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Introduction

P-wave spin-singlet charmonium 
state

Mass 3525.42±0.29 MeV (PDG 10)

Produced in exclusive decay ψ
(2S)->π0 hc 

E1 transition & light hadronic 
(LH)  decay are main decay modes 
of hc 

2010-05-18 QWG2010 3

hc (1P1 ) in charmonium family

Non strong spin-spin interactions in 

charmonium potential models

Mhf = M<13P>-M<11P1 > = 0
M(hc) = M<11P1> 3525MeV

Theoretical predictions of branching ratios:
B( (2S) hc) = (0.4-1.3) 10-3

B(hc c) = 41%(NRQCD) 
B(hc c) = 88% (PQCD) 
(Y.P.Kuang, PRD65,094024 (2002))
B(hc c) = 38%
(S. Godfrey and J.Rosner,PRD66,014012(2002))
…

Although the charmonium family has been 

studied for many years, knowledge is sparse on 

the cc singlet state hc

Among this map, hc is the last charmonium confirmed experimentally. 
The process ’ 0hc is the only known way to produce hc in ’ decay.

See talk by BESIII Collaboration at 
QWG7, Fermilab, 2010 for this figure
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Introduction
BESIII NRQCD Comparison

   Γ(hc)   Γ(hc)

 0.73±0.45±0.28 MeV

  <1.44 MeV (90%        
confidence level)
BESIII Collaboration,PRL104, 
132002 

Talk by BESIII Collaboration at 
QWG7, Fermilab, 2010

 1.1 MeV
(0.53MeV LH)

Bodwin et.al.,PRD46,R1914
Kuang,PRD65, 094024 

consistent @ LO 0.73±0.45±0.28 MeV

  <1.44 MeV (90%        
confidence level)
BESIII Collaboration,PRL104, 
132002 

Talk by BESIII Collaboration at 
QWG7, Fermilab, 2010

NLO LH exists

Huang et.al.,PRD54, 3065 
Petrelli et.al., NPB 514, 245 
Maltoni, arXiv: hep-ph/
0007003

NLO 
more persuasive
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LH Decay width in NRQCD

Γ(hc → LH) =
�
n

2Imfn(µ)
mdn−4 �hc|On(µ)|hc�
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LH Decay width in NRQCD
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matrix elements
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LH Decay width in NRQCD

typical velocity 
of quark,v<<1, 

v2≈0.3
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LH Decay width in NRQCD

Color Singlet 
Model

typical velocity 
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LH Decay width in NRQCD

Color Singlet 
Model

Color-Octet 
Mechanism

typical velocity 
of quark,v<<1, 

v2≈0.3

Γ(hc → LH) =
�
n

2Imfn(µ)
mdn−4 �hc|On(µ)|hc�

|1P1� = O(1)|QQ̄(1P [1]
1 )�+O(v)|QQ̄(1S[8]

0 )g�+ · · ·

physical state
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How to determine Imfn

f: all possible intermediate 
particles, gluons, light quarks. adopt optical theorem

A(QQ̄ → QQ̄)|pertQCD =
�
n

fn(µ)
mdn−4 �QQ̄|On(µ)|QQ̄�|pertNRQCD
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How to determine Imfn

f: all possible intermediate 
particles, gluons, light quarks. adopt optical theorem

matching condition: connecting full 
theory and effective theory

A(QQ̄ → QQ̄)|pertQCD =
�
n

fn(µ)
mdn−4 �QQ̄|On(µ)|QQ̄�|pertNRQCD
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The hc light hadronic decay
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The hc light hadronic decay

Representative example: divergence cancelled 
by introducing color-octet mechanism
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions

u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Imf1(1P1): full QCD

where the two-massless-particle phase space �(2) in
d�4�2� dimensions is integrated to give

��2 ��
1
8� � 4�

4m2� � ��1���

��2�2��
.

A simple calculation leads to the final expression

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 ��s
2

4Ncm2 � 4��4

4m2 � � ��1���

��2�2��
�1����1�2��,

�8�

where the dimensionless coupling constant is defined as

�s�� g24� ���2�.

While in NRQCD the QQ̄ forward scattering amplitude
can be reproduced by four-fermion operators in the effective
Lagrangian, and the corresponding term ���Ta����Ta� in
ImM comes from operator O8(1S0), of which the coefficient
is Imf 8(1S0)/m2. By comparing it with Eq. �8�, we get

�Imf 8�1S0��0�
��Nc

2�4 ��s
2

4Nc
� 4��4

4m2 � � ��1���

��2�2��
�1����1�2��. �9�

We keep � in the above expression for convenience of later calculations. In the limit �→0, we get

�Imf 8�1S0��0�
��Nc

2�4 �

4Nc
�s
2 , �10�

which has been given in �7�. Here the subscript ‘‘0’’ in the coefficient means only the result at leading order in �s is taken,
and the width can be written as

��1��→ LH��
��Nc

2�4 �

2Nc
�s
2H8�O��s��. �11�

In order to obtain the next-to-leading order result, we must take account of the effects coming from both the color-octet
component and color-singlet component of the quarkonium. In the following, we calculate the coefficients Imf 1(1P1) to
leading order in �s and Imf 8(1S0) to next-to-leading order in �s , and then give the complete formular for the hadronic decay
width of 1P1 to order of �s

3 at leading order of v2.
Via the same procedure as above, we consider the imaginary part of the QQ̄ scattering amplitude, and calculate the

coefficient Imf 1(1P1) by matching a perturbative calculation in full QCD with the corresponding perturbative calculation in
NRQCD. The P-wave case requires an expansion of the annihilation amplitude ImM up to the first power of relative momenta
p� and p� �. At this order ImM can be written as

ImM�Cv� �•v� �1�1 ��1�1 �v� �•v� ���������Cv� �•v� �1�1 ��� i� � i�v� �•v� ����� ��•���� �

�Cv�iv j�1�1 ��� i� � j ����v� �•�� ����v� •�� ��Cv� jv i�1�1 ��� i� � j ����v� •�� ����v� �•�� �

�Cv� �•v� �Ta�Ta��1�1 �v� �•v� ���Ta����Ta��Cv� �•v� �Ta�Ta��� i� � i�v� �•v� ����� Ta��•���� Ta�

�Cv�iv j�Ta�Ta��� i� � j ����v� �•�� Ta����v� •�� Ta��Cv� jv i�Ta�Ta��� i� � j ����v� •�� Ta����v� �•�� Ta� . �12�

The determination of Imf 1(1P1) only requires calculating the coefficient Cv� �•v� (1�1)(1�1) of the term v� �•v� �������� . In full
QCD to leading order in �s , only the diagrams in Fig. 2 contribute to this coefficient. After making a nonrelativistic expansion
for ImM to first order in v and v�, we get
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with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
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energy, we have �p� ����p� ��p . In order to compare with the
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�
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with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
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terms:
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coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Huang et.al.,PRD54, 3065 (1996)

Cv� �•v� �1�1 ��1�1 �
full QCD �� �Nc

2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
x1
3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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d�3
48�d�1 � � � ��320�96d �
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3x2
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x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions

u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Imf1(1P1): full QCD

where the two-massless-particle phase space �(2) in
d�4�2� dimensions is integrated to give

��2 ��
1
8� � 4�

4m2� � ��1���

��2�2��
.

A simple calculation leads to the final expression

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 ��s
2

4Ncm2 � 4��4

4m2 � � ��1���

��2�2��
�1����1�2��,

�8�

where the dimensionless coupling constant is defined as

�s�� g24� ���2�.

While in NRQCD the QQ̄ forward scattering amplitude
can be reproduced by four-fermion operators in the effective
Lagrangian, and the corresponding term ���Ta����Ta� in
ImM comes from operator O8(1S0), of which the coefficient
is Imf 8(1S0)/m2. By comparing it with Eq. �8�, we get

�Imf 8�1S0��0�
��Nc

2�4 ��s
2

4Nc
� 4��4

4m2 � � ��1���

��2�2��
�1����1�2��. �9�

We keep � in the above expression for convenience of later calculations. In the limit �→0, we get

�Imf 8�1S0��0�
��Nc

2�4 �

4Nc
�s
2 , �10�

which has been given in �7�. Here the subscript ‘‘0’’ in the coefficient means only the result at leading order in �s is taken,
and the width can be written as

��1��→ LH��
��Nc

2�4 �

2Nc
�s
2H8�O��s��. �11�

In order to obtain the next-to-leading order result, we must take account of the effects coming from both the color-octet
component and color-singlet component of the quarkonium. In the following, we calculate the coefficients Imf 1(1P1) to
leading order in �s and Imf 8(1S0) to next-to-leading order in �s , and then give the complete formular for the hadronic decay
width of 1P1 to order of �s

3 at leading order of v2.
Via the same procedure as above, we consider the imaginary part of the QQ̄ scattering amplitude, and calculate the

coefficient Imf 1(1P1) by matching a perturbative calculation in full QCD with the corresponding perturbative calculation in
NRQCD. The P-wave case requires an expansion of the annihilation amplitude ImM up to the first power of relative momenta
p� and p� �. At this order ImM can be written as

ImM�Cv� �•v� �1�1 ��1�1 �v� �•v� ���������Cv� �•v� �1�1 ��� i� � i�v� �•v� ����� ��•���� �

�Cv�iv j�1�1 ��� i� � j ����v� �•�� ����v� •�� ��Cv� jv i�1�1 ��� i� � j ����v� •�� ����v� �•�� �

�Cv� �•v� �Ta�Ta��1�1 �v� �•v� ���Ta����Ta��Cv� �•v� �Ta�Ta��� i� � i�v� �•v� ����� Ta��•���� Ta�

�Cv�iv j�Ta�Ta��� i� � j ����v� �•�� Ta����v� •�� Ta��Cv� jv i�Ta�Ta��� i� � j ����v� •�� Ta����v� �•�� Ta� . �12�

The determination of Imf 1(1P1) only requires calculating the coefficient Cv� �•v� (1�1)(1�1) of the term v� �•v� �������� . In full
QCD to leading order in �s , only the diagrams in Fig. 2 contribute to this coefficient. After making a nonrelativistic expansion
for ImM to first order in v and v�, we get
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coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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�
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Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain
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full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�
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1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions

u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Imf1(1P1): full QCD

where the two-massless-particle phase space �(2) in
d�4�2� dimensions is integrated to give

��2 ��
1
8� � 4�

4m2� � ��1���

��2�2��
.

A simple calculation leads to the final expression

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 ��s
2

4Ncm2 � 4��4

4m2 � � ��1���

��2�2��
�1����1�2��,

�8�

where the dimensionless coupling constant is defined as

�s�� g24� ���2�.

While in NRQCD the QQ̄ forward scattering amplitude
can be reproduced by four-fermion operators in the effective
Lagrangian, and the corresponding term ���Ta����Ta� in
ImM comes from operator O8(1S0), of which the coefficient
is Imf 8(1S0)/m2. By comparing it with Eq. �8�, we get

�Imf 8�1S0��0�
��Nc

2�4 ��s
2

4Nc
� 4��4

4m2 � � ��1���

��2�2��
�1����1�2��. �9�

We keep � in the above expression for convenience of later calculations. In the limit �→0, we get

�Imf 8�1S0��0�
��Nc

2�4 �

4Nc
�s
2 , �10�

which has been given in �7�. Here the subscript ‘‘0’’ in the coefficient means only the result at leading order in �s is taken,
and the width can be written as

��1��→ LH��
��Nc

2�4 �

2Nc
�s
2H8�O��s��. �11�

In order to obtain the next-to-leading order result, we must take account of the effects coming from both the color-octet
component and color-singlet component of the quarkonium. In the following, we calculate the coefficients Imf 1(1P1) to
leading order in �s and Imf 8(1S0) to next-to-leading order in �s , and then give the complete formular for the hadronic decay
width of 1P1 to order of �s

3 at leading order of v2.
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�Cv�iv j�1�1 ��� i� � j ����v� �•�� ����v� •�� ��Cv� jv i�1�1 ��� i� � j ����v� •�� ����v� �•�� �

�Cv� �•v� �Ta�Ta��1�1 �v� �•v� ���Ta����Ta��Cv� �•v� �Ta�Ta��� i� � i�v� �•v� ����� Ta��•���� Ta�
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
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scattering amplitude ImM in full QCD. For convenience, we
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u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Cv� �•v� �1�1 ��1�1 �
full QCD �� �Nc

2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
x1
3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
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where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions

u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Imf1(1P1): full QCD

where the two-massless-particle phase space �(2) in
d�4�2� dimensions is integrated to give

��2 ��
1
8� � 4�

4m2� � ��1���

��2�2��
.

A simple calculation leads to the final expression

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 ��s
2

4Ncm2 � 4��4

4m2 � � ��1���

��2�2��
�1����1�2��,

�8�

where the dimensionless coupling constant is defined as

�s�� g24� ���2�.

While in NRQCD the QQ̄ forward scattering amplitude
can be reproduced by four-fermion operators in the effective
Lagrangian, and the corresponding term ���Ta����Ta� in
ImM comes from operator O8(1S0), of which the coefficient
is Imf 8(1S0)/m2. By comparing it with Eq. �8�, we get

�Imf 8�1S0��0�
��Nc

2�4 ��s
2

4Nc
� 4��4

4m2 � � ��1���

��2�2��
�1����1�2��. �9�

We keep � in the above expression for convenience of later calculations. In the limit �→0, we get

�Imf 8�1S0��0�
��Nc

2�4 �

4Nc
�s
2 , �10�

which has been given in �7�. Here the subscript ‘‘0’’ in the coefficient means only the result at leading order in �s is taken,
and the width can be written as

��1��→ LH��
��Nc

2�4 �

2Nc
�s
2H8�O��s��. �11�

In order to obtain the next-to-leading order result, we must take account of the effects coming from both the color-octet
component and color-singlet component of the quarkonium. In the following, we calculate the coefficients Imf 1(1P1) to
leading order in �s and Imf 8(1S0) to next-to-leading order in �s , and then give the complete formular for the hadronic decay
width of 1P1 to order of �s

3 at leading order of v2.
Via the same procedure as above, we consider the imaginary part of the QQ̄ scattering amplitude, and calculate the

coefficient Imf 1(1P1) by matching a perturbative calculation in full QCD with the corresponding perturbative calculation in
NRQCD. The P-wave case requires an expansion of the annihilation amplitude ImM up to the first power of relative momenta
p� and p� �. At this order ImM can be written as

ImM�Cv� �•v� �1�1 ��1�1 �v� �•v� ���������Cv� �•v� �1�1 ��� i� � i�v� �•v� ����� ��•���� �

�Cv�iv j�1�1 ��� i� � j ����v� �•�� ����v� •�� ��Cv� jv i�1�1 ��� i� � j ����v� •�� ����v� �•�� �

�Cv� �•v� �Ta�Ta��1�1 �v� �•v� ���Ta����Ta��Cv� �•v� �Ta�Ta��� i� � i�v� �•v� ����� Ta��•���� Ta�

�Cv�iv j�Ta�Ta��� i� � j ����v� �•�� Ta����v� •�� Ta��Cv� jv i�Ta�Ta��� i� � j ����v� •�� Ta����v� �•�� Ta� . �12�

The determination of Imf 1(1P1) only requires calculating the coefficient Cv� �•v� (1�1)(1�1) of the term v� �•v� �������� . In full
QCD to leading order in �s , only the diagrams in Fig. 2 contribute to this coefficient. After making a nonrelativistic expansion
for ImM to first order in v and v�, we get
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
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�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
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In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions
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where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:
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In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Cv� �•v� �1�1 ��1�1 �
full QCD �� �Nc

2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
x1
3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�
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m2 O8�
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The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
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NRQCD
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions

u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Imf1(1P1): full QCD

where the two-massless-particle phase space �(2) in
d�4�2� dimensions is integrated to give

��2 ��
1
8� � 4�

4m2� � ��1���

��2�2��
.

A simple calculation leads to the final expression

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 ��s
2

4Ncm2 � 4��4

4m2 � � ��1���

��2�2��
�1����1�2��,

�8�

where the dimensionless coupling constant is defined as

�s�� g24� ���2�.

