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Charmonium II: Transitions    

• QCD and the Multipole Expansion

• Electromagnetic Transitions - E1, M1

– Overlaps and relativistic corrections

– New developments 

• Hadronic Transitions

– Two pion transitions

– π, η and ω transitions

• Issues and opportunities
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QCD and the Multipole Expansion

2

Theory of quarkonium transitions 
relies on the multipole expansion

r

k
Q̄ Q

In QCD the effective interaction 
for heavy quarks is

vNRQCD 

Λ
mQ

HQET
I. QUARKONIUM AND MULTIPOLE EXPANSIONS

LNRQCD = ψ†
�

iD0 +
D2

2mQ

�
ψ +

cF

2mQ
ψ†σ · gBψ + o(

1

m2
Q

)

+[ψ → iσ2χ∗, Aµ → −AT
µ ]

where

Llight = −1

4
F µν aF a

µν −
1

4
F µν Fµν +

�

f

q̄f i qf , e+e−and

ψ is the Pauli spinor field that annihilates a heavy quark of mass m, flavor Q and electrical

charge eeQ, χ is the corresponding one that creates a heavy antiquark, and qf are the light

quark Dirac fields. The gauge fields with superscript “” are the electromagnetic fields,

the others are gluon fields, iD0 = i∂0 − gT aAa
0 − eeQA0 , iD = i∇ + gT aAa + eeQA,

[D×,E] = D × E − E ×D, Ei = F i0, Bi = −�ijkF jk/2, Ei = F i0 and Bi = −�ijkF jk /2

(�123 = 1).

II. RADIATIVE TRANSITIONS

For quarkonium states, Q1Q̄2, above the ground state but below threshold for strong

decay into a pair of heavy flavored mesons, electromagnetic transitions are often significant

decay modes. In fact, the first charmonium states not directly produced in e+e− collisions,

the χJ
c states, were discovered in photonic transitions of the ψ� resonance. Even today, such

transitions continue to be used to observe new quarkonium states [1].

A. Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightfor-

ward. Much of the terminology and techniques are familiar from the study EM transitions

in atomic and nuclear systems. The photon field Aµ
em couples to charged quarks through

the electromagnetic current:

jµ ≡
�

i=u,d,s

ji
µ +

�

i=c,b,t

ji
µ (2)

2

Including EM interactions:   Replace D -> D - ieQ (eA)
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where ψ is the Pauli spinor field that annihilates a heavy quark of mass m, flavor Q and

electrical charge eeQ, χ is the corresponding one that creates a heavy antiquark.
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em couples to charged quarks through

the electromagnetic current:

jµ ≡

�

i=u,d,s

ji
µ +

�

i=c,b,t

ji
µ (2)

The heavy valence quarks (c, b, t) can described by the usual effective action:

LNRQCD = ψ†
�

iD0 +
D2

2m
+ cF g

σ ·B

2m
+ cD g

[D·,E]

8m2
+ icS g

σ · [D×,E]

8m2
+ . . .

�
ψ (3)

where the E and B fields are the chromoelectric and chomomagentic fields. Corrections to

the leading NR behaviour are determined by expansion in the quark and antiquark velocities.

For photon momentum small compared to the heavy quark masses, the form of the EM

2

expansion kr/2
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2

Electric Magnetic

ψ=Q ;   iσ2χ* = Qc

• Again begin by considering EM multipole interactions:
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• Electric

• Magnetic
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CM  expand in  kr/2

Siegert’s theorem
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• Higher order terms

4

A

B

γ

k

Resulting radial wavefunction overlap integrals   

Electric
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n
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• E1 transition rates

– CG factor

– Wavefunction overlap
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Photon Transitions

A

B

γ

B. hadronic transitions

Applying the multipole expansion to hadronic transitions. First suggested by Gottfried

and proven by Yan.

HI = iψ†� r

2
· gE�

at
aψ�

+
cF

mQ
ψ†�sQ · gtaB�

aψ
�
+ [Q− > Q̄] + · · ·
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ψ�
= U−1ψ

taA�µ
a = U−1taAµ

aU −
i

g
U−1∂µU

taA�µ
a = U−1taAµ

aU −
i

g
U−1∂µU

g2
E

8
< B|rigtaGrjgtb|A > < ππ|Ei

aE
i
b|0 >
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G = (EA −H
0
NR)

−1
=

�

KL

|KL >< KL|

EA − EKL
(QQ̄ octet)

fAB ≡

�

KL

�
druB(r)ruKL(r)

�
uKL(r)ruA(r)

EA − EKL + i�

II. RADIATIVE TRANSITIONS

The spin averaged decay rate is given by
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E1
−→ f + γ) =

4αe2
Q

3
(2Jf + 1)S

E
ifk

3
|Eif |

2
(1)

where eQ is the quark charge, k is the photon energy, the statistical factor S
E
if = S

E
fi is

S
E
if = max (Li, Lf )
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Lf S Li
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FIG. 1: E1 transitions in the narrow spin triplet b̄b states. For each S-P transition indicated

there are three individual transitions (one for each PJ state); while for transitions involving any

other pair of orbital angular momenta (P-D, D-F, F-G, ...) there are six individual transitions

(∆J = 0,±1).

