m ~GeV}^5$	$0.076 { m ~GeV}^5$	$0.186 { m ~GeV}^5$
	35	$0.455 { m ~GeV}^3$	$0.410 { m ~GeV}^3$	$0.286 { m ~GeV}^3$	$0.791 { m ~GeV}^3$

 $H_1 = \frac{3N_c}{2\pi} \frac{|R_{1p}(0)|}{m^4}$

* For method I, experimental data errors;

For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

Eichten et.al., PRD52, 1726

Padial wave functions at the origin and related quantities for

	TADILY I. Italiai wave functions at the origin and felated qualitities for comesons.				
	Level	$ R_{n\ell}^{(\ell)}(0) ^2$			
		QCD (BT) [5]	Power law [6]	Logarithmic [7]	Cornell [8]
	1S	0.810 GeV ³	$0.999 { m ~GeV}^3$	$0.815 \mathrm{~GeV}^3$	1.454 GeV^3
$ R_{1n}(0) ^2$	2P	$0.075~{ m GeV}^5$	$0.125 \mathrm{GeV^5}$	$0.078~{ m GeV}^5$	$0.131~{ m GeV^5}$
	2S	$0.529 { m ~GeV}^3$	$0.559 { m ~GeV}^3$	$0.418 { m ~GeV}^3$	$0.927~{ m GeV^3}$
$-m^{4}$	3D	$0.015~{ m GeV}^7$	$0.026~{ m GeV}^7$	$0.012~{ m GeV}^7$	$0.031~{ m GeV}^7$
	3P	$0.102~{ m GeV}^5$	$0.131 { m ~GeV^5}$	$0.076~{ m GeV}^5$	$0.186 { m ~GeV}^5$
	35	$0.455 { m ~GeV}^3$	$0.410 { m ~GeV}^3$	$0.286 { m ~GeV}^3$	$0.791~{ m GeV^3}$
	$\frac{ R_{1p}(0) ^2}{m^4}$	$ \frac{ R_{1p}(0) ^2}{m^4} \frac{ R_{1p}(0) ^2}{3P} $	$\frac{ R_{1p}(0) ^2}{m^4}$ $\frac{ R_{1p}(0) ^2}{m^4}$ $\frac{ R_{1p}(0) ^2}{3P}$	$\frac{ R_{1p}(0) ^2}{m^4} \xrightarrow{M^4}{ R_{1p}(0) ^2} \frac{ R_{1p}(0) ^2}{m^4$	$\frac{ R_{1p}(0) ^2}{m^4} \xrightarrow{M^4} \begin{array}{c c c c c c c c c c c c c c c c c c c $

* For method I, experimental data errors;

For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

Eichten et.al., PRD52, 1726

TABLE I. Radial wave functions at the origin and related quantities for $c\bar{c}$ mesons.

Level	$ R_{n\ell}^{(\ell)}(0) ^2$				
	QCD (BT) [5]	Power law [6]	Logarithmic [7]	Cornell [8]	
1S	0.810 GeV ³	$0.999 \ \mathrm{GeV}^3$	$0.815 \mathrm{~GeV}^3$	1.454 GeV^3	
(2P)	$0.075 \mathrm{GeV^5}$	$0.125 { m ~GeV^5}$	$0.078 \mathrm{GeV^5}$	$0.131 { m ~GeV^5}$	
2S	0.529 GeV ³	$0.559 { m ~GeV}^3$	$0.418 { m GeV}^3$	$0.927~{ m GeV}^3$	
3D	$0.015~{ m GeV}^7$	$0.026 { m ~GeV}^7$	$0.012~{ m GeV}^7$	$0.031~{ m GeV}^7$	
3P	$0.102 \mathrm{GeV}^5$	$0.131 { m ~GeV}^5$	$0.076 { m ~GeV}^5$	$0.186 { m ~GeV}^5$	
3S	$0.455 { m ~GeV}^3$	$0.410 { m ~GeV}^3$	$0.286 { m ~GeV}^3$	$0.791~{ m GeV^3}$	

 $H_1 = \frac{3N_c}{2\pi} \frac{|R_{1p}(0)|^2}{m^4}$

* For method I, experimental data errors;

For method II, errors from first-order derivative of wave function at the origin and lower limits in evolution equation

Eichten et.al., PRD52, 1726

TABLE I. Radial wave functions at the origin and related quantities for $c\bar{c}$ mesons.