While in NRQCD the QQ̄ forward scattering amplitude
can be reproduced by four-fermion operators in the effective
Lagrangian, and the corresponding term ���Ta����Ta� in
ImM comes from operator O8(1S0), of which the coefficient
is Imf 8(1S0)/m2. By comparing it with Eq. �8�, we get

�Imf 8�1S0��0�
��Nc

2�4 ��s
2

4Nc
� 4��4

4m2 � � ��1���

��2�2��
�1����1�2��. �9�

We keep � in the above expression for convenience of later calculations. In the limit �→0, we get

�Imf 8�1S0��0�
��Nc

2�4 �

4Nc
�s
2 , �10�

which has been given in �7�. Here the subscript ‘‘0’’ in the coefficient means only the result at leading order in �s is taken,
and the width can be written as

��1��→ LH��
��Nc

2�4 �

2Nc
�s
2H8�O��s��. �11�

In order to obtain the next-to-leading order result, we must take account of the effects coming from both the color-octet
component and color-singlet component of the quarkonium. In the following, we calculate the coefficients Imf 1(1P1) to
leading order in �s and Imf 8(1S0) to next-to-leading order in �s , and then give the complete formular for the hadronic decay
width of 1P1 to order of �s

3 at leading order of v2.
Via the same procedure as above, we consider the imaginary part of the QQ̄ scattering amplitude, and calculate the

coefficient Imf 1(1P1) by matching a perturbative calculation in full QCD with the corresponding perturbative calculation in
NRQCD. The P-wave case requires an expansion of the annihilation amplitude ImM up to the first power of relative momenta
p� and p� �. At this order ImM can be written as

ImM�Cv� �•v� �1�1 ��1�1 �v� �•v� ���������Cv� �•v� �1�1 ��� i� � i�v� �•v� ����� ��•���� �

�Cv�iv j�1�1 ��� i� � j ����v� �•�� ����v� •�� ��Cv� jv i�1�1 ��� i� � j ����v� •�� ����v� �•�� �

�Cv� �•v� �Ta�Ta��1�1 �v� �•v� ���Ta����Ta��Cv� �•v� �Ta�Ta��� i� � i�v� �•v� ����� Ta��•���� Ta�

�Cv�iv j�Ta�Ta��� i� � j ����v� �•�� Ta����v� •�� Ta��Cv� jv i�Ta�Ta��� i� � j ����v� •�� Ta����v� �•�� Ta� . �12�

The determination of Imf 1(1P1) only requires calculating the coefficient Cv� �•v� (1�1)(1�1) of the term v� �•v� �������� . In full
QCD to leading order in �s , only the diagrams in Fig. 2 contribute to this coefficient. After making a nonrelativistic expansion
for ImM to first order in v and v�, we get
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���
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H8�
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m2 ,

where
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O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions

u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Cv� �•v� �1�1 ��1�1 �
full QCD �� �Nc

2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
x1
3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as
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4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
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1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions

u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Imf1(1P1): full QCD

where the two-massless-particle phase space �(2) in
d�4�2� dimensions is integrated to give

��2 ��
1
8� � 4�

4m2� � ��1���

��2�2��
.

A simple calculation leads to the final expression

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 ��s
2

4Ncm2 � 4��4

4m2 � � ��1���

��2�2��
�1����1�2��,

�8�

where the dimensionless coupling constant is defined as

�s�� g24� ���2�.

While in NRQCD the QQ̄ forward scattering amplitude
can be reproduced by four-fermion operators in the effective
Lagrangian, and the corresponding term ���Ta����Ta� in
ImM comes from operator O8(1S0), of which the coefficient
is Imf 8(1S0)/m2. By comparing it with Eq. �8�, we get

�Imf 8�1S0��0�
��Nc

2�4 ��s
2

4Nc
� 4��4

4m2 � � ��1���

��2�2��
�1����1�2��. �9�

We keep � in the above expression for convenience of later calculations. In the limit �→0, we get

�Imf 8�1S0��0�
��Nc

2�4 �

4Nc
�s
2 , �10�

which has been given in �7�. Here the subscript ‘‘0’’ in the coefficient means only the result at leading order in �s is taken,
and the width can be written as

��1��→ LH��
��Nc

2�4 �

2Nc
�s
2H8�O��s��. �11�

In order to obtain the next-to-leading order result, we must take account of the effects coming from both the color-octet
component and color-singlet component of the quarkonium. In the following, we calculate the coefficients Imf 1(1P1) to
leading order in �s and Imf 8(1S0) to next-to-leading order in �s , and then give the complete formular for the hadronic decay
width of 1P1 to order of �s

3 at leading order of v2.
Via the same procedure as above, we consider the imaginary part of the QQ̄ scattering amplitude, and calculate the

coefficient Imf 1(1P1) by matching a perturbative calculation in full QCD with the corresponding perturbative calculation in
NRQCD. The P-wave case requires an expansion of the annihilation amplitude ImM up to the first power of relative momenta
p� and p� �. At this order ImM can be written as

ImM�Cv� �•v� �1�1 ��1�1 �v� �•v� ���������Cv� �•v� �1�1 ��� i� � i�v� �•v� ����� ��•���� �

�Cv�iv j�1�1 ��� i� � j ����v� �•�� ����v� •�� ��Cv� jv i�1�1 ��� i� � j ����v� •�� ����v� �•�� �

�Cv� �•v� �Ta�Ta��1�1 �v� �•v� ���Ta����Ta��Cv� �•v� �Ta�Ta��� i� � i�v� �•v� ����� Ta��•���� Ta�

�Cv�iv j�Ta�Ta��� i� � j ����v� �•�� Ta����v� •�� Ta��Cv� jv i�Ta�Ta��� i� � j ����v� •�� Ta����v� �•�� Ta� . �12�

The determination of Imf 1(1P1) only requires calculating the coefficient Cv� �•v� (1�1)(1�1) of the term v� �•v� �������� . In full
QCD to leading order in �s , only the diagrams in Fig. 2 contribute to this coefficient. After making a nonrelativistic expansion
for ImM to first order in v and v�, we get
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Q and Q̄ to have momenta p� and �p� , while the outgoing
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energy, we have �p� ����p� ��p . In order to compare with the
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to be calculated in full perturbative QCD, we write the four-
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where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
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In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:
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FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
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leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
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Cv� �•v� �1�1 ��1�1 �
full QCD �� �Nc

2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
x1
3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR
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4�� IR
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4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions

u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Imf1(1P1): full QCD

where the two-massless-particle phase space �(2) in
d�4�2� dimensions is integrated to give

��2 ��
1
8� � 4�

4m2� � ��1���

��2�2��
.

A simple calculation leads to the final expression

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 ��s
2

4Ncm2 � 4��4

4m2 � � ��1���

��2�2��
�1����1�2��,

�8�

where the dimensionless coupling constant is defined as

�s�� g24� ���2�.

While in NRQCD the QQ̄ forward scattering amplitude
can be reproduced by four-fermion operators in the effective
Lagrangian, and the corresponding term ���Ta����Ta� in
ImM comes from operator O8(1S0), of which the coefficient
is Imf 8(1S0)/m2. By comparing it with Eq. �8�, we get

�Imf 8�1S0��0�
��Nc

2�4 ��s
2

4Nc
� 4��4

4m2 � � ��1���

��2�2��
�1����1�2��. �9�

We keep � in the above expression for convenience of later calculations. In the limit �→0, we get

�Imf 8�1S0��0�
��Nc

2�4 �

4Nc
�s
2 , �10�

which has been given in �7�. Here the subscript ‘‘0’’ in the coefficient means only the result at leading order in �s is taken,
and the width can be written as

��1��→ LH��
��Nc

2�4 �

2Nc
�s
2H8�O��s��. �11�

In order to obtain the next-to-leading order result, we must take account of the effects coming from both the color-octet
component and color-singlet component of the quarkonium. In the following, we calculate the coefficients Imf 1(1P1) to
leading order in �s and Imf 8(1S0) to next-to-leading order in �s , and then give the complete formular for the hadronic decay
width of 1P1 to order of �s

3 at leading order of v2.
Via the same procedure as above, we consider the imaginary part of the QQ̄ scattering amplitude, and calculate the

coefficient Imf 1(1P1) by matching a perturbative calculation in full QCD with the corresponding perturbative calculation in
NRQCD. The P-wave case requires an expansion of the annihilation amplitude ImM up to the first power of relative momenta
p� and p� �. At this order ImM can be written as

ImM�Cv� �•v� �1�1 ��1�1 �v� �•v� ���������Cv� �•v� �1�1 ��� i� � i�v� �•v� ����� ��•���� �

�Cv�iv j�1�1 ��� i� � j ����v� �•�� ����v� •�� ��Cv� jv i�1�1 ��� i� � j ����v� •�� ����v� �•�� �

�Cv� �•v� �Ta�Ta��1�1 �v� �•v� ���Ta����Ta��Cv� �•v� �Ta�Ta��� i� � i�v� �•v� ����� Ta��•���� Ta�

�Cv�iv j�Ta�Ta��� i� � j ����v� �•�� Ta����v� •�� Ta��Cv� jv i�Ta�Ta��� i� � j ����v� •�� Ta����v� �•�� Ta� . �12�

The determination of Imf 1(1P1) only requires calculating the coefficient Cv� �•v� (1�1)(1�1) of the term v� �•v� �������� . In full
QCD to leading order in �s , only the diagrams in Fig. 2 contribute to this coefficient. After making a nonrelativistic expansion
for ImM to first order in v and v�, we get
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where D is the space part of the covariant derivative D� and
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2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
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�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
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In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
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estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
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Q and Q̄ have momenta p� � and �p� �. By the conservation of
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u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
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ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Cv� �•v� �1�1 ��1�1 �
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2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
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3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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ergy of QQ̄ pair, which is defined as
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where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
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The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,

where

O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
�� are the fields with two components for quark Q and
antiquark Q̄ in NRQCD. Here including H8 is due to the fact
that for decays of 1�� heavy quarkonium, an S-wave color-
octet QQ̄ component in the wave function will contribute at
the same order in v as the P-wave color-singlet QQ̄ compo-
nent, because the probability for annihilating an S-wave
color-octet QQ̄ state is proportional to v0 while this state has
a probability at order of v2 to be transmitted into a P-wave
color-singlet QQ̄ state through the emission of a soft gluon,
whereas the dominate Fock state of 1�� quarkonium is
�QQ̄� with a QQ̄ pair in a color-singlet 1P1 state, and the
probability for annihilation through a P-wave color singlet
QQ̄ is proportional to v2.
In the following we first calculate the coefficients of non-

perturbative matrix elements H1 and H8 to order �s
3 by

matching the imaginary part of the perturbative scattering
amplitude of QQ̄→QQ̄ in full QCD with that in NRQCD,
and then derive the formula of the 1�� quarkonium decay
width to an accuracy of next-to-leading order in �s . Using
phenomenological parameters H1 and H8 determined from
other processes, we finally give an approximate numerical
estimate of the decay width.
We first calculate the imaginary part of the QQ̄ forward

scattering amplitude ImM in full QCD. For convenience, we
consider QQ̄ scattering in the center of momentum frame
with the momenta of the heavy quarks and antiquarks small
compared to the heavy quark mass. We take the incoming
Q and Q̄ to have momenta p� and �p� , while the outgoing
Q and Q̄ have momenta p� � and �p� �. By the conservation of
energy, we have �p� ����p� ��p . In order to compare with the
result in NRQCD, following �4�, in the expression of ImM
to be calculated in full perturbative QCD, we write the four-
component Dirac spinors in the Dirac representation in terms
of two-component Pauli spinors via the substitutions

u�p� ���E�m
2E � �

p� •��

E�m �� , �4�

v��p� ���E�m
2E � �p� •��

E�m �

�
� , �5�

where E��m2�p2, � and � are two-component spinors
with color indices suppressed. The Dirac spinors u(p� �) and
v(�p� �) have similar expressions in terms of Pauli spinors
�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
terms:

ImM�C �1�1 ��1�1 ���������

�C �Ta�Ta��1�1 ����Ta����Ta�

�C �1�1 ��� i� � i������ ��•���� �

�C �Ta�Ta��� i� � i������ Ta��•���� Ta� . �6�

In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Imf1(1P1): full QCD

where the two-massless-particle phase space �(2) in
d�4�2� dimensions is integrated to give

��2 ��
1
8� � 4�

4m2� � ��1���

��2�2��
.

A simple calculation leads to the final expression

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 ��s
2

4Ncm2 � 4��4

4m2 � � ��1���

��2�2��
�1����1�2��,

�8�

where the dimensionless coupling constant is defined as

�s�� g24� ���2�.

While in NRQCD the QQ̄ forward scattering amplitude
can be reproduced by four-fermion operators in the effective
Lagrangian, and the corresponding term ���Ta����Ta� in
ImM comes from operator O8(1S0), of which the coefficient
is Imf 8(1S0)/m2. By comparing it with Eq. �8�, we get

�Imf 8�1S0��0�
��Nc

2�4 ��s
2

4Nc
� 4��4

4m2 � � ��1���

��2�2��
�1����1�2��. �9�

We keep � in the above expression for convenience of later calculations. In the limit �→0, we get

�Imf 8�1S0��0�
��Nc

2�4 �

4Nc
�s
2 , �10�

which has been given in �7�. Here the subscript ‘‘0’’ in the coefficient means only the result at leading order in �s is taken,
and the width can be written as

��1��→ LH��
��Nc

2�4 �

2Nc
�s
2H8�O��s��. �11�

In order to obtain the next-to-leading order result, we must take account of the effects coming from both the color-octet
component and color-singlet component of the quarkonium. In the following, we calculate the coefficients Imf 1(1P1) to
leading order in �s and Imf 8(1S0) to next-to-leading order in �s , and then give the complete formular for the hadronic decay
width of 1P1 to order of �s

3 at leading order of v2.
Via the same procedure as above, we consider the imaginary part of the QQ̄ scattering amplitude, and calculate the

coefficient Imf 1(1P1) by matching a perturbative calculation in full QCD with the corresponding perturbative calculation in
NRQCD. The P-wave case requires an expansion of the annihilation amplitude ImM up to the first power of relative momenta
p� and p� �. At this order ImM can be written as

ImM�Cv� �•v� �1�1 ��1�1 �v� �•v� ���������Cv� �•v� �1�1 ��� i� � i�v� �•v� ����� ��•���� �

�Cv�iv j�1�1 ��� i� � j ����v� �•�� ����v� •�� ��Cv� jv i�1�1 ��� i� � j ����v� •�� ����v� �•�� �

�Cv� �•v� �Ta�Ta��1�1 �v� �•v� ���Ta����Ta��Cv� �•v� �Ta�Ta��� i� � i�v� �•v� ����� Ta��•���� Ta�

�Cv�iv j�Ta�Ta��� i� � j ����v� �•�� Ta����v� •�� Ta��Cv� jv i�Ta�Ta��� i� � j ����v� •�� Ta����v� �•�� Ta� . �12�

The determination of Imf 1(1P1) only requires calculating the coefficient Cv� �•v� (1�1)(1�1) of the term v� �•v� �������� . In full
QCD to leading order in �s , only the diagrams in Fig. 2 contribute to this coefficient. After making a nonrelativistic expansion
for ImM to first order in v and v�, we get
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��1��→LH��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�3�

where two nonperturbative parameters H1 and H8 can be
defined rigorously in terms of matrix elements of a color-
singlet and a color-octet four-fermion operator in NRQCD

H1�
�1���O1�1P1��1���

m4 ,

H8�
�1���O8�1S0��1���

m2 ,
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O1�
1P1����� �

i
2
↔
D ��•��� �

i
2
↔
D �� ,

O8�
1S0����Ta�•��Ta� ,

where D is the space part of the covariant derivative D� and
Ta(a�1, . . . ,Nc

2�1) is the SU(Nc) color matrix, and � and
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3 by
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�
� , �5�
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�� and ��. The spinors �4� and �5� represent fermion states
with standard nonrelativistic normalization.
It is known from �7� that to leading order in �s , only the

coefficient Imf 8(1S0) in Eq. �3� does not vanish and there-
fore only the color-octet matrix element H8 contributes to
the decay width. In the S-wave case, we expand the annihi-
lation amplitude ImM in terms of velocities v� �p� /E and
v� ��p� �/m only to leading order, and reduce ImM to four
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In order to determine �Imf 8(1S0)]0, we only consider the
coefficient C (Ta�Ta)(1�1) of the term ���Ta����Ta� . At or-
der �s

2 only two diagrams shown in Figs. 1�a� and 1�b� con-
tribute to this coefficient. After decomposing the spinors and
expanding them to leading order in v� and v� �, we obtain the
coefficient of the term ���Ta����Ta� in ImM:

C �Ta�Ta��1�1 �
full QCD

�
�Nc

2�4 �g4

16Ncm2 �d�2 ��d�3 ���2 �, �7�

FIG. 2. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
full QCD at

leading order in �s .

FIG. 1. Feynman diagrams contributing to C (Ta�Ta)(1�1)
full QCD at or-

der �s
2 .
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Cv� �•v� �1�1 ��1�1 �
full QCD �� �Nc

2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
x1
3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�
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script ‘‘UV’’ in � and we will keep this notation in our
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We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Imf1(1P1): NRQCD
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Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as
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After performing the integration for two invariant x1 and x2, we obtain
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where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as
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4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).