An early choice for the potential was the Cornell Model [12, 30–32, 51]. Here the exchange

interaction was the time component of a vector with a Coulomb short range part −K/r plus

a linear r/a2 long range confining part. The Coulomb part was modified to agree with

perturbative QCD at short distance by Buchmuller and Tye[33, 34]. Other simple forms for

the potential, logarithmic[36, 38] and power law [37, 48], were also proposed.

In the NRQCD limit the the quark-antiquark interaction is spin independent, but includ-

ing relativistic corrections introduces dependency on the Lorentz structure of the potential.

Particular important is the vector versus scalar nature of the long-range confining interac-

tion. Many modern theoretical calculation assume a long range scalar confining potential[35]

or a linear combination of the form ηVS(r)+(1−η)VV (r) [27, 29, 40]. Moxhay and Rosner[41]

assumed an additional long range tensor force.

The second consideration is the extent of inclusion of relativistic corrections. Some calcu-

lations are essentially nonrelativistic. These calculations often include some finite size effects

(R3 of Eq. 22) by retaining the form for Eif given in Eq. 14[12, 30–32, 47, 51]. Other models

10

bb̄ spin triplets

.

The spin-flip radiative transition rate between an initial state (n2s+1�J), i, and a final

state (n�2s�+1SJ �), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2Jf + 1)k3
[Mif |]2 (3)

Eif =

�
r2dr RniLi(r)rRnfLf

(r) (4)

For quarkonium states, Q1Q̄2, above the ground state but below threshold for strong

decay into a pair of heavy flavored mesons, electromagnetic transitions are often significant

decay modes. In fact, the first charmonium states not directly produced in e+e− collisions,

the χJ
c states, were discovered in photonic transitions of the ψ�

resonance. Even today, such

transitions continue to be used to observe new quarkonium states [1].

A. Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightfor-

ward. Much of the terminology and techniques are familiar from the study EM transitions

in atomic and nuclear systems. The photon field Aµ
em couples to charged quarks through

the electromagnetic current:

jµ ≡
�

i=u,d,s

ji
µ +

�

i=c,b,t

ji
µ (5)

The heavy valence quarks (c, b, t) can described by the usual effective action:

LNRQCD = ψ†
�

iD0 +
D2

2m
+ cF g

σ ·B
2m

+ cD g
[D·,E]

8m2
+ icS g

σ · [D×,E]

8m2
+ . . .

�
ψ (6)

where the E and B fields are the chromoelectric and chomomagentic fields. Corrections to

the leading NR behaviour are determined by expansion in the quark and antiquark velocities.

For photon momentum small compared to the heavy quark masses, the form of the EM

interaction (in Coulomb gauge) is determined in the same way as the NRQCD action itself[2],

the leading order terms are:

j ·Aem = eQψ†
�
{D·,Aem}

2m
+ (1 + κQ)

σ ·Bem

2m
+ . . .

�
ψ (7)

Here κQ is the coefficient of a possible anomalous magnetic moment for the heavy quark.

The first term of Eq. 7 produces electric and the second magnetic transitions.

4

Sensitive to detailed dynamics for transitions 
involving radially excited states

5
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FIG. 3 E1 dipole transition matrix elements for the charmonium decays 23S1 → 13PJ . The

horizontal bands indicate the experimental results. The circles designate nonrelativistic predictions

and the triangles relativistic predictions. Within these subsets the results are given in chronological
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FIG. 16 E1 dipole transition matrix elements for the bottomonium decays 33S1 → 23PJ . The

labels are the same as in Fig. 15.
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23S1->13PJ (cc) 
J=2 

J=1 

J=0 

33S1->23PJ (bb) 23S1->13PJ (bb) 

J=2 J=2 

J=1 J=1 

J=0 J=0 

Eif

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.  [Rev. Mod. Phys. 80, 1161 (2008)]
6

• S states -> P states

– Potential models with various phenomenologically 
motivated relativistic correction term.

– Need better theoretical guidance.  
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– Ratios  of overlaps test the importance of relativistic corrections 

– Relativistic corrections 10%-20% effects in charmonium.