Level	$ R_{n\ell}^{(\ell)}(0) ^2$				
	QCD (BT) [5]	Power law [6]	Logarithmic [7]	Cornell [8]	
1S	0.810 GeV ³	$0.999 \ \mathrm{GeV}^3$	0.815 GeV^3	1.454 GeV^3	
2P	$0.075 \mathrm{GeV^5}$	$0.125~{ m GeV^5}$	$0.078 \mathrm{GeV^5}$	$0.131~{ m GeV^5}$	
2S	0.529 GeV ³	$0.559~{ m GeV}^3$	$0.418 { m GeV}^3$	$0.927~{ m GeV}^3$	
3D	$0.015~{ m GeV}^7$	$0.026~{ m GeV}^7$	$0.012~{ m GeV}^7$	$0.031~{ m GeV}^7$	
3P	$0.102 \mathrm{GeV^5}$	$0.131 { m ~GeV}^5$	$0.076 { m ~GeV}^5$	$0.186 { m ~GeV}^5$	
3S	$0.455 { m ~GeV}^3$	$0.410 { m ~GeV^3}$	$0.286 { m ~GeV}^3$	$0.791 { m ~GeV^3}$	

 $H_1 = \frac{3N_c}{2\pi} \frac{|R_{1p}(0)|^2}{m^4}$

error~40%

 $H_8 = \frac{4C_F}{3N_c\beta_0} \ln[\frac{\alpha_s(\Lambda_0)}{\alpha_s(\Lambda)}]H_1$

Λ₀=mv=0.822 GeV, Λ=2m =3GeV

 $H_8 = \frac{4C_F}{3N_c\beta_0} \ln[\frac{\alpha_s(\Lambda_0)}{\alpha_s(\Lambda)}]H_1$

Λ0=mv=0.822 GeV, Λ=2m =3GeV

 $H_8 = \frac{4C_F}{3N_c\beta_0} \ln[\frac{\alpha_s(\Lambda_0)}{\alpha_s(\Lambda)}]H_1$

 $\Lambda_0 = 1 \text{GeV}$

Λ0=mv=0.822 GeV, Λ=2m =3GeV

 $H_8 = \frac{4C_F}{3N_c\beta_0} \ln[\frac{\alpha_s(\Lambda_0)}{\alpha_s(\Lambda)}]H_1$

Λ₀=1GeV (Brambilla et.al., PRL88:012003,2002)

Λo=mv=0.822 GeV, Λ=2m =3GeV

 $H_8 = \frac{4C_F}{3N_c\beta_0} \ln[\frac{\alpha_s(\Lambda_0)}{\alpha_s(\Lambda)}]H_1$

Λ₀=1GeV (Brambilla et.al., PRL88:012003,2002)

error~40%

xco LH decay width in NRQCD

curves: NRQCP predictions using Method II

filled belts :PDG 10 data; curves: NRQCD predictions using Method II

At perturbative energy scale $\mu = 2m$

filled belts :PDG 10 data; curves: NRQCD predictions using Method II

At perturbative energy scale $\mu = 2m$

 $\Gamma(\chi_{c1} \to LH) = 0.834 \text{ MeV}$

$$\Gamma(\chi_{c2} \to LH) = 2.57 \quad \text{MeV}$$

filled belts :PDG 10 data; curves: NRQCD predictions using Method II

At perturbative energy scale $\mu = 2m$

 $\Gamma(\chi_{c1} \to LH) = 0.834 \text{ MeV}$

 $\Gamma(\chi_{c2} \to LH) = 2.57 \text{ MeV}$

could be compared with experimental values by BESIII

- * We estimate h_c light hadronic decay width up to NLO in a_s in NRQCD, and together with E1 transition width, the total width of h_c is larger than the central value of BESIII.
- Operator evolution equation is a good method to evaluate P-wave long-distance matrix element, and can be extended to P-wave case, which is lack of data.
- * NLO NRQCD predictions for χ_{cJ} (J=0,1,2) are also given, which could be compared with BESIII results.