3068 54HAN-WEN HUANG AND KUANG-TA CHAO

Cv� �•v� �1�1 ��1�1 �
full QCD �� �Nc

2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
x1
3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).

3068 54HAN-WEN HUANG AND KUANG-TA CHAO

Cv� �•v� �1�1 ��1�1 �
full QCD �� �Nc

2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
x1
3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain

Cv� �•v� �1�1 ��1�1 �
full QCD

�
�Nc

2�4 �CF�s
3

3Nc
2m2 � 4�

4m2� 2�

��2��3
1�2�

��2�2�� � �
1
2� IR

�
7�2�94
48 �

�
�Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).

3068 54HAN-WEN HUANG AND KUANG-TA CHAO

ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
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4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as
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4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
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The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
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FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)
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through the operator O8(1S0).
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scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
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1P1��
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1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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4CF�s
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2 � 1� IR��E�ln

4�� IR
2
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4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
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1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
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contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
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we must consider the imaginary part of scattering amplitude
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only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
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individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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individual diagram is calculated in the Feynman gauge.
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Imf1(1P1): NRQCD

Cv� �•v� �1�1 ��1�1 �
full QCD �� �Nc

2�4 �CFg6

8Nc
2m4

d�3
48�d�1 � � � ��320�96d �

1
x1
3x2
3 ��768�240d�4d2�� 1

x1
3x2
2 �

1
x1
2x2
3�

���512�176d�4d2�� 1
x1
3x2

�
1

x1x2
3� ��64�32d �� 1x13 �

1
x2
3�

���1344�404d�2d2�
1

x1
2x2
2 ��624�208d�2d2�� 1

x1
2x2

�
1

x1x2
2�

���64�32d �� 1x12 �
1
x2
2� ���168�68d�3d2�

1
x1x2��� two other permutations�� d��3 �. �13�

Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain
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where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
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the finite coefficient Imf 1(1P1) is found to be
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grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Imf1(1P1): NRQCD
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Here xi�ki /m(i�1,2,3) and ki denote the energies of the final-state gluons. The massless three-body phase space can be
written as

d��3 ��
4m2

2�4��3 � 4�

4m2� 2� 1
��2�2��

��1�x1��1�x2��1�x3����dx1dx2 .

After performing the integration for two invariant x1 and x2, we obtain
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2 � 1� IR ��E�ln

4�� IR
2

4m2 � �
7�2�118

48 � , �14�

where �E�0.577 is the Euler constant. Comparing Eq. �14�
with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as

�

m �
4m2�M 2

4m2 ,

where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
v� �•v� �������� in ImM, which are

�Lfour-fermion�
f 1�1P1�
m4 O1�

1P1��
f 8�1S0�
m2 O8�

1S0�.

The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is

FIG. 3. Feynman diagram contributing to Cv� �•v� (1�1)(1�1)
NRQCD

through the operator O1(1P1).
FIG. 4. Feynman diagrams contributing to Cv� �•v� (1�1)(1�1)

NRQCD

through the operator O8(1S0).
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with the result obtained in �3� which is regularized by the
binding energy of QQ̄ pair, we find that if making the sub-
stitution ln(m/�)→�1/2� IR , the two results have the same
divergent terms, but their finite terms are different due to
different regularization schemes. Here � is the binding en-
ergy of QQ̄ pair, which is defined as
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where M is the mass of QQ̄ bound state. Here we control the
infrared divergence using on-shell dimensional regulariza-
tion, because the off-shell binding energy regularization
scheme will break manifest gauge invariance and conven-
tional treatment of NRQCD is exact only for on-shell ampli-
tudes. However, after taking account of the contribution

from the color-octet QQ̄ component we will find that the
coefficient Imf 1(1P1) is infrared finite and the final result is
independent of the infrared regularization scheme.
In NRQCD, the QQ̄ forward scattering amplitude can be

reproduced by operators in �Lfour-fermion . When working at
order �s

3 there are two four-fermion operators which contrib-
ute to the coefficient Cv� �•v� (1�1)(1�1) of the term
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�Lfour-fermion�
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The color-singlet operator O1(1P1) contributes through the
tree diagram in Fig. 3 which contains a four-fermion vertex
corresponding to O1(1P1), and the result is
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s
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�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form
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with
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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4�d� which contain a four-fermion vertex corresponding to
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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Obviously the previously encountered IR divergence has
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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4CF
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
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�
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with
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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3
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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��s���
4CF

3�Ncm2O1�
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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finite Imf1(1P1):
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form
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with
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
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�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Since Imf 8(1S0) is already known to be of order �s
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necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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��s���
4CF

3�Ncm2O1�
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
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�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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finite Imf1(1P1):
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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3
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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4CF

3�Ncm2O1�
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form
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with
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion
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4CF
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which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
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In both expressions of Im f 1(1P1) in Eq. !18" and of %(1!"→LH) in Eq. !28", the factor #(7&2"118)/48$ should be
replaced by #(7&2"112)/48$ . The estimated numerical width for hc only has a small change. We would like to thank Dr.
Fabio Maltoni for reminding us to check our results and finding the error.
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Imf 8(1S0): full QCD
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where
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8
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with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with
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where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result
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where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is
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Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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where we have suppressed the superscript MS in �s .
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fermion vertex that corresponds to the term ��Ta���Ta�
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6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
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We have made a numerical error. The term

CA

2 � 1� IR�
15
2 �

�2

3 �
in Table I for Fig. 5�k��5�l� should read

CA

2 � 1� IR�8�
�2

3 � .
Accordingly, the coefficient A in Eq. �21� should be

A�CF� �2

4 �5 ��CA� 1229 �
17�2

24 ��
8
9 n f ,

and the numerical results for Imf 8(1S0) for the charmonium system in Eq. �29� should read

Imf 8�1S0���Imf 8�1S0��0� 1�7.85
�s

� � .
Thus the estimated numerical width for hc given in Eq. �29� only has a small change:

��hc→LH ���0.16�s
3�mc�H1�2.62�s

2�mc�� 1�7.85
�s�mc�

� �H8 .

We would like to thank Dr. Petrelli et al. for pointing out this problem by comparing with their recent result in hep-ph/
9707223. It is important to show that now the two independent calculations give identical results for the next-to-leading order
coefficient Imf 8(1S0).
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Equation �26� should read

���� t ,�1��l1,2��2� 1
2 ��sin22��sin22���cos22�„1�cos��m1�m3�t�…�.

The sentences after Eq. �26� should be deleted until the beginning of the next paragraph.
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where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result
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where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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Add the contributions from Figs. 6�a�–6�c� together, we ob-
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FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .

3070 54HAN-WEN HUANG AND KUANG-TA CHAO

C �Ta�Ta��1�1 �
full QCD

�
�Imf 8�1S0��0

m2 � 1�
�s

�
f ����2b0 1�

��CF�
CA

2 � �2

2v
�A � � , �21�

where

f ����� 4��2

4m2 � �

��1���,

b0�
1
12 �11CA�2n f �,

A�CF� �2

4 �5 ��CA� 47936 �
17�2

24 ��
8
9 n f ,

with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with

�s

�
�

�s
MS

�
�1�

�s
MS

�
b0� 1� �ln4���E� � ,

and find

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 �

4Ncm2 �s
2� 1�

�s

� � �CF�
CA

2 � �2

2v

�4b0ln
�

2m �A � � , �22�

where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .

3070 54HAN-WEN HUANG AND KUANG-TA CHAO

C �Ta�Ta��1�1 �
full QCD

�
�Imf 8�1S0��0

m2 � 1�
�s

�
f ����2b0 1�

��CF�
CA

2 � �2

2v
�A � � , �21�

where

f ����� 4��2

4m2 � �

��1���,

b0�
1
12 �11CA�2n f �,

A�CF� �2

4 �5 ��CA� 47936 �
17�2

24 ��
8
9 n f ,

with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with

�s

�
�

�s
MS

�
�1�

�s
MS

�
b0� 1� �ln4���E� � ,

and find

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 �

4Ncm2 �s
2� 1�

�s

� � �CF�
CA

2 � �2

2v

�4b0ln
�

2m �A � � , �22�

where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .

3070 54HAN-WEN HUANG AND KUANG-TA CHAO

Erratum: QCD radiative correction to the hadronic annihilation rate of 1�� heavy quarkonium†Phys. Rev. D 54, 3065 „1996…‡
Han-Wen Huang and Kuang-Ta Chao

�S0556-2821�97�02723-9�

PACS number�s�: 12.38.Bx, 13.20.Gd, 99.10.�g

We have made a numerical error. The term

CA

2 � 1� IR�
15
2 �

�2

3 �
in Table I for Fig. 5�k��5�l� should read

CA

2 � 1� IR�8�
�2

3 � .
Accordingly, the coefficient A in Eq. �21� should be

A�CF� �2

4 �5 ��CA� 1229 �
17�2

24 ��
8
9 n f ,

and the numerical results for Imf 8(1S0) for the charmonium system in Eq. �29� should read

Imf 8�1S0���Imf 8�1S0��0� 1�7.85
�s

� � .
Thus the estimated numerical width for hc given in Eq. �29� only has a small change:

��hc→LH ���0.16�s
3�mc�H1�2.62�s

2�mc�� 1�7.85
�s�mc�

� �H8 .

We would like to thank Dr. Petrelli et al. for pointing out this problem by comparing with their recent result in hep-ph/
9707223. It is important to show that now the two independent calculations give identical results for the next-to-leading order
coefficient Imf 8(1S0).
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Equation �26� should read

���� t ,�1��l1,2��2� 1
2 ��sin22��sin22���cos22�„1�cos��m1�m3�t�…�.

The sentences after Eq. �26� should be deleted until the beginning of the next paragraph.
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effect.
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in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
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Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
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FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)
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gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .

3070 54HAN-WEN HUANG AND KUANG-TA CHAO

C �Ta�Ta��1�1 �
full QCD

�
�Imf 8�1S0��0

m2 � 1�
�s

�
f ����2b0 1�

��CF�
CA

2 � �2

2v
�A � � , �21�

where

f ����� 4��2

4m2 � �

��1���,

b0�
1
12 �11CA�2n f �,

A�CF� �2

4 �5 ��CA� 47936 �
17�2

24 ��
8
9 n f ,

with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with

�s

�
�

�s
MS

�
�1�

�s
MS

�
b0� 1� �ln4���E� � ,

and find

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 �

4Ncm2 �s
2� 1�

�s

� � �CF�
CA

2 � �2

2v

�4b0ln
�

2m �A � � , �22�

where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .

3070 54HAN-WEN HUANG AND KUANG-TA CHAO

Erratum: QCD radiative correction to the hadronic annihilation rate of 1�� heavy quarkonium†Phys. Rev. D 54, 3065 „1996…‡
Han-Wen Huang and Kuang-Ta Chao

�S0556-2821�97�02723-9�

PACS number�s�: 12.38.Bx, 13.20.Gd, 99.10.�g

We have made a numerical error. The term

CA

2 � 1� IR�
15
2 �

�2

3 �
in Table I for Fig. 5�k��5�l� should read

CA

2 � 1� IR�8�
�2

3 � .
Accordingly, the coefficient A in Eq. �21� should be

A�CF� �2

4 �5 ��CA� 1229 �
17�2

24 ��
8
9 n f ,

and the numerical results for Imf 8(1S0) for the charmonium system in Eq. �29� should read

Imf 8�1S0���Imf 8�1S0��0� 1�7.85
�s

� � .
Thus the estimated numerical width for hc given in Eq. �29� only has a small change:

��hc→LH ���0.16�s
3�mc�H1�2.62�s

2�mc�� 1�7.85
�s�mc�

� �H8 .
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Imf 8(1S0): full QCD
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with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
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Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
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where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
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and antiquark can scatter on shell before being annihilated by
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Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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We have made a numerical error. The term

CA

2 � 1� IR�
15
2 �

�2

3 �
in Table I for Fig. 5�k��5�l� should read

CA

2 � 1� IR�8�
�2

3 � .
Accordingly, the coefficient A in Eq. �21� should be

A�CF� �2

4 �5 ��CA� 1229 �
17�2

24 ��
8
9 n f ,

and the numerical results for Imf 8(1S0) for the charmonium system in Eq. �29� should read

Imf 8�1S0���Imf 8�1S0��0� 1�7.85
�s

� � .
Thus the estimated numerical width for hc given in Eq. �29� only has a small change:

��hc→LH ���0.16�s
3�mc�H1�2.62�s

2�mc�� 1�7.85
�s�mc�

� �H8 .

We would like to thank Dr. Petrelli et al. for pointing out this problem by comparing with their recent result in hep-ph/
9707223. It is important to show that now the two independent calculations give identical results for the next-to-leading order
coefficient Imf 8(1S0).
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Equation �26� should read

���� t ,�1��l1,2��2� 1
2 ��sin22��sin22���cos22�„1�cos��m1�m3�t�…�.

The sentences after Eq. �26� should be deleted until the beginning of the next paragraph.
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with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
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Now we renormalize the coupling constant in the MS̄

scheme with

�s

�
�

�s
MS

�
�1�

�s
MS

�
b0� 1� �ln4���E� � ,

and find

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 �

4Ncm2 �s
2� 1�

�s

� � �CF�
CA

2 � �2

2v

�4b0ln
�

2m �A � � , �22�

where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result
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The contribution from Fig. 6�b� is
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where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is
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Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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4 �5 ��CA� 1229 �
17�2

24 ��
8
9 n f ,

and the numerical results for Imf 8(1S0) for the charmonium system in Eq. �29� should read

Imf 8�1S0���Imf 8�1S0��0� 1�7.85
�s

� � .
Thus the estimated numerical width for hc given in Eq. �29� only has a small change:

��hc→LH ���0.16�s
3�mc�H1�2.62�s

2�mc�� 1�7.85
�s�mc�

� �H8 .

We would like to thank Dr. Petrelli et al. for pointing out this problem by comparing with their recent result in hep-ph/
9707223. It is important to show that now the two independent calculations give identical results for the next-to-leading order
coefficient Imf 8(1S0).
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Equation �26� should read

���� t ,�1��l1,2��2� 1
2 ��sin22��sin22���cos22�„1�cos��m1�m3�t�…�.

The sentences after Eq. �26� should be deleted until the beginning of the next paragraph.
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Imf 8(1S0): full QCD

C �Ta�Ta��1�1 �
full QCD

�
�Imf 8�1S0��0

m2 � 1�
�s

�
f ����2b0 1�

��CF�
CA

2 � �2

2v
�A � � , �21�

where

f ����� 4��2

4m2 � �

��1���,

b0�
1
12 �11CA�2n f �,

A�CF� �2

4 �5 ��CA� 47936 �
17�2

24 ��
8
9 n f ,

with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with

�s

�
�

�s
MS

�
�1�

�s
MS

�
b0� 1� �ln4���E� � ,

and find

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 �

4Ncm2 �s
2� 1�

�s

� � �CF�
CA

2 � �2

2v

�4b0ln
�

2m �A � � , �22�

where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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2v
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where
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1
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4 �5 ��CA� 47936 �
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8
9 n f ,

with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with

�s

�
�

�s
MS

�
�1�

�s
MS

�
b0� 1� �ln4���E� � ,

and find

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 �

4Ncm2 �s
2� 1�

�s

� � �CF�
CA

2 � �2

2v

�4b0ln
�

2m �A � � , �22�

where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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�
�Imf 8�1S0��0

m2 � 1�
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��CF�
CA
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2v
�A � � , �21�

where
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b0�
1
12 �11CA�2n f �,

A�CF� �2

4 �5 ��CA� 47936 �
17�2

24 ��
8
9 n f ,

with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with

�s

�
�

�s
MS

�
�1�

�s
MS

�
b0� 1� �ln4���E� � ,

and find

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 �

4Ncm2 �s
2� 1�

�s

� � �CF�
CA

2 � �2

2v

�4b0ln
�

2m �A � � , �22�

where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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We have made a numerical error. The term

CA

2 � 1� IR�
15
2 �

�2

3 �
in Table I for Fig. 5�k��5�l� should read

CA

2 � 1� IR�8�
�2

3 � .
Accordingly, the coefficient A in Eq. �21� should be

A�CF� �2

4 �5 ��CA� 1229 �
17�2

24 ��
8
9 n f ,

and the numerical results for Imf 8(1S0) for the charmonium system in Eq. �29� should read

Imf 8�1S0���Imf 8�1S0��0� 1�7.85
�s

� � .
Thus the estimated numerical width for hc given in Eq. �29� only has a small change:

��hc→LH ���0.16�s
3�mc�H1�2.62�s

2�mc�� 1�7.85
�s�mc�

� �H8 .

We would like to thank Dr. Petrelli et al. for pointing out this problem by comparing with their recent result in hep-ph/
9707223. It is important to show that now the two independent calculations give identical results for the next-to-leading order
coefficient Imf 8(1S0).
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Equation �26� should read

���� t ,�1��l1,2��2� 1
2 ��sin22��sin22���cos22�„1�cos��m1�m3�t�…�.