– The  33S1 -> 13PJ (bb)  E1 transitions highly suppressed

• Cancellation in wavefunction overlap
– Nodes in 3S radial wavefunction leads to                                                       

large cancellations in overlap integrals  

– Hence effects of relativistic corrections to                                                          
wavefunctions are magnified. 

– Sensitivity varies within multiplets. Ratios not immune. 

• Example of accidental (dynamical) suppression of                      
leading behavior

7

< v2 >cc̄∼ 0.3

< v2 >bb̄∼ 0.1
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Estia Eichten
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R32(bb̄) 0.98 1.14
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Estia Eichten

1 Charmonium II: Transitions

1.1 E1

(1)

Rnm
J/J � =

����
E(n 3S1 → m 3PJ)
E(n 3S1 → m 3P �

J)

���� (2)

Ratio (J = 2)/(J � = 1) (J = 1)/(J � = 0)
R21(cc̄) 1.18 1.06
R21(bb̄) 1.01 1.10
R32(bb̄) 0.98 1.14

����
E(33S1 → 13P0)
E(33S1 → 23P0)

���� = 0.044± 0.008 (3)

1

1P

3S

Radial Wavefunctions – bb̄

TABLE II: Eif by node regions for initial bb̄ state.

Transition < 1st 1st → 2nd 2nd → 3rd total

2S → 1P 0.07 −1.68 −1.61

3S → 2P 0.04 −0.12 −2.43 −2.51

3S → 1P 0.04 −0.63 0.65 0.06

[Ref CLEO PRL 94, 012001 (2005) hep-ex/0409027].

using the new measurement of CLEO-c of the leptonic width Γ(Ψ(2S)→ e+e−) = 2.54±

0.03 ± 0.11

Branching Fractions cc̄ 2S → 1P [Ref CLEO PRL, 94, 232002 hep-ex/0503028]

Branching Fractions bb̄ 3S → 2P and 2S → 1P and 3S → 1P . [Ref CLEO PRL, 94,

032001 hep-ex/0411069]

Gamma(Υ(2S)) = 29.0 ± 1.6 Γ(Υ(3S) = 20.3 ± 2.1

(keV) [Ref CLEO PRL 94, 012001 (2005) hep-ex/0409027].

A. D state transitions

ψ(3770) = cos(φ)|13D1 > + sin(φ)|23S1 > (5)

various χc states are:

Γ(ψ(3770)→ γχc1)

Γ(ψ(3700)→ γχc0)
= 1.32

�
−
√

3
2 + x tan(φ)

√
3 + x tan(φ)

�2

Γ(ψ(3770)→ γχc2)

Γ(ψ(3700)→ γχc0)
= 1.30

� √
3

10 + x tan(φ)
√

3 + x tan(φ)

�2

(6)

into e+e− or µ+µ−.

In addition to the four-photon cascade via the Υ(1D) states, they observe events

with the four-photon cascade via the Υ(2S) state: Υ(3S)→γχb(2P ), χb(2P )→γΥ(2S),

Υ(2S)→γχb(1P ), χb(1P )→γΥ(1S), Υ(1S)→l+l− The product branching ratio for this entire

decay sequence (including Υ(1S)→l+l−) is predicted to be 3.84 · 10−5[? ], thus comparable

5

Cornell model wavefunctions
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• 1P states -> 1S state 

– Potential models with various phenomenological  
relativistic correction terms. No clear improvement

– Alternative approach needed

• Direct Lattice QCD calculation 

– Promising start

(cc̄) < 3P1 |r| 3S1 >

(cc̄) < 3P0 |r| 3S1 >

•  NR models ‣ Models with 
relativistic corrections

 Timed ordered
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〈S(!pS)|jµ(0)|V (!pV , r)〉 = Ω−1(Q2)

(

E1(Q
2)

[

Ω(Q2)εµ(!pV , r) − ε(!pV , r).pS

(

pµ
V pV .pS − m2

V pµ
S

)

]

+
C1(Q2)
√

q2
mV ε(!pV , r).pS

[

pV .pS(pV + pS)µ − m2
Spµ

V − m2
V pµ

S

]

)

.

The Lorentz invariant matrix elements for the transition
χc0 → J/ψγ∗(Q2) are also given in the appendix:

M(rγ = ±; rψ = ∓) = E1(Q
2)

M(rγ = 0; rψ = 0) = −C1(Q
2).