The sentences after Eq. �26� should be deleted until the beginning of the next paragraph.
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Imf 8(1S0): full QCD

C �Ta�Ta��1�1 �
full QCD

�
�Imf 8�1S0��0

m2 � 1�
�s

�
f ����2b0 1�

��CF�
CA

2 � �2

2v
�A � � , �21�

where

f ����� 4��2

4m2 � �

��1���,

b0�
1
12 �11CA�2n f �,

A�CF� �2

4 �5 ��CA� 47936 �
17�2

24 ��
8
9 n f ,

with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with

�s

�
�

�s
MS

�
�1�

�s
MS

�
b0� 1� �ln4���E� � ,

and find

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 �

4Ncm2 �s
2� 1�

�s

� � �CF�
CA

2 � �2

2v

�4b0ln
�

2m �A � � , �22�

where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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full QCD
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m2 � 1�
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�
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CA
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2v
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where
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b0�
1
12 �11CA�2n f �,

A�CF� �2

4 �5 ��CA� 47936 �
17�2

24 ��
8
9 n f ,

with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with

�s

�
�

�s
MS

�
�1�

�s
MS

�
b0� 1� �ln4���E� � ,

and find

C �Ta�Ta��1�1 �
full QCD

�
��Nc

2�4 �

4Ncm2 �s
2� 1�

�s

� � �CF�
CA

2 � �2

2v

�4b0ln
�

2m �A � � , �22�

where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
CA

2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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where
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with CF�(Nc
2�1)/2Nc , CA�Nc . The term with 1/v indi-

cates the Coulomb singularity which arises from the Cou-
lomb exchange of the gluon between quark and antiquark in
Fig. 5�a�. It is sensitive to the long-distance nonperturbative
effect.
We find that the cancellation of the infrared divergences

occurs in the overall result in spite of the fact that the indi-
vidual cuts do not. This is the same as the corresponding
color-singlet coefficient C (1�1)(1�1)

full QCD . As a matter of fact it
may be interesting to know that the infrared divergences of
Figs. 5�a�, 5�c�, 5�k�, and 5�l� cancel each other, which is
different from the color-singlet coefficient, where the cancel-
lation occurs between Figs. 5�a� and Fig. 5�c�, as well as
between Fig. 5�k�, 5�l�, 5�m�, and 5�n�, respectively �8,9�.
Now we renormalize the coupling constant in the MS̄

scheme with
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and find
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where we have suppressed the superscript MS in �s .
In order to determine Imf 8(1S0), we must calculate the

corresponding contribution of �Lfour-fermion to C (Ta�Ta)(1�1)
in NRQCD to next-to-leading order in �s . The relevant
Feynman diagrams are shown in Fig. 6. They contain a four-
fermion vertex that corresponds to the term ��Ta���Ta�
in the effective Lagrangian. In the limit v→0, only Figs.
6�b� and 6�c�, which include Coulomb exchange of the
gluon, contribute at next-to-leading order. Figure 6�a� gives
the leading-order result

ImM6�a ��
Imf 8�1S0�

m2 ���Ta����Ta� . �23�

The contribution from Fig. 6�b� is

ImM6�b ��
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m2 �CF�
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2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� , �24�

where the imaginary part arises because the incoming quark
and antiquark can scatter on shell before being annihilated by
the four-fermion operator. The contribution from Fig. 6�c� is

ImM6�b ��
Imf 8�1S0�

m2 �CF�
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2 � ��s

4v �1�
i
� � 1� IR��E

�ln4��2ln
2mv

� � ����Ta����Ta� . �25�

Add the contributions from Figs. 6�a�–6�c� together, we ob-
tain the complete result for C (Ta�Ta)(1�1) to order of �s

3 in
NRQCD:

FIG. 5. Representative diagrams contributing to the first-order
radiative correction to C (Ta�Ta)(1�1)

full QCD .
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Erratum: QCD radiative correction to the hadronic annihilation rate of 1�� heavy quarkonium†Phys. Rev. D 54, 3065 „1996…‡
Han-Wen Huang and Kuang-Ta Chao

�S0556-2821�97�02723-9�

PACS number�s�: 12.38.Bx, 13.20.Gd, 99.10.�g

We have made a numerical error. The term

CA

2 � 1� IR�
15
2 �

�2

3 �
in Table I for Fig. 5�k��5�l� should read

CA

2 � 1� IR�8�
�2

3 � .
Accordingly, the coefficient A in Eq. �21� should be

A�CF� �2

4 �5 ��CA� 1229 �
17�2

24 ��
8
9 n f ,

and the numerical results for Imf 8(1S0) for the charmonium system in Eq. �29� should read

Imf 8�1S0���Imf 8�1S0��0� 1�7.85
�s

� � .
Thus the estimated numerical width for hc given in Eq. �29� only has a small change:

��hc→LH ���0.16�s
3�mc�H1�2.62�s

2�mc�� 1�7.85
�s�mc�

� �H8 .

We would like to thank Dr. Petrelli et al. for pointing out this problem by comparing with their recent result in hep-ph/
9707223. It is important to show that now the two independent calculations give identical results for the next-to-leading order
coefficient Imf 8(1S0).
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Erratum: Flavor-changing neutral currents, CP violation, and impure Majorana neutrinos†Phys. Rev. D 56, 1522 „1997…‡
Dan-Di Wu

�S0556-2821�97�06723-4�

PACS number�s�: 12.15.Mm, 11.30.Er, 12.15.Ff, 99.10.�g

Equation �26� should read

���� t ,�1��l1,2��2� 1
2 ��sin22��sin22���cos22�„1�cos��m1�m3�t�…�.

The sentences after Eq. �26� should be deleted until the beginning of the next paragraph.

0556-2821/97/56�11�/7472�1�/$10.00 © 1997 The American Physical Society
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Imf 8(1S0): NRQCD

��hc→LH���0.16�s
3�mc�H1�2.62�s

2�mc�

�� 1�7.10
�s�mc�

� �H8 . �29�

It is interesting to note that the contribution of the color-
singlet component is negative and the QCD radiative correc-
tion from the color-octet component is very large. The ma-
trix elements H1 and H8 have been defined explicitly in
NRQCD and they are difficult to derive from first principles
of QCD. People have tried to compute them using lattice
simulations �10�. In practice they can be determined phe-
nomenologically. Heavy quark spin symmetry provides ap-
proximate relations between them and the corresponding two
parameters in the expressions of decay widths of P-wave
triplet �cJ(J�0,1,2) states. At leading order of v2, they are
equal respectively. A rough estimate of H1 and H8 has been
given in �12� by comparing the theoretical result of �cJ de-
cay to order �s

3 with experimental data. There they do not
give the coefficients of H8 at order �s

3 because in �cJ de-
cays, the contributions of the color-octet component are the
same for J�0,1,2, and can be treated as just one parameter.

However it is not H8 mentioned above. Here, as an approxi-
mation, using the estimated value for H1 and H8 to the order
of �s

2 in �7�,

H1�15.3�3.7 MeV, H8�3.26�0.73 MeV,

�s�mc��0.25�0.02,

we roughly get ��0.80�0.20 MeV. A more reliable esti-
mate will be obtained with a complete theoretical result for
the �cJ decay width to order �s

3 .
In this work we use a general factorization formula which

is based on NRQCD to calculate the annihilation rate of
1�� quarkonium, we see that the infrared divergence ap-
pearing in previous calculations can be factored into the
long-distance perturbative matrix element rigorously. Our re-
sult is also free from the Coulomb singularity. The corre-
sponding case of �cJ production through gluon fragmenta-
tion has been studied in �11�. It is clear from our calculation
that the failure of previous factorization assumption is due to
the fact that only the color-singlet component was consid-
ered and all contributions from the color octet were ne-
glected. In that sense the previous result is incomplete and
therefore the infrared divergence may appear in some cases
such as the annihilation and production of P-wave quarko-
nium even at leading order in v2. Our calculation shows that
the rigorous factorization formula can separate short-distance
perturbative effects from long-distance nonperturbative ef-
fects correctly and can therefore provide a systematic calcu-
lation for quarkonium decay and production to any order in
�s and in v2, because it is based on a solid theoretical foun-
dation.
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Imf 8(1S0): NRQCD

��hc→LH���0.16�s
3�mc�H1�2.62�s

2�mc�

�� 1�7.10
�s�mc�

� �H8 . �29�

It is interesting to note that the contribution of the color-
singlet component is negative and the QCD radiative correc-
tion from the color-octet component is very large. The ma-
trix elements H1 and H8 have been defined explicitly in
NRQCD and they are difficult to derive from first principles
of QCD. People have tried to compute them using lattice
simulations �10�. In practice they can be determined phe-
nomenologically. Heavy quark spin symmetry provides ap-
proximate relations between them and the corresponding two
parameters in the expressions of decay widths of P-wave
triplet �cJ(J�0,1,2) states. At leading order of v2, they are
equal respectively. A rough estimate of H1 and H8 has been
given in �12� by comparing the theoretical result of �cJ de-
cay to order �s

3 with experimental data. There they do not
give the coefficients of H8 at order �s

3 because in �cJ de-
cays, the contributions of the color-octet component are the
same for J�0,1,2, and can be treated as just one parameter.

However it is not H8 mentioned above. Here, as an approxi-
mation, using the estimated value for H1 and H8 to the order
of �s

2 in �7�,

H1�15.3�3.7 MeV, H8�3.26�0.73 MeV,

�s�mc��0.25�0.02,

we roughly get ��0.80�0.20 MeV. A more reliable esti-
mate will be obtained with a complete theoretical result for
the �cJ decay width to order �s

3 .
In this work we use a general factorization formula which

is based on NRQCD to calculate the annihilation rate of
1�� quarkonium, we see that the infrared divergence ap-
pearing in previous calculations can be factored into the
long-distance perturbative matrix element rigorously. Our re-
sult is also free from the Coulomb singularity. The corre-
sponding case of �cJ production through gluon fragmenta-
tion has been studied in �11�. It is clear from our calculation
that the failure of previous factorization assumption is due to
the fact that only the color-singlet component was consid-
ered and all contributions from the color octet were ne-
glected. In that sense the previous result is incomplete and
therefore the infrared divergence may appear in some cases
such as the annihilation and production of P-wave quarko-
nium even at leading order in v2. Our calculation shows that
the rigorous factorization formula can separate short-distance
perturbative effects from long-distance nonperturbative ef-
fects correctly and can therefore provide a systematic calcu-
lation for quarkonium decay and production to any order in
�s and in v2, because it is based on a solid theoretical foun-
dation.
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Imf 8(1S0): NRQCD

��hc→LH���0.16�s
3�mc�H1�2.62�s

2�mc�

�� 1�7.10
�s�mc�

� �H8 . �29�

It is interesting to note that the contribution of the color-
singlet component is negative and the QCD radiative correc-
tion from the color-octet component is very large. The ma-
trix elements H1 and H8 have been defined explicitly in
NRQCD and they are difficult to derive from first principles
of QCD. People have tried to compute them using lattice
simulations �10�. In practice they can be determined phe-
nomenologically. Heavy quark spin symmetry provides ap-
proximate relations between them and the corresponding two
parameters in the expressions of decay widths of P-wave
triplet �cJ(J�0,1,2) states. At leading order of v2, they are
equal respectively. A rough estimate of H1 and H8 has been
given in �12� by comparing the theoretical result of �cJ de-
cay to order �s

3 with experimental data. There they do not
give the coefficients of H8 at order �s

3 because in �cJ de-
cays, the contributions of the color-octet component are the
same for J�0,1,2, and can be treated as just one parameter.

However it is not H8 mentioned above. Here, as an approxi-
mation, using the estimated value for H1 and H8 to the order
of �s

2 in �7�,

H1�15.3�3.7 MeV, H8�3.26�0.73 MeV,

�s�mc��0.25�0.02,

we roughly get ��0.80�0.20 MeV. A more reliable esti-
mate will be obtained with a complete theoretical result for
the �cJ decay width to order �s

3 .
In this work we use a general factorization formula which

is based on NRQCD to calculate the annihilation rate of
1�� quarkonium, we see that the infrared divergence ap-
pearing in previous calculations can be factored into the
long-distance perturbative matrix element rigorously. Our re-
sult is also free from the Coulomb singularity. The corre-
sponding case of �cJ production through gluon fragmenta-
tion has been studied in �11�. It is clear from our calculation
that the failure of previous factorization assumption is due to
the fact that only the color-singlet component was consid-
ered and all contributions from the color octet were ne-
glected. In that sense the previous result is incomplete and
therefore the infrared divergence may appear in some cases
such as the annihilation and production of P-wave quarko-
nium even at leading order in v2. Our calculation shows that
the rigorous factorization formula can separate short-distance
perturbative effects from long-distance nonperturbative ef-
fects correctly and can therefore provide a systematic calcu-
lation for quarkonium decay and production to any order in
�s and in v2, because it is based on a solid theoretical foun-
dation.
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Imf 8(1S0): NRQCD
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�s�mc�

� �H8 . �29�

It is interesting to note that the contribution of the color-
singlet component is negative and the QCD radiative correc-
tion from the color-octet component is very large. The ma-
trix elements H1 and H8 have been defined explicitly in
NRQCD and they are difficult to derive from first principles
of QCD. People have tried to compute them using lattice
simulations �10�. In practice they can be determined phe-
nomenologically. Heavy quark spin symmetry provides ap-
proximate relations between them and the corresponding two
parameters in the expressions of decay widths of P-wave
triplet �cJ(J�0,1,2) states. At leading order of v2, they are
equal respectively. A rough estimate of H1 and H8 has been
given in �12� by comparing the theoretical result of �cJ de-
cay to order �s

3 with experimental data. There they do not
give the coefficients of H8 at order �s

3 because in �cJ de-
cays, the contributions of the color-octet component are the
same for J�0,1,2, and can be treated as just one parameter.

However it is not H8 mentioned above. Here, as an approxi-
mation, using the estimated value for H1 and H8 to the order
of �s

2 in �7�,

H1�15.3�3.7 MeV, H8�3.26�0.73 MeV,

�s�mc��0.25�0.02,

we roughly get ��0.80�0.20 MeV. A more reliable esti-
mate will be obtained with a complete theoretical result for
the �cJ decay width to order �s

3 .
In this work we use a general factorization formula which

is based on NRQCD to calculate the annihilation rate of
1�� quarkonium, we see that the infrared divergence ap-
pearing in previous calculations can be factored into the
long-distance perturbative matrix element rigorously. Our re-
sult is also free from the Coulomb singularity. The corre-
sponding case of �cJ production through gluon fragmenta-
tion has been studied in �11�. It is clear from our calculation
that the failure of previous factorization assumption is due to
the fact that only the color-singlet component was consid-
ered and all contributions from the color octet were ne-
glected. In that sense the previous result is incomplete and
therefore the infrared divergence may appear in some cases
such as the annihilation and production of P-wave quarko-
nium even at leading order in v2. Our calculation shows that
the rigorous factorization formula can separate short-distance
perturbative effects from long-distance nonperturbative ef-
fects correctly and can therefore provide a systematic calcu-
lation for quarkonium decay and production to any order in
�s and in v2, because it is based on a solid theoretical foun-
dation.
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Imf 8(1S0): NRQCD

C �Ta�Ta��1�1 �
NRQCD

�
Imf 8�1S0�

m2 �1�
�s

� �CF�
CA

2 � �2

2v� .
�26�

Comparing Eqs. �22� and �26�, we can read off the imagi-
nary part of f 8(1S0) to next-to-leading order in �s :

Imf 8�1S0��
�Nc

2�4 ���s
2

4Nc
�1�

�s

� � 4b0ln �

2m �A � � .
�27�

Note that the factorization approach reproduces the standard
prescription of simply dropping the 1/v terms in the pertur-
batively calculated annihilation rate. It is clear that the Cou-
lomb singularity can be factored into the nonperturbative
part trivially in this factorization formula.
Having derived the coefficients Imf 1(1P1) and Im

f 8(1S0), we finally come to the overall result for hadronic

decay of 1�� quarkonium state to next-to-leading order in
�s at leading order of v2. Substituting Eqs. �18� and �27� into
Eq. �3�, we get

��1��→LH��
2�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m �H1

�
�Nc

2�4 ���s
2���

2Nc

��1�
�s

� � 4b0 ln �

2m �A � �H8���. �28�

Working to all orders in �s(�), the final result is indepen-
dent of � , since the coefficients depend on � in such a way
that they will cancel the � dependence of matrix elements.
Now we apply our above result to the charmonium system

to study the decay width of hc . In Eq. �28� making a choice
of ��mc and taking Nc�3, n f�3 we obtain

TABLE I. C (Ta�Ta)(1�1)
full QCD from individual diagrams shown in Fig. 5. The values are normalized to

��Imf 8(1S0)�0 /m2� f (�)(�s /�). Here ��(4�d)/2, f (�)�(4��2/4m2)��(1��), CF�(Nc
2�1)/2Nc ,

CA�Nc , n f stands for the number of light flavors.

Contribution from Contribution from
Diagram two-particle cut three-particle cut

�a� �CF�
CA
2 ���22v�

1
� IR

�2ln2�2 � 0

�b�
CF� �

1
2�UV

�3ln2�1 � 0

�c�
CF� �

1
2� UV

�
1

� IR
�3ln2�2 � 0

�d� �CF�
CA

2 � � 1
� UV

�2ln2�
�2

4 � 0

�e�
CA� 3

2�UV
�
1
2� 1�2�1� �

IR

�2�ln2�
1

12�2� CA�12� 1�2�1� �
IR

�
1
2 �

�2

6

�f�
CA� 5

6�UV
�

5
6� IR

� CA� 5
6� IR

�
23
9 �

�g�
�

n f
3� UV

�
2
3� iln

mi

2m �
2
3� iln

mi

2m�
8n f
9

�h� 0 0
�i� 0 0

�j� CA
2 ��� 1�2� 1

��
IR

�2�2ln2�
2�2

3 � CA

2 � � 1�2� 1
� �

IR

�9�
4�2

3 �
�k���l� 0 CA

2 � 1� IR�
15
2 �

�2

3 �
�m���n� 0 0
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��hc→LH���0.16�s
3�mc�H1�2.62�s

2�mc�

�� 1�7.10
�s�mc�

� �H8 . �29�

It is interesting to note that the contribution of the color-
singlet component is negative and the QCD radiative correc-
tion from the color-octet component is very large. The ma-
trix elements H1 and H8 have been defined explicitly in
NRQCD and they are difficult to derive from first principles
of QCD. People have tried to compute them using lattice
simulations �10�. In practice they can be determined phe-
nomenologically. Heavy quark spin symmetry provides ap-
proximate relations between them and the corresponding two
parameters in the expressions of decay widths of P-wave
triplet �cJ(J�0,1,2) states. At leading order of v2, they are
equal respectively. A rough estimate of H1 and H8 has been
given in �12� by comparing the theoretical result of �cJ de-
cay to order �s

3 with experimental data. There they do not
give the coefficients of H8 at order �s

3 because in �cJ de-
cays, the contributions of the color-octet component are the
same for J�0,1,2, and can be treated as just one parameter.

However it is not H8 mentioned above. Here, as an approxi-
mation, using the estimated value for H1 and H8 to the order
of �s

2 in �7�,

H1�15.3�3.7 MeV, H8�3.26�0.73 MeV,

�s�mc��0.25�0.02,

we roughly get ��0.80�0.20 MeV. A more reliable esti-
mate will be obtained with a complete theoretical result for
the �cJ decay width to order �s

3 .
In this work we use a general factorization formula which

is based on NRQCD to calculate the annihilation rate of
1�� quarkonium, we see that the infrared divergence ap-
pearing in previous calculations can be factored into the
long-distance perturbative matrix element rigorously. Our re-
sult is also free from the Coulomb singularity. The corre-
sponding case of �cJ production through gluon fragmenta-
tion has been studied in �11�. It is clear from our calculation
that the failure of previous factorization assumption is due to
the fact that only the color-singlet component was consid-
ered and all contributions from the color octet were ne-
glected. In that sense the previous result is incomplete and
therefore the infrared divergence may appear in some cases
such as the annihilation and production of P-wave quarko-
nium even at leading order in v2. Our calculation shows that
the rigorous factorization formula can separate short-distance
perturbative effects from long-distance nonperturbative ef-
fects correctly and can therefore provide a systematic calcu-
lation for quarkonium decay and production to any order in
�s and in v2, because it is based on a solid theoretical foun-
dation.
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Comparing Eqs. �22� and �26�, we can read off the imagi-
nary part of f 8(1S0) to next-to-leading order in �s :
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Note that the factorization approach reproduces the standard
prescription of simply dropping the 1/v terms in the pertur-
batively calculated annihilation rate. It is clear that the Cou-
lomb singularity can be factored into the nonperturbative
part trivially in this factorization formula.
Having derived the coefficients Imf 1(1P1) and Im

f 8(1S0), we finally come to the overall result for hadronic

decay of 1�� quarkonium state to next-to-leading order in
�s at leading order of v2. Substituting Eqs. �18� and �27� into
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Working to all orders in �s(�), the final result is indepen-
dent of � , since the coefficients depend on � in such a way
that they will cancel the � dependence of matrix elements.
Now we apply our above result to the charmonium system

to study the decay width of hc . In Eq. �28� making a choice
of ��mc and taking Nc�3, n f�3 we obtain

TABLE I. C (Ta�Ta)(1�1)
full QCD from individual diagrams shown in Fig. 5. The values are normalized to

��Imf 8(1S0)�0 /m2� f (�)(�s /�). Here ��(4�d)/2, f (�)�(4��2/4m2)��(1��), CF�(Nc
2�1)/2Nc ,

CA�Nc , n f stands for the number of light flavors.

Contribution from Contribution from
Diagram two-particle cut three-particle cut

�a� �CF�
CA
2 ���22v�

1
� IR

�2ln2�2 � 0

�b�
CF� �

1
2�UV

�3ln2�1 � 0

�c�
CF� �

1
2� UV

�
1

� IR
�3ln2�2 � 0

�d� �CF�
CA

2 � � 1
� UV

�2ln2�
�2

4 � 0

�e�
CA� 3

2�UV
�
1
2� 1�2�1� �

IR

�2�ln2�
1

12�2� CA�12� 1�2�1� �
IR

�
1
2 �

�2

6

�f�
CA� 5

6�UV
�

5
6� IR

� CA� 5
6� IR

�
23
9 �

�g�
�

n f
3� UV

�
2
3� iln

mi

2m �
2
3� iln

mi

2m�
8n f
9

�h� 0 0
�i� 0 0

�j� CA
2 ��� 1�2� 1

��
IR

�2�2ln2�
2�2

3 � CA

2 � � 1�2� 1
� �

IR

�9�
4�2

3 �
�k���l� 0 CA

2 � 1� IR�
15
2 �

�2

3 �
�m���n� 0 0

54 3071QCD RADIATIVE CORRECTION TO THE HADRONIC . . .

��hc→LH���0.16�s
3�mc�H1�2.62�s

2�mc�

�� 1�7.10
�s�mc�

� �H8 . �29�

It is interesting to note that the contribution of the color-
singlet component is negative and the QCD radiative correc-
tion from the color-octet component is very large. The ma-
trix elements H1 and H8 have been defined explicitly in
NRQCD and they are difficult to derive from first principles
of QCD. People have tried to compute them using lattice
simulations �10�. In practice they can be determined phe-
nomenologically. Heavy quark spin symmetry provides ap-
proximate relations between them and the corresponding two
parameters in the expressions of decay widths of P-wave
triplet �cJ(J�0,1,2) states. At leading order of v2, they are
equal respectively. A rough estimate of H1 and H8 has been
given in �12� by comparing the theoretical result of �cJ de-
cay to order �s

3 with experimental data. There they do not
give the coefficients of H8 at order �s

3 because in �cJ de-
cays, the contributions of the color-octet component are the
same for J�0,1,2, and can be treated as just one parameter.

However it is not H8 mentioned above. Here, as an approxi-
mation, using the estimated value for H1 and H8 to the order
of �s

2 in �7�,

H1�15.3�3.7 MeV, H8�3.26�0.73 MeV,

�s�mc��0.25�0.02,

we roughly get ��0.80�0.20 MeV. A more reliable esti-
mate will be obtained with a complete theoretical result for
the �cJ decay width to order �s

3 .
In this work we use a general factorization formula which

is based on NRQCD to calculate the annihilation rate of
1�� quarkonium, we see that the infrared divergence ap-
pearing in previous calculations can be factored into the
long-distance perturbative matrix element rigorously. Our re-
sult is also free from the Coulomb singularity. The corre-
sponding case of �cJ production through gluon fragmenta-
tion has been studied in �11�. It is clear from our calculation
that the failure of previous factorization assumption is due to
the fact that only the color-singlet component was consid-
ered and all contributions from the color octet were ne-
glected. In that sense the previous result is incomplete and
therefore the infrared divergence may appear in some cases
such as the annihilation and production of P-wave quarko-
nium even at leading order in v2. Our calculation shows that
the rigorous factorization formula can separate short-distance
perturbative effects from long-distance nonperturbative ef-
fects correctly and can therefore provide a systematic calcu-
lation for quarkonium decay and production to any order in
�s and in v2, because it is based on a solid theoretical foun-
dation.
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Comparing Eqs. �22� and �26�, we can read off the imagi-
nary part of f 8(1S0) to next-to-leading order in �s :
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Note that the factorization approach reproduces the standard
prescription of simply dropping the 1/v terms in the pertur-
batively calculated annihilation rate. It is clear that the Cou-
lomb singularity can be factored into the nonperturbative
part trivially in this factorization formula.
Having derived the coefficients Imf 1(1P1) and Im

f 8(1S0), we finally come to the overall result for hadronic

decay of 1�� quarkonium state to next-to-leading order in
�s at leading order of v2. Substituting Eqs. �18� and �27� into
Eq. �3�, we get
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Working to all orders in �s(�), the final result is indepen-
dent of � , since the coefficients depend on � in such a way
that they will cancel the � dependence of matrix elements.
Now we apply our above result to the charmonium system

to study the decay width of hc . In Eq. �28� making a choice
of ��mc and taking Nc�3, n f�3 we obtain
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It is interesting to note that the contribution of the color-
singlet component is negative and the QCD radiative correc-
tion from the color-octet component is very large. The ma-
trix elements H1 and H8 have been defined explicitly in
NRQCD and they are difficult to derive from first principles
of QCD. People have tried to compute them using lattice
simulations �10�. In practice they can be determined phe-
nomenologically. Heavy quark spin symmetry provides ap-
proximate relations between them and the corresponding two
parameters in the expressions of decay widths of P-wave
triplet �cJ(J�0,1,2) states. At leading order of v2, they are
equal respectively. A rough estimate of H1 and H8 has been
given in �12� by comparing the theoretical result of �cJ de-
cay to order �s

3 with experimental data. There they do not
give the coefficients of H8 at order �s

3 because in �cJ de-
cays, the contributions of the color-octet component are the
same for J�0,1,2, and can be treated as just one parameter.

However it is not H8 mentioned above. Here, as an approxi-
mation, using the estimated value for H1 and H8 to the order
of �s

2 in �7�,

H1�15.3�3.7 MeV, H8�3.26�0.73 MeV,

�s�mc��0.25�0.02,

we roughly get ��0.80�0.20 MeV. A more reliable esti-
mate will be obtained with a complete theoretical result for
the �cJ decay width to order �s

3 .
In this work we use a general factorization formula which

is based on NRQCD to calculate the annihilation rate of
1�� quarkonium, we see that the infrared divergence ap-
pearing in previous calculations can be factored into the
long-distance perturbative matrix element rigorously. Our re-
sult is also free from the Coulomb singularity. The corre-
sponding case of �cJ production through gluon fragmenta-
tion has been studied in �11�. It is clear from our calculation
that the failure of previous factorization assumption is due to
the fact that only the color-singlet component was consid-
ered and all contributions from the color octet were ne-
glected. In that sense the previous result is incomplete and
therefore the infrared divergence may appear in some cases
such as the annihilation and production of P-wave quarko-
nium even at leading order in v2. Our calculation shows that
the rigorous factorization formula can separate short-distance
perturbative effects from long-distance nonperturbative ef-
fects correctly and can therefore provide a systematic calcu-
lation for quarkonium decay and production to any order in
�s and in v2, because it is based on a solid theoretical foun-
dation.
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Comparing Eqs. �22� and �26�, we can read off the imagi-
nary part of f 8(1S0) to next-to-leading order in �s :
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Note that the factorization approach reproduces the standard
prescription of simply dropping the 1/v terms in the pertur-
batively calculated annihilation rate. It is clear that the Cou-
lomb singularity can be factored into the nonperturbative
part trivially in this factorization formula.
Having derived the coefficients Imf 1(1P1) and Im

f 8(1S0), we finally come to the overall result for hadronic

decay of 1�� quarkonium state to next-to-leading order in
�s at leading order of v2. Substituting Eqs. �18� and �27� into
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Working to all orders in �s(�), the final result is indepen-
dent of � , since the coefficients depend on � in such a way
that they will cancel the � dependence of matrix elements.
Now we apply our above result to the charmonium system

to study the decay width of hc . In Eq. �28� making a choice
of ��mc and taking Nc�3, n f�3 we obtain
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�
Imf 8�1S0�

m2 �1�
�s

� �CF�
CA

2 � �2

2v� .
�26�

Comparing Eqs. �22� and �26�, we can read off the imagi-
nary part of f 8(1S0) to next-to-leading order in �s :

Imf 8�1S0��
�Nc

2�4 ���s
2

4Nc
�1�

�s

� � 4b0ln �

2m �A � � .
�27�

Note that the factorization approach reproduces the standard
prescription of simply dropping the 1/v terms in the pertur-
batively calculated annihilation rate. It is clear that the Cou-
lomb singularity can be factored into the nonperturbative
part trivially in this factorization formula.
Having derived the coefficients Imf 1(1P1) and Im

f 8(1S0), we finally come to the overall result for hadronic

decay of 1�� quarkonium state to next-to-leading order in
�s at leading order of v2. Substituting Eqs. �18� and �27� into
Eq. �3�, we get

��1��→LH��
2�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m �H1

�
�Nc

2�4 ���s
2���

2Nc

��1�
�s

� � 4b0 ln �

2m �A � �H8���. �28�

Working to all orders in �s(�), the final result is indepen-
dent of � , since the coefficients depend on � in such a way
that they will cancel the � dependence of matrix elements.
Now we apply our above result to the charmonium system

to study the decay width of hc . In Eq. �28� making a choice
of ��mc and taking Nc�3, n f�3 we obtain

TABLE I. C (Ta�Ta)(1�1)
full QCD from individual diagrams shown in Fig. 5. The values are normalized to

��Imf 8(1S0)�0 /m2� f (�)(�s /�). Here ��(4�d)/2, f (�)�(4��2/4m2)��(1��), CF�(Nc
2�1)/2Nc ,

CA�Nc , n f stands for the number of light flavors.
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Diagram two-particle cut three-particle cut
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IR

�2�ln2�
1

12�2� CA�12� 1�2�1� �
IR

�
1
2 �

�2

6

�f�
CA� 5

6�UV
�

5
6� IR

� CA� 5
6� IR

�
23
9 �
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finite LH decay width of hc

The latest measurements of the spin-singlet charmonium state hc were presented by

BESIII [1]. They gave total width of 0.9 MeV, with an upper limit Γ(hc) < 1.44 MeV

at 90% confidence level, and reached a conclusion that the total width Γ(hc) is consistent

with the nonrelativistic QCD (NRQCD) prediction of [2]. However, [2] only gave leading

order (LO) result. Evidently, next-to-leading order (NLO) NRQCD result could supply more

persuasive comparison between experiment and theory. This is just the reason why we write

this paper.

Actually, analytical expressions of P-wave state light hadron (LH) decay widths up to

NLO in strong coupling constant αs could be found in early literatures, e.g. [3–5]. Our follow-

ing analysis will be based on their results. And the key is to determine the non-perturbative

effects, in NRQCD language the long-distance matrix elements. Here we will use two meth-

ods: phenomenological extraction from experimental data (referred to as method I in the

following), and operator evolution equation (method II), and make comparison between

them.

Up to now, NRQCD [6] has been the most effective theoretical framework for quantita-

tively describe heavy quarkonium production and decay. This framework factorizes the LH

decay width of heavy quarkonium as follows:

Γ(hc → LH) = 2Imf1(
1
P

[1]
1 )H1 + 2Imf8(

1
S
[8]
0 )H8 +O(v2Γ),

Γ(χcJ → LH) = 2Imf1(
3
P

[1]
J )H1 + 2Imf8(

3
S
[8]
1 )H8 +O(v2Γ). (1)

The short-distance coefficients Imf1(1P
[1]
1 ), Imf8(1S

[8]
0 ), Imf1(3P

[1]
J ) and Imf8(3S

[8]
1 ) represent

the annihilation of free heavy quark pairs into light hadrons, and could be given analytical

expressions perturbative at αs; while long-distance matrix elements H1 and H8 describe the

evolution of bound state into free heavy quark pair:

m
4
H1 ≡ �hc|O1(

1
P1)|hc� = �χcJ |O1(

3
PJ)|χcJ�+O(v2),

m
2
H8 ≡ �hc|O8(

1
S0)|hc� = �χcJ |O8(

3
S1)|χcJ�+O(v2), (2)

2

C �Ta�Ta��1�1 �
NRQCD

�
Imf 8�1S0�

m2 �1�
�s

� �CF�
CA

2 � �2

2v� .
�26�

Comparing Eqs. �22� and �26�, we can read off the imagi-
nary part of f 8(1S0) to next-to-leading order in �s :

Imf 8�1S0��
�Nc

2�4 ���s
2

4Nc
�1�

�s

� � 4b0ln �

2m �A � � .
�27�

Note that the factorization approach reproduces the standard
prescription of simply dropping the 1/v terms in the pertur-
batively calculated annihilation rate. It is clear that the Cou-
lomb singularity can be factored into the nonperturbative
part trivially in this factorization formula.
Having derived the coefficients Imf 1(1P1) and Im

f 8(1S0), we finally come to the overall result for hadronic

decay of 1�� quarkonium state to next-to-leading order in
�s at leading order of v2. Substituting Eqs. �18� and �27� into
Eq. �3�, we get

��1��→LH��
2�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m �H1

�
�Nc

2�4 ���s
2���

2Nc

��1�
�s

� � 4b0 ln �

2m �A � �H8���. �28�

Working to all orders in �s(�), the final result is indepen-
dent of � , since the coefficients depend on � in such a way
that they will cancel the � dependence of matrix elements.
Now we apply our above result to the charmonium system

to study the decay width of hc . In Eq. �28� making a choice
of ��mc and taking Nc�3, n f�3 we obtain

TABLE I. C (Ta�Ta)(1�1)
full QCD from individual diagrams shown in Fig. 5. The values are normalized to

��Imf 8(1S0)�0 /m2� f (�)(�s /�). Here ��(4�d)/2, f (�)�(4��2/4m2)��(1��), CF�(Nc
2�1)/2Nc ,

CA�Nc , n f stands for the number of light flavors.

Contribution from Contribution from
Diagram two-particle cut three-particle cut

�a� �CF�
CA
2 ���22v�

1
� IR

�2ln2�2 � 0

�b�
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1
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�3ln2�1 � 0
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1
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�
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6
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�
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8n f
9

�h� 0 0
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15
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3 �
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Comparing Eqs. �22� and �26�, we can read off the imagi-
nary part of f 8(1S0) to next-to-leading order in �s :
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Note that the factorization approach reproduces the standard
prescription of simply dropping the 1/v terms in the pertur-
batively calculated annihilation rate. It is clear that the Cou-
lomb singularity can be factored into the nonperturbative
part trivially in this factorization formula.
Having derived the coefficients Imf 1(1P1) and Im

f 8(1S0), we finally come to the overall result for hadronic

decay of 1�� quarkonium state to next-to-leading order in
�s at leading order of v2. Substituting Eqs. �18� and �27� into
Eq. �3�, we get
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2 � 7�2�118
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� � 4b0 ln �

2m �A � �H8���. �28�

Working to all orders in �s(�), the final result is indepen-
dent of � , since the coefficients depend on � in such a way
that they will cancel the � dependence of matrix elements.
Now we apply our above result to the charmonium system

to study the decay width of hc . In Eq. �28� making a choice
of ��mc and taking Nc�3, n f�3 we obtain

TABLE I. C (Ta�Ta)(1�1)
full QCD from individual diagrams shown in Fig. 5. The values are normalized to

��Imf 8(1S0)�0 /m2� f (�)(�s /�). Here ��(4�d)/2, f (�)�(4��2/4m2)��(1��), CF�(Nc
2�1)/2Nc ,

CA�Nc , n f stands for the number of light flavors.

Contribution from Contribution from
Diagram two-particle cut three-particle cut

�a� �CF�
CA
2 ���22v�

1
� IR

�2ln2�2 � 0

�b�
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1
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1
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2 � � 1
� UV

�2ln2�
�2

4 � 0

�e�
CA� 3

2�UV
�
1
2� 1�2�1� �

IR

�2�ln2�
1
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�
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
Imf 8�1S0�

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �
1
2 � 1

�UV
��E� ln

4��UV
2

4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain

Cv� �•v� �1�1 ��1�1 �
NRQCD

�
Imf 1�1P1�

m2 �
� Imf 8�1S0��0

m2
4CF�s

3Nc�
��

1
2 � 1� IR��E�ln

4�� IR
2

4m2 � �ln
�UV

2m � . �17�

From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is

ImMFig. 4�
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4m2 � �
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4��UV
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4m2 � �v� �•v� �������� , �16�

where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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4m2 � �ln
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m � . �18�

Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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Comparing Eqs. �22� and �26�, we can read off the imagi-
nary part of f 8(1S0) to next-to-leading order in �s :

Imf 8�1S0��
�Nc

2�4 ���s
2

4Nc
�1�

�s

� � 4b0ln �

2m �A � � .
�27�

Note that the factorization approach reproduces the standard
prescription of simply dropping the 1/v terms in the pertur-
batively calculated annihilation rate. It is clear that the Cou-
lomb singularity can be factored into the nonperturbative
part trivially in this factorization formula.
Having derived the coefficients Imf 1(1P1) and Im

f 8(1S0), we finally come to the overall result for hadronic

decay of 1�� quarkonium state to next-to-leading order in
�s at leading order of v2. Substituting Eqs. �18� and �27� into
Eq. �3�, we get

��1��→LH��
2�Nc

2�4 �CF�s
3

3Nc
2 � 7�2�118

48 �ln
�

2m �H1

�
�Nc

2�4 ���s
2���

2Nc

��1�
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� � 4b0 ln �

2m �A � �H8���. �28�

Working to all orders in �s(�), the final result is indepen-
dent of � , since the coefficients depend on � in such a way
that they will cancel the � dependence of matrix elements.
Now we apply our above result to the charmonium system

to study the decay width of hc . In Eq. �28� making a choice
of ��mc and taking Nc�3, n f�3 we obtain
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�c1 and �c2 by E760, we determine the two nonperturbative decay matrix elements, and then predict the
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The study of heavy quarkonium physics can provide very
interesting tests of perturbative quantum chromodynamics
�PQCD�. Calculations of the rates for heavy quarkonium de-
cay into light hadrons were among the early applications of
PQCD. These early calculations are based on a naive factor-
ization assumption that all long-distance nonperturbative ef-
fects can be factored into the nonrelativistic wave function of
color-singlet QQ̄ or its derivative at the origin, and the per-
turbative part is related to the annihilation rates of color-
singlet QQ̄ which can be calculated using PQCD. In the
nonrelativistic limit, this early factorization formalism was
supported by explicit calculations for S-wave decays at next-
to-leading order in �s �1�. But in the case of P-wave �2�
quarkonium decays, infrared divergences appeared in the
perturbative calculations of color-singlet QQ̄ annihilation
amplitudes. These are clear indications that the decay rates
are sensitive to nonperturbative effects beyond those related
to the wave function of color-singlet QQ̄ pair or its deriva-
tive at the origin, and not all nonperturbative effects can be
factored into the color-singlet component of quarkonium.
Recently, Bodwin, Braaten, and Lepage �BBL� have devel-
oped a rigorous factorization formalism �3�, which is based
on an effective field theory, nonrelativistic QCD �NRQCD�.
This factorization formalism provides a clean separation be-
tween short-distance effects and long-distance effects for the
decay rates and production cross sections of heavy quarko-
nium.
Nowadays, there is a renewed interest in studying the de-

cay of P-wave charmonium, not only due to the theoretical
development mentioned above but also due to recent experi-
mental results such as the total decay widths of �cJ and the
observation of hc . BBL have applied the new factorization
approach in a phenomenological analysis of P-wave charmo-
nium decays �4�. They give a leading order result with both
the color-singlet and color-octet QQ̄ components. The next-
to-leading order correction to the decay of hc is given in �5�,

where both the color-singlet and color-octet contributions are
included and the explicit cancellation of previously encoun-
tered infrared divergence is revealed. In �6� the next-to-
leading order color-singlet terms are considered in a phe-
nomenological analysis of hadronic annihilation decays of
�cJ . Recently, the next-to-leading order color-octet correc-
tions to hadronic �J decays have also been calculated �7�. In
this paper we will perform a phenomenological study for the
hadronic decays of four P-wave charmonium states by using
the results that completely include the next-to-leading order
QCD corrections.
We start with the formulas for the P-wave quarkonium

decay widths in the new factorization formalism

���J→LH ��2Imf 1�3PJ�H1�2Imf 8�3S1�H8�O�v2��,
�1�

��h→LH ��2Imf 1�1P1�H1�2Imf 8�1S0�H8�O�v2��,
�2�

where H1 and H8 are the matrix elements of color-singlet
and color-octet operators, respectively. The short-distance
coefficients can be extracted by matching the imaginary part
of the on-shell QQ̄ pair forward scattering amplitude calcu-
lated in full perturbative QCD with that calculated in
NRQCD. We list the results to next-to-leading order in �s as

Imf 1�3P0���Imf 1�3P0��0� 1�
�s

� � � 4b0� 4n f
27 � ln �

2m

�� 45481 �
�2

144�CA�� �
7
3�

�2

4 �CF�
58
81n f � � ,

�3�
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Nowadays, there is a renewed interest in studying the de-

cay of P-wave charmonium, not only due to the theoretical
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mental results such as the total decay widths of �cJ and the
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approach in a phenomenological analysis of P-wave charmo-
nium decays �4�. They give a leading order result with both
the color-singlet and color-octet QQ̄ components. The next-
to-leading order correction to the decay of hc is given in �5�,

where both the color-singlet and color-octet contributions are
included and the explicit cancellation of previously encoun-
tered infrared divergence is revealed. In �6� the next-to-
leading order color-singlet terms are considered in a phe-
nomenological analysis of hadronic annihilation decays of
�cJ . Recently, the next-to-leading order color-octet correc-
tions to hadronic �J decays have also been calculated �7�. In
this paper we will perform a phenomenological study for the
hadronic decays of four P-wave charmonium states by using
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QCD corrections.
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coefficients can be extracted by matching the imaginary part
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lated in full perturbative QCD with that calculated in
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singlet QQ̄ which can be calculated using PQCD. In the
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supported by explicit calculations for S-wave decays at next-
to-leading order in �s �1�. But in the case of P-wave �2�
quarkonium decays, infrared divergences appeared in the
perturbative calculations of color-singlet QQ̄ annihilation
amplitudes. These are clear indications that the decay rates
are sensitive to nonperturbative effects beyond those related
to the wave function of color-singlet QQ̄ pair or its deriva-
tive at the origin, and not all nonperturbative effects can be
factored into the color-singlet component of quarkonium.
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on an effective field theory, nonrelativistic QCD �NRQCD�.
This factorization formalism provides a clean separation be-
tween short-distance effects and long-distance effects for the
decay rates and production cross sections of heavy quarko-
nium.
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nium decays �4�. They give a leading order result with both
the color-singlet and color-octet QQ̄ components. The next-
to-leading order correction to the decay of hc is given in �5�,

where both the color-singlet and color-octet contributions are
included and the explicit cancellation of previously encoun-
tered infrared divergence is revealed. In �6� the next-to-
leading order color-singlet terms are considered in a phe-
nomenological analysis of hadronic annihilation decays of
�cJ . Recently, the next-to-leading order color-octet correc-
tions to hadronic �J decays have also been calculated �7�. In
this paper we will perform a phenomenological study for the
hadronic decays of four P-wave charmonium states by using
the results that completely include the next-to-leading order
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and color-octet operators, respectively. The short-distance
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Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2

�s

�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �
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The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads
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�PQCD�. Calculations of the rates for heavy quarkonium de-
cay into light hadrons were among the early applications of
PQCD. These early calculations are based on a naive factor-
ization assumption that all long-distance nonperturbative ef-
fects can be factored into the nonrelativistic wave function of
color-singlet QQ̄ or its derivative at the origin, and the per-
turbative part is related to the annihilation rates of color-
singlet QQ̄ which can be calculated using PQCD. In the
nonrelativistic limit, this early factorization formalism was
supported by explicit calculations for S-wave decays at next-
to-leading order in �s �1�. But in the case of P-wave �2�
quarkonium decays, infrared divergences appeared in the
perturbative calculations of color-singlet QQ̄ annihilation
amplitudes. These are clear indications that the decay rates
are sensitive to nonperturbative effects beyond those related
to the wave function of color-singlet QQ̄ pair or its deriva-
tive at the origin, and not all nonperturbative effects can be
factored into the color-singlet component of quarkonium.
Recently, Bodwin, Braaten, and Lepage �BBL� have devel-
oped a rigorous factorization formalism �3�, which is based
on an effective field theory, nonrelativistic QCD �NRQCD�.
This factorization formalism provides a clean separation be-
tween short-distance effects and long-distance effects for the
decay rates and production cross sections of heavy quarko-
nium.
Nowadays, there is a renewed interest in studying the de-

cay of P-wave charmonium, not only due to the theoretical
development mentioned above but also due to recent experi-
mental results such as the total decay widths of �cJ and the
observation of hc . BBL have applied the new factorization
approach in a phenomenological analysis of P-wave charmo-
nium decays �4�. They give a leading order result with both
the color-singlet and color-octet QQ̄ components. The next-
to-leading order correction to the decay of hc is given in �5�,

where both the color-singlet and color-octet contributions are
included and the explicit cancellation of previously encoun-
tered infrared divergence is revealed. In �6� the next-to-
leading order color-singlet terms are considered in a phe-
nomenological analysis of hadronic annihilation decays of
�cJ . Recently, the next-to-leading order color-octet correc-
tions to hadronic �J decays have also been calculated �7�. In
this paper we will perform a phenomenological study for the
hadronic decays of four P-wave charmonium states by using
the results that completely include the next-to-leading order
QCD corrections.
We start with the formulas for the P-wave quarkonium

decay widths in the new factorization formalism
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lated in full perturbative QCD with that calculated in
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χc1, χc2 →LH

two unknown ones:
H1,H8

process dependent

ImMFig. 3�
Imf 1�1P1�

m2 v� �•v� �������� . �15�

Since Imf 8(1S0) is already known to be of order �s
2 , it is

necessary to compute the contribution of the operator
O8(1S0) to an accuracy of �s . It is obvious that this contri-

bution only comes from one-loop diagrams in Figs. 4�a�–
4�d� which contain a four-fermion vertex corresponding to
O8(1S0), and these one-loop figures cause the transition
from a color octet QQ̄ into a color singlet QQ̄ . The overall
contribution of diagrams in Fig. 4 is
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where 1/� IR is the IR �infrared� divergence and � IR is the corresponding scale, while 1/�UV is the UV �ultraviolet� divergence
and �UV is the corresponding scale. After the renormalization of operator O8(1S0) in the modified minimal subtraction
(MS) scheme the result is free from UV divergence, but the IR divergence still remains and it represents the nonperturbative
nature of the annihilation amplitude. To order �s

3 Imf 8(1S0) on the right-hand side of Eq. �16� must be taken as
�Imf 8(1S0)�0, and then we obtain
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From Eqs. �14� and �17�, we find that the coefficients of IR
divergence are the same. It is clear that the IR divergence
appearing in Eq. �14� is proportional to the probability of
transition between a color-singlet QQ̄ pair and a color-octet
QQ̄ pair by the emission of a soft gluon. This is the nonper-
turbative effect and must be factored into the long-distance
matrix elements which have been defined explicitly in
NRQCD. Comparing Eqs. �14� with �17� and using Eq. �9�,
the finite coefficient Imf 1(1P1) is found to be

Imf 1�1P1��
�Nc

2�4 �CF�s
3
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2 � 7�2�118

48 �ln
�
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Obviously the previously encountered IR divergence has
been canceled and factored into the nonperturbative matrix
element. The operator O8(1S0) satisfies the evolution equa-
tion

�
�O8�

1S0�
��

��s���
4CF

3�Ncm2O1�
1P1�, �19�

which has been derived in �4�. We have neglected the sub-
script ‘‘UV’’ in � and we will keep this notation in our
work.
We have derived the coefficient Imf 8(1S0) to leading or-

der in �s . In order to get the result to next-to-leading order,
we must consider the imaginary part of scattering amplitude
of QQ̄ pair to order in �s

3 in full QCD. The diagrams which
contribute to the coefficient of the term ���Ta����Ta� in
ImM to next-to-leading order in �s are shown in Fig. 5. We
only give the representative diagrams and neglect the dia-
grams which give the same result as some of those in Fig. 5.

The contribution from each diagram in terms of the unrenor-
malized coupling constant has in general the form

�Imf 8�1S0��0
m2
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�
f ���A�‘‘diagram’’ � �20�

with

f ����� 4��2

4m2 � �

��1���.

The imaginary part of these diagrams receives contributions
from a two-gluon cut, three-gluon cut, and a ‘‘light’’ quark-
antiquark pair plus one-gluon cut. The contribution of each
individual diagram is calculated in the Feynman gauge.
Hence we have to add a ghost contribution both to the two-
gluon cut and to the three-gluon cut in the diagram of Fig.
5�f�. Our results for the contributions from individual dia-
grams are listed in Table I.
Divergences show up in the intermediate steps of the cal-

culation, the dimensional regularization procedure is used by
going to d dimensions and introducing a scale � through the
standard replacement of the bare coupling constant
g→g� (d�4)/2. Manifest gauge invariance and massless par-
ticle kinematics greatly simplify the calculations. The origin
of the ��0 poles is specified in the table by the subscripts
UV and IR. In the table we give the regularized and unrenor-
malized results for these diagrams, which show a 1/(d�4)
divergence and a finite part.
The overall result for the unrenormalized first-order radia-

tive correction to the coefficient C (Ta�Ta)(1�1) in full QCD
can be obtained by summing up all different individual con-
tributions, and reads

54 3069QCD RADIATIVE CORRECTION TO THE HADRONIC . . .

based on operator mixing

evolution by 
renormalization scale μ 

Method I Method II

Friday, August 27, 2010



NLO LH decay width in NRQCD

Friday, August 27, 2010



shaded region: method I
single curve: method II

NLO LH decay width in NRQCD

Friday, August 27, 2010



shaded region: method I
single curve: method II

NLO LH decay width in NRQCD

At renormalization scale 
μ=2m 

Friday, August 27, 2010



shaded region: method I
single curve: method II

NLO LH decay width in NRQCD

0.597±0.032 MeV by 
Method I

0.895 MeV by 
Method II 

At renormalization scale 
μ=2m 

Friday, August 27, 2010



E1 transition width

Friday, August 27, 2010



E1 transition width
spin-symmetry

Friday, August 27, 2010



E1 transition width
spin-symmetry

Friday, August 27, 2010



E1 transition width
spin-symmetry

(Maltoni, arXiv: hep-ph/0007003)

Friday, August 27, 2010



E1 transition width
spin-symmetry

(Maltoni, arXiv: hep-ph/0007003)

plug into PDG10

Friday, August 27, 2010



E1 transition width
spin-symmetry

(Maltoni, arXiv: hep-ph/0007003)

plug into PDG10

average among χcJ 

Friday, August 27, 2010



E1 transition width
spin-symmetry

(Maltoni, arXiv: hep-ph/0007003)

plug into PDG10

average among χcJ 

Friday, August 27, 2010



E1 transition width
spin-symmetry

(Maltoni, arXiv: hep-ph/0007003)

0.600 MeV
plug into PDG10

average among χcJ 

Friday, August 27, 2010



E1 transition width
spin-symmetry

(Maltoni, arXiv: hep-ph/0007003)

0.600 MeV
plug into PDG10

average among χcJ 

(Chao et.al., PLB301, 282)

Friday, August 27, 2010



E1 transition width
spin-symmetry

(Maltoni, arXiv: hep-ph/0007003)

0.600 MeV
plug into PDG10

average among χcJ 

(Chao et.al., PLB301, 282)

Leading order:  0.646 MeV

Friday, August 27, 2010



E1 transition width
spin-symmetry

(Maltoni, arXiv: hep-ph/0007003)

0.600 MeV
plug into PDG10

average among χcJ 

relativistic correction
(Chao et.al., PLB301, 282)

Leading order:  0.646 MeV

Friday, August 27, 2010



E1 transition width
spin-symmetry

(Maltoni, arXiv: hep-ph/0007003)

0.600 MeV
plug into PDG10

average among χcJ 

relativistic correction
(Chao et.al., PLB301, 282)

Leading order:  0.646 MeV

next-to-leading order:  0.383 MeV

Friday, August 27, 2010



Total width of hc in NRQCD

Friday, August 27, 2010



Total width of hc in NRQCD

Friday, August 27, 2010



Total width of hc in NRQCD

= 0.597 +

Friday, August 27, 2010



Total width of hc in NRQCD
            

0.600
0.646
0.383   

= 0.597 +

Friday, August 27, 2010



Total width of hc in NRQCD
            

0.600
0.646
0.383   

= 0.597 + MeV

Friday, August 27, 2010



Total width of hc in NRQCD
            

0.600
0.646
0.383   

= 0.597 + MeV

=

Friday, August 27, 2010



Total width of hc in NRQCD
            

0.600
0.646
0.383   

= 0.597 + MeV

=
1.20
1.24           

0.980

Friday, August 27, 2010



Total width of hc in NRQCD
            

0.600
0.646
0.383   

= 0.597 + MeV

=
1.20
1.24           

0.980
MeV

Friday, August 27, 2010



Total width of hc in NRQCD
            

0.600
0.646
0.383   

= 0.597 + MeV

=
1.20
1.24           

0.980
MeV

 0.597 MeV

Friday, August 27, 2010



Total width of hc in NRQCD
            

0.600
0.646
0.383   

= 0.597 + MeV

=
1.20
1.24           

0.980
MeV

 0.597 MeV

19Seoul National University, Seoul, 151-747 Korea
20Shandong University, Jinan 250100, People’s Republic of China
21Shanxi University, Taiyuan 030006, People’s Republic of China

22Sichuan University, Chengdu 610064, People’s Republic of China
23Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China

24The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
25The University of Hong Kong, Pokfulam, Hong Kong

26The University of Tokyo, Tokyo 113-0033 Japan
27Tsinghua University, Beijing 100084, People’s Republic of China

28Universitaet Giessen, 35392 Giessen, Germany
29University of Hawaii, Honolulu, Hawaii 96822, USA

30University of Minnesota, Minneapolis, Minnesota 55455, USA
31University of Science and Technology of China, Hefei 230026, People’s Republic of China

32University of Turin and INFN, Turin, Italy
33University of Washington, Seattle, Washington 98195, USA

34Wuhan University, Wuhan 430072, People’s Republic of China
35Zhejiang University, Hangzhou 310027, People’s Republic of China

36Zhengzhou University, Zhengzhou 450001, People’s Republic of China
(Received 2 February 2010; published 30 March 2010)

We present measurements of the charmonium state hcð1P1Þ made with 106# 106 c 0 events collected
by BESIII at BEPCII. Clear signals are observed for c 0 ! !0hc with and without the subsequent radiative
decay hc ! "#c. First measurements of the absolute branching ratios Bðc 0 ! !0hcÞ ¼ ð8:4% 1:3%
1:0Þ # 10&4 and Bðhc ! "#cÞ ¼ ð54:3% 6:7% 5:2Þ% are presented. A statistics-limited determination

of the previously unmeasured hc width leads to an upper limit !ðhcÞ< 1:44 MeV (90% confidence).

Measurements of MðhcÞ ¼ 3525:40% 0:13% 0:18 MeV=c2 and Bðc 0 ! !0hcÞ #Bðhc ! "#cÞ ¼
ð4:58% 0:40% 0:50Þ # 10&4 are consistent with previous results.
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Although the charmonium family of mesons composed
of a charmed quark and its own antiquark (c "c) has been
studied for many years, knowledge is sparse on the singlet
state hcð1P1Þ. The only known production mode of hc from
other charmonium decays is c 0 ! !0hc, but its branching
ratio has not been previously measured. For the decay
chain c 0 ! !0hc, hc ! "#c, the absolute branching ratio
of hc ! "#c also has not previously been measured. Their
measurements will allow the test of isospin violation
mechanisms in charmonium hadronic transitions and guide
refinements of theoretical methods in the charmonium
region. Early predictions for the properties of the hc are
found in Refs. [1,2]. More recently, Kuang [3] considered
the effect of S&D mixing and predicted Bðc 0 !
!0hcÞ ¼ ð0:4& 1:3Þ # 10&3, and gave estimates of
Bðhc ! "#cÞ ¼ 88% and !ðhcÞ ¼ ð0:51% 0:01Þ MeV
for perturbative QCD and Bðhc ! "#cÞ ¼ 41% and
!ðhcÞ ¼ ð1:1% 0:09Þ MeV with nonrelativistic QCD.
Godfrey and Rosner have predicted Bðhc ! "#cÞ ¼
38% [4]. A recent unquenched lattice QCD analysis [5]
included a prediction of the width !ðhc ! "#cÞ ¼
ð0:601% 0:055Þ MeV.

Information about the spin-dependent interaction of
heavy quarks can be obtained from precise measurement
of the 1P hyperfine mass splitting #Mhf ' hMð13PÞi&
Mð11P1Þ, where hMð13PJÞi ¼ ½Mð$c0Þ þ 3Mð$c1Þ þ
5Mð$c2Þ*=9 ¼ 3525:30% 0:04 MeV=c2 [6] is the spin-
weighted centroid of the 3PJ mass and Mð11P1Þ is the

mass of the singlet state hc. A nonzero hyperfine splitting
may give indication of nonvanishing spin-spin interactions
in charmonium potential models [7].
This Letter reports first results from the BESIII experi-

ment at the BEPCII storage ring [8,9] on the production
and decay of the hc at the c 0 resonance. We study distri-
butions of mass recoiling against a detected !0 to measure
c 0 ! !0hc both inclusively and in events tagged as hc !
"#c by detection of the E1 transition photon. Combining
inclusive and E1-tagged yields, we determine for the first
time the branching ratio for c 0 ! !0hc and that for the E1
transition hc ! "#c, as well as the hc width. We also
measure the product branching ratio for the chain c 0 !
!0hc, hc ! "#c and the hc mass, confirming previous
results.
The CLEO Collaboration first observed the hc in the

cascade process c 0 ! !0hc, hc ! "#c in both inclusive
and exclusive measurements [10], and later improved the
hc mass determination [11] with more data. They average
their measurements in [11] to obtain MðhcÞ ¼ ð3525:20%
0:18% 0:12Þ MeV=c2. The E835 experiment [12] scanned
antiproton energy and observed p "p ! hc ! "#c.
Recently, CLEO reported evidence for the decay hc !
!þ!&!þ!&!0 with indications that the width for hc
multihadronic decays is comparable to that for the radia-
tive transition to #c [13].
BEPCII is a two-ring eþe& collider designed for a peak

luminosity of 1033 cm&2 s&1 at a beam current of 0.93 A.
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We present measurements of the charmonium state hcð1P1Þ made with 106# 106 c 0 events collected
by BESIII at BEPCII. Clear signals are observed for c 0 ! !0hc with and without the subsequent radiative
decay hc ! "#c. First measurements of the absolute branching ratios Bðc 0 ! !0hcÞ ¼ ð8:4% 1:3%
1:0Þ # 10&4 and Bðhc ! "#cÞ ¼ ð54:3% 6:7% 5:2Þ% are presented. A statistics-limited determination
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Measurements of MðhcÞ ¼ 3525:40% 0:13% 0:18 MeV=c2 and Bðc 0 ! !0hcÞ #Bðhc ! "#cÞ ¼
ð4:58% 0:40% 0:50Þ # 10&4 are consistent with previous results.
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Although the charmonium family of mesons composed
of a charmed quark and its own antiquark (c "c) has been
studied for many years, knowledge is sparse on the singlet
state hcð1P1Þ. The only known production mode of hc from
other charmonium decays is c 0 ! !0hc, but its branching
ratio has not been previously measured. For the decay
chain c 0 ! !0hc, hc ! "#c, the absolute branching ratio
of hc ! "#c also has not previously been measured. Their
measurements will allow the test of isospin violation
mechanisms in charmonium hadronic transitions and guide
refinements of theoretical methods in the charmonium
region. Early predictions for the properties of the hc are
found in Refs. [1,2]. More recently, Kuang [3] considered
the effect of S&D mixing and predicted Bðc 0 !
!0hcÞ ¼ ð0:4& 1:3Þ # 10&3, and gave estimates of
Bðhc ! "#cÞ ¼ 88% and !ðhcÞ ¼ ð0:51% 0:01Þ MeV
for perturbative QCD and Bðhc ! "#cÞ ¼ 41% and
!ðhcÞ ¼ ð1:1% 0:09Þ MeV with nonrelativistic QCD.
Godfrey and Rosner have predicted Bðhc ! "#cÞ ¼
38% [4]. A recent unquenched lattice QCD analysis [5]
included a prediction of the width !ðhc ! "#cÞ ¼
ð0:601% 0:055Þ MeV.

Information about the spin-dependent interaction of
heavy quarks can be obtained from precise measurement
of the 1P hyperfine mass splitting #Mhf ' hMð13PÞi&
Mð11P1Þ, where hMð13PJÞi ¼ ½Mð$c0Þ þ 3Mð$c1Þ þ
5Mð$c2Þ*=9 ¼ 3525:30% 0:04 MeV=c2 [6] is the spin-
weighted centroid of the 3PJ mass and Mð11P1Þ is the

mass of the singlet state hc. A nonzero hyperfine splitting
may give indication of nonvanishing spin-spin interactions
in charmonium potential models [7].
This Letter reports first results from the BESIII experi-

ment at the BEPCII storage ring [8,9] on the production
and decay of the hc at the c 0 resonance. We study distri-
butions of mass recoiling against a detected !0 to measure
c 0 ! !0hc both inclusively and in events tagged as hc !
"#c by detection of the E1 transition photon. Combining
inclusive and E1-tagged yields, we determine for the first
time the branching ratio for c 0 ! !0hc and that for the E1
transition hc ! "#c, as well as the hc width. We also
measure the product branching ratio for the chain c 0 !
!0hc, hc ! "#c and the hc mass, confirming previous
results.
The CLEO Collaboration first observed the hc in the

cascade process c 0 ! !0hc, hc ! "#c in both inclusive
and exclusive measurements [10], and later improved the
hc mass determination [11] with more data. They average
their measurements in [11] to obtain MðhcÞ ¼ ð3525:20%
0:18% 0:12Þ MeV=c2. The E835 experiment [12] scanned
antiproton energy and observed p "p ! hc ! "#c.
Recently, CLEO reported evidence for the decay hc !
!þ!&!þ!&!0 with indications that the width for hc
multihadronic decays is comparable to that for the radia-
tive transition to #c [13].
BEPCII is a two-ring eþe& collider designed for a peak

luminosity of 1033 cm&2 s&1 at a beam current of 0.93 A.
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We present measurements of the charmonium state hcð1P1Þ made with 106# 106 c 0 events collected
by BESIII at BEPCII. Clear signals are observed for c 0 ! !0hc with and without the subsequent radiative
decay hc ! "#c. First measurements of the absolute branching ratios Bðc 0 ! !0hcÞ ¼ ð8:4% 1:3%
1:0Þ # 10&4 and Bðhc ! "#cÞ ¼ ð54:3% 6:7% 5:2Þ% are presented. A statistics-limited determination

of the previously unmeasured hc width leads to an upper limit !ðhcÞ< 1:44 MeV (90% confidence).

Measurements of MðhcÞ ¼ 3525:40% 0:13% 0:18 MeV=c2 and Bðc 0 ! !0hcÞ #Bðhc ! "#cÞ ¼
ð4:58% 0:40% 0:50Þ # 10&4 are consistent with previous results.
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Although the charmonium family of mesons composed
of a charmed quark and its own antiquark (c "c) has been
studied for many years, knowledge is sparse on the singlet
state hcð1P1Þ. The only known production mode of hc from
other charmonium decays is c 0 ! !0hc, but its branching
ratio has not been previously measured. For the decay
chain c 0 ! !0hc, hc ! "#c, the absolute branching ratio
of hc ! "#c also has not previously been measured. Their
measurements will allow the test of isospin violation
mechanisms in charmonium hadronic transitions and guide
refinements of theoretical methods in the charmonium
region. Early predictions for the properties of the hc are
found in Refs. [1,2]. More recently, Kuang [3] considered
the effect of S&D mixing and predicted Bðc 0 !
!0hcÞ ¼ ð0:4& 1:3Þ # 10&3, and gave estimates of
Bðhc ! "#cÞ ¼ 88% and !ðhcÞ ¼ ð0:51% 0:01Þ MeV
for perturbative QCD and Bðhc ! "#cÞ ¼ 41% and
!ðhcÞ ¼ ð1:1% 0:09Þ MeV with nonrelativistic QCD.
Godfrey and Rosner have predicted Bðhc ! "#cÞ ¼
38% [4]. A recent unquenched lattice QCD analysis [5]
included a prediction of the width !ðhc ! "#cÞ ¼
ð0:601% 0:055Þ MeV.

Information about the spin-dependent interaction of
heavy quarks can be obtained from precise measurement
of the 1P hyperfine mass splitting #Mhf ' hMð13PÞi&
Mð11P1Þ, where hMð13PJÞi ¼ ½Mð$c0Þ þ 3Mð$c1Þ þ
5Mð$c2Þ*=9 ¼ 3525:30% 0:04 MeV=c2 [6] is the spin-
weighted centroid of the 3PJ mass and Mð11P1Þ is the

mass of the singlet state hc. A nonzero hyperfine splitting
may give indication of nonvanishing spin-spin interactions
in charmonium potential models [7].
This Letter reports first results from the BESIII experi-

ment at the BEPCII storage ring [8,9] on the production
and decay of the hc at the c 0 resonance. We study distri-
butions of mass recoiling against a detected !0 to measure
c 0 ! !0hc both inclusively and in events tagged as hc !
"#c by detection of the E1 transition photon. Combining
inclusive and E1-tagged yields, we determine for the first
time the branching ratio for c 0 ! !0hc and that for the E1
transition hc ! "#c, as well as the hc width. We also
measure the product branching ratio for the chain c 0 !
!0hc, hc ! "#c and the hc mass, confirming previous
results.
The CLEO Collaboration first observed the hc in the

cascade process c 0 ! !0hc, hc ! "#c in both inclusive
and exclusive measurements [10], and later improved the
hc mass determination [11] with more data. They average
their measurements in [11] to obtain MðhcÞ ¼ ð3525:20%
0:18% 0:12Þ MeV=c2. The E835 experiment [12] scanned
antiproton energy and observed p "p ! hc ! "#c.
Recently, CLEO reported evidence for the decay hc !
!þ!&!þ!&!0 with indications that the width for hc
multihadronic decays is comparable to that for the radia-
tive transition to #c [13].
BEPCII is a two-ring eþe& collider designed for a peak

luminosity of 1033 cm&2 s&1 at a beam current of 0.93 A.
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We present measurements of the charmonium state hcð1P1Þ made with 106# 106 c 0 events collected
by BESIII at BEPCII. Clear signals are observed for c 0 ! !0hc with and without the subsequent radiative
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1:0Þ # 10&4 and Bðhc ! "#cÞ ¼ ð54:3% 6:7% 5:2Þ% are presented. A statistics-limited determination

of the previously unmeasured hc width leads to an upper limit !ðhcÞ< 1:44 MeV (90% confidence).

Measurements of MðhcÞ ¼ 3525:40% 0:13% 0:18 MeV=c2 and Bðc 0 ! !0hcÞ #Bðhc ! "#cÞ ¼
ð4:58% 0:40% 0:50Þ # 10&4 are consistent with previous results.
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Although the charmonium family of mesons composed
of a charmed quark and its own antiquark (c "c) has been
studied for many years, knowledge is sparse on the singlet
state hcð1P1Þ. The only known production mode of hc from
other charmonium decays is c 0 ! !0hc, but its branching
ratio has not been previously measured. For the decay
chain c 0 ! !0hc, hc ! "#c, the absolute branching ratio
of hc ! "#c also has not previously been measured. Their
measurements will allow the test of isospin violation
mechanisms in charmonium hadronic transitions and guide
refinements of theoretical methods in the charmonium
region. Early predictions for the properties of the hc are
found in Refs. [1,2]. More recently, Kuang [3] considered
the effect of S&D mixing and predicted Bðc 0 !
!0hcÞ ¼ ð0:4& 1:3Þ # 10&3, and gave estimates of
Bðhc ! "#cÞ ¼ 88% and !ðhcÞ ¼ ð0:51% 0:01Þ MeV
for perturbative QCD and Bðhc ! "#cÞ ¼ 41% and
!ðhcÞ ¼ ð1:1% 0:09Þ MeV with nonrelativistic QCD.
Godfrey and Rosner have predicted Bðhc ! "#cÞ ¼
38% [4]. A recent unquenched lattice QCD analysis [5]
included a prediction of the width !ðhc ! "#cÞ ¼
ð0:601% 0:055Þ MeV.

Information about the spin-dependent interaction of
heavy quarks can be obtained from precise measurement
of the 1P hyperfine mass splitting #Mhf ' hMð13PÞi&
Mð11P1Þ, where hMð13PJÞi ¼ ½Mð$c0Þ þ 3Mð$c1Þ þ
5Mð$c2Þ*=9 ¼ 3525:30% 0:04 MeV=c2 [6] is the spin-
weighted centroid of the 3PJ mass and Mð11P1Þ is the

mass of the singlet state hc. A nonzero hyperfine splitting
may give indication of nonvanishing spin-spin interactions
in charmonium potential models [7].
This Letter reports first results from the BESIII experi-

ment at the BEPCII storage ring [8,9] on the production
and decay of the hc at the c 0 resonance. We study distri-
butions of mass recoiling against a detected !0 to measure
c 0 ! !0hc both inclusively and in events tagged as hc !
"#c by detection of the E1 transition photon. Combining
inclusive and E1-tagged yields, we determine for the first
time the branching ratio for c 0 ! !0hc and that for the E1
transition hc ! "#c, as well as the hc width. We also
measure the product branching ratio for the chain c 0 !
!0hc, hc ! "#c and the hc mass, confirming previous
results.
The CLEO Collaboration first observed the hc in the

cascade process c 0 ! !0hc, hc ! "#c in both inclusive
and exclusive measurements [10], and later improved the
hc mass determination [11] with more data. They average
their measurements in [11] to obtain MðhcÞ ¼ ð3525:20%
0:18% 0:12Þ MeV=c2. The E835 experiment [12] scanned
antiproton energy and observed p "p ! hc ! "#c.
Recently, CLEO reported evidence for the decay hc !
!þ!&!þ!&!0 with indications that the width for hc
multihadronic decays is comparable to that for the radia-
tive transition to #c [13].
BEPCII is a two-ring eþe& collider designed for a peak

luminosity of 1033 cm&2 s&1 at a beam current of 0.93 A.
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We present measurements of the charmonium state hcð1P1Þ made with 106# 106 c 0 events collected
by BESIII at BEPCII. Clear signals are observed for c 0 ! !0hc with and without the subsequent radiative
decay hc ! "#c. First measurements of the absolute branching ratios Bðc 0 ! !0hcÞ ¼ ð8:4% 1:3%
1:0Þ # 10&4 and Bðhc ! "#cÞ ¼ ð54:3% 6:7% 5:2Þ% are presented. A statistics-limited determination

of the previously unmeasured hc width leads to an upper limit !ðhcÞ< 1:44 MeV (90% confidence).

Measurements of MðhcÞ ¼ 3525:40% 0:13% 0:18 MeV=c2 and Bðc 0 ! !0hcÞ #Bðhc ! "#cÞ ¼
ð4:58% 0:40% 0:50Þ # 10&4 are consistent with previous results.

DOI: 10.1103/PhysRevLett.104.132002 PACS numbers: 14.40.Pq, 12.38.Qk, 13.25.Gv

Although the charmonium family of mesons composed
of a charmed quark and its own antiquark (c "c) has been
studied for many years, knowledge is sparse on the singlet
state hcð1P1Þ. The only known production mode of hc from
other charmonium decays is c 0 ! !0hc, but its branching
ratio has not been previously measured. For the decay
chain c 0 ! !0hc, hc ! "#c, the absolute branching ratio
of hc ! "#c also has not previously been measured. Their
measurements will allow the test of isospin violation
mechanisms in charmonium hadronic transitions and guide
refinements of theoretical methods in the charmonium
region. Early predictions for the properties of the hc are
found in Refs. [1,2]. More recently, Kuang [3] considered
the effect of S&D mixing and predicted Bðc 0 !
!0hcÞ ¼ ð0:4& 1:3Þ # 10&3, and gave estimates of
Bðhc ! "#cÞ ¼ 88% and !ðhcÞ ¼ ð0:51% 0:01Þ MeV
for perturbative QCD and Bðhc ! "#cÞ ¼ 41% and
!ðhcÞ ¼ ð1:1% 0:09Þ MeV with nonrelativistic QCD.
Godfrey and Rosner have predicted Bðhc ! "#cÞ ¼
38% [4]. A recent unquenched lattice QCD analysis [5]
included a prediction of the width !ðhc ! "#cÞ ¼
ð0:601% 0:055Þ MeV.

Information about the spin-dependent interaction of
heavy quarks can be obtained from precise measurement
of the 1P hyperfine mass splitting #Mhf ' hMð13PÞi&
Mð11P1Þ, where hMð13PJÞi ¼ ½Mð$c0Þ þ 3Mð$c1Þ þ
5Mð$c2Þ*=9 ¼ 3525:30% 0:04 MeV=c2 [6] is the spin-
weighted centroid of the 3PJ mass and Mð11P1Þ is the

mass of the singlet state hc. A nonzero hyperfine splitting
may give indication of nonvanishing spin-spin interactions
in charmonium potential models [7].
This Letter reports first results from the BESIII experi-

ment at the BEPCII storage ring [8,9] on the production
and decay of the hc at the c 0 resonance. We study distri-
butions of mass recoiling against a detected !0 to measure
c 0 ! !0hc both inclusively and in events tagged as hc !
"#c by detection of the E1 transition photon. Combining
inclusive and E1-tagged yields, we determine for the first
time the branching ratio for c 0 ! !0hc and that for the E1
transition hc ! "#c, as well as the hc width. We also
measure the product branching ratio for the chain c 0 !
!0hc, hc ! "#c and the hc mass, confirming previous
results.
The CLEO Collaboration first observed the hc in the

cascade process c 0 ! !0hc, hc ! "#c in both inclusive
and exclusive measurements [10], and later improved the
hc mass determination [11] with more data. They average
their measurements in [11] to obtain MðhcÞ ¼ ð3525:20%
0:18% 0:12Þ MeV=c2. The E835 experiment [12] scanned
antiproton energy and observed p "p ! hc ! "#c.
Recently, CLEO reported evidence for the decay hc !
!þ!&!þ!&!0 with indications that the width for hc
multihadronic decays is comparable to that for the radia-
tive transition to #c [13].
BEPCII is a two-ring eþe& collider designed for a peak

luminosity of 1033 cm&2 s&1 at a beam current of 0.93 A.
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Total width of hc in NRQCD

0.895 MeV by Method II , error∼30% compared to 
0.597 MeV by Method I 

Evolution equation is a good method to evaluate P-wave long-
distance matrix element, and can be extended to D-wave LH 

decay, non-    decay which are lack of data.DD̄
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and m being the charm quark mass. We give theoretical predictions based on [3, 4], while

[5] could give consistent results.

Method I: Given χc1 and χc2 LH decay widths [7], H1 and H8 could be determined by

phenomenological extraction

H1 = 12.6± 1.2 MeV,

H8 = 2.02± 0.09 MeV. (4)

Errors due to experimental measurement uncertainties are considered here. In this way, LH

decay widths of hc and χc0 will be

Γ(hc → LH) = 0.600± 0.032 MeV,

Γ(χc0 → LH) = 7.82± 0.67 MeV, (5)

where the central values are taken at renormalization or factorization scale µ = 2m, the

boundstate mass, with m = 1.5GeV.

Method II: Another possible way is to evolve the S-wave color-octet (CO) matrix element

from P-wave color-singlet (CS) one, which could be set from potential model wave funtion

at the origin[8]:

H1 =
3Nc

2π

|R1p(0)|2

m4
,

H8 =
4CF

3Ncβ0
ln[

αs(Λ0)

αs(Λ)
]H1, (6)

where Nc = 3, |R1p(0)|2 = 0.075GeV5[8], CF = 4
3 , β0 = 11CA−2nf

6 , Λ0 = mv, Λ = 2m and v

is the typical velocity of charmonium system: v
2 = 0.3. With those input parameters, LH

3
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phenomenological extraction

H1 = 12.6± 1.2 MeV,

H8 = 2.02± 0.09 MeV. (4)

Errors due to experimental measurement uncertainties are considered here. In this way, LH

decay widths of hc and χc0 will be

Γ(hc → LH) = 0.600± 0.032 MeV,

Γ(χc0 → LH) = 7.82± 0.67 MeV, (5)

where the central values are taken at renormalization or factorization scale µ = 2m, the

boundstate mass, with m = 1.5GeV.

Method II: Another possible way is to evolve the S-wave color-octet (CO) matrix element

from P-wave color-singlet (CS) one, which could be set from potential model wave funtion

at the origin[8]:

H1 =
3Nc

2π

|R1p(0)|2

m4
,

H8 =
4CF

3Ncβ0
ln[

αs(Λ0)

αs(Λ)
]H1, (6)

where Nc = 3, |R1p(0)|2 = 0.075GeV5[8], CF = 4
3 , β0 = 11CA−2nf

6 , Λ0 = mv, Λ = 2m and v

is the typical velocity of charmonium system: v
2 = 0.3. With those input parameters, LH

3

Λ0=mv=0.822 GeV, Λ=2m =3GeV

(Brambilla et.al., PRL88:012003,2002)Λ0=1GeV
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where effective operators have the following definitions[6]

O1(
1
P1) = ψ†(− i

2

←→
D )χ · χ†(− i

2

←→
D )ψ,

O1(
3
P0) =

1

3
ψ†(− i

2

←→
D · σ)χχ†(− i

2

←→
D · σ)ψ,

O1(
3
P1) =

1

2
ψ†(− i

2

←→
D × σ)χ · χ†(− i

2

←→
D × σ)ψ,

O1(
3
P2) = ψ†(− i

2

←→
D

(iσj))χχ†(− i

2

←→
D

(iσj))ψ,

O8(
1
S0) = ψ†

T
aχχ†

T
aψ,

O8(
3
S1) = ψ†σT aχ · χ†σT aψ, (3)

and m being the charm quark mass. We give theoretical predictions based on [3, 4], while

[5] could give consistent results.

Method I: Given χc1 and χc2 LH decay widths [7], H1 and H8 could be determined by

phenomenological extraction

H1 = 12.6± 1.2 MeV,

H8 = 2.02± 0.09 MeV. (4)

Errors due to experimental measurement uncertainties are considered here. In this way, LH

decay widths of hc and χc0 will be

Γ(hc → LH) = 0.600± 0.032 MeV,

Γ(χc0 → LH) = 7.82± 0.67 MeV, (5)

where the central values are taken at renormalization or factorization scale µ = 2m, the

boundstate mass, with m = 1.5GeV.

Method II: Another possible way is to evolve the S-wave color-octet (CO) matrix element

from P-wave color-singlet (CS) one, which could be set from potential model wave funtion

at the origin[8]:

H1 =
3Nc

2π

|R1p(0)|2

m4
,

H8 =
4CF

3Ncβ0
ln[

αs(Λ0)

αs(Λ)
]H1, (6)

where Nc = 3, |R1p(0)|2 = 0.075GeV5[8], CF = 4
3 , β0 = 11CA−2nf

6 , Λ0 = mv, Λ = 2m and v

is the typical velocity of charmonium system: v
2 = 0.3. With those input parameters, LH

3

Λ0=mv=0.822 GeV, Λ=2m =3GeV

(Brambilla et.al., PRL88:012003,2002)Λ0=1GeV

error∼40%
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7.76±0.67 MeV 
by Method I
13.1 MeV by 
Method II
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χc1,χc2 LH decay width  in NRQCD

filled belts :PDG 10 data;
curves: NRQCD predictions using Method II

At perturbative energy 
scale μ = 2m

decay widths in method II are:

Γ(hc → LH) = 0.895 MeV,

Γ(χc0 → LH) = 13.1 MeV, (7)

taken at renormalization scale µ = 2m.

It is easy to see that (5) and (7) differ a lot, which could be depicted explicitly in Fig. 1.

FIG. 1. hc and χc0 LH decay widths in method I and II.

The shaded regions between two curves reflect decay widths by method I, while single

curves represent those by method II, and the renormalization scale µ ranges from typical

momentum mv to 2m. Apparently, the total width Γ(hc) to NLO in αs in method II is

not consistent with BESIII measurement, for the LH decay width almost saturates the total

width (0.9 MeV) and possibly exceeds its upper limit (1.44 MeV).

We even give method II results for χc1 and χc2, and compare them with 2010 updated

PDG data[7]. See Fig. 2.

The filled belts are experimental measurement with errors; and curves, whether intersect

shaded regions or not, draw NRQCD predictions using method II. At perturbative energy

scale µ = 2m,

Γ(χc1 → LH) = 0.834 MeV,

Γ(χc2 → LH) = 2.57 MeV, (8)

which are waiting for new experimental values by BESIII.
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Summary
We estimate hc light hadronic decay width up to 
NLO in αs in NRQCD, and together with E1 
transition width, the total width of hc is larger 
than the central value of BESIII.

Operator evolution equation is a good method to 
evaluate P-wave long-distance matrix element, 
and can be extended to D-wave case, which is lack 
of data. 

NLO NRQCD predictions for χcJ (J=0,1,2) are also 
given, which could be compared with BESIII results. 
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Thank you !
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