Hence the analogue of (13) gives for the width at Q2 = 0,

Γ(χc0 → J/ψγ) = α
|!q|

m2
χc0

16

9

∣

∣Ê1(0)
∣

∣

2
,

where the lattice form-factor is again related to the phys-
ical one by E1(Q2) = 2 × 2

3e × Ê1(Q2).
The most recent measurement of this decay’s branch-

ing fraction comes from the CLEO collaboration[4], who
find, using the PDG total width to normalise: Γ(χc0 →
J/ψγ) = 204(31)keV. In addition to this we have the
PDG[3] average/fit to data obtained up to 2005 which
gives Γ(χc0 → J/ψγ) = 115(14)keV. The next PDG re-
port will likely contain the CLEO value in a new average
which will thus lie between these two values.

In figure 13 we display the Ê1(Q2) extracted from our
lattice simulations. Temporal vector current insertions
produce compatible results but with much larger error
bars and are not shown.

Our simulation data lies at Q2 '= 0, but since we are
primarily interested in the photopoint we require some
fit function to allow us to extrapolate back. In the light
of the success of forms motivated by the non-relativistic
quark model in previous sections we consider using a
function which resembles one that would be derived in
such a model. We opt to use a form

Ê1(Q
2) = Ê1(0)

(

1 +
Q2

ρ2

)

exp

[

−
Q2

16β2

]

, (15)

which has the gaussian behaviour used previously modi-
fied by a polynomial in Q2. In the simple quark model,
the Q2/ρ2 term could arise from relativistic corrections or
departures from gaussian wavefunction behaviour. Note
that this form is analytic for Q2 > 0 as we would expect
- singularities (as in the VMD case) will occur at Q2 < 0.

We do not include in the fit the points at Q2 < 0
- these data, corresponding to the case !pf = !pi where
Q2 = −(Ef −Ei)2, were extracted from correlators with
no plateau behaviour using the fitting method described
in section IV. It is therefore a rather non-trivial cross-
check that our fit function, constrained by points at Q2 !
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FIG. 13: χc0 → J/ψγ E1 transition form-factor. (a) full range
of lattice data (b) zoom to the Q2 ≈ 0 region

1GeV2, extrapolated to the Q2 < 0 region, overlays these
points.

The fit returns the following parameters:

atÊ1(0) = −0.137(12)

β = 542(35)MeV; ρ = 1.08(13)GeV

The longitudinal photon transition form-factor,
C1(Q2) can also be extracted from lattice three-point

Recent LQCD results

Dudek, Edwards, Richards 
hep-lat/0601137

18

for[51, 52]8). Within (p)NRQCD one might also have
differing color octet contributions[41].

E1 χc0 → J/ψγ χc1 → J/ψγ hc → ηcγ

β/MeV 542(35) 555(113) 689(133)

ρ/MeV 1080(130) 1650(590) ∞

Γ lat.mass
phys.mass/keV 288(60)

232(41)
600(178)
487(122)

663(132)
601(55)

Γ PDG
CLEO/keV 115(14)

204(31)
303(44)
364(31) -

M1 J/ψ → ηcγ M2 χc1 → J/ψγ

β/MeV 540(10) β/MeV 617(142)

Γ lat.mass
phys.mass/keV 1.61(7)

2.57(11)
M2
E1 −0.199(121)

ΓPDG
φφ /keV 1.14(33)

2.9(1.5) expt. −0.002( +8
−17)

C1 χc0 → J/ψγ χc1 → J/ψγ hc → ηcγ

β/MeV 501(33) 502(38) 545(49)

|c̃|/GeV 11(1) 17.6(1.6) 17.5(1.1)

TABLE II: Radiative transitions

We can also compare the pattern of ρ values for the
E1 transitions with the expectations of a simple quark
model. Performing a non-relativistic reduction of the
vector current, the ρ term arises from the spin-dependent
correction (∝ "σ × "q) to the dominant convection current
∝ "p; using effective harmonic oscillator wavefunctions
one finds[53]

EQM
1 (Q2) = a

(

1 + r
|"q|2

4β2
ψ

)

exp−
|"q|2

16β̄2
, (17)

where r is related to spin-orbit Clebsch-Gordan coeffi-
cients,

r =
2 χc0

1 χc1

0 hc

.

Working in the χc rest frame at small Q2 we would have

|"q|2 ≈ |"q|20 +Q2(1+∆) where |"q|0 =
m2

χ−m2
ψ

2mχ
is the three-

momentum transfer at Q2 = 0 and ∆ = 1
2

(

m2
ψ

m2
χ
− 1

)

.

Thus we can express the quark model form as

EQM
1 (Q2) = EQM

1 (0)

(

1 + r
Q2

4β2
ψ

1 + ∆

1 + δ

)

exp−
Q2(1 + ∆)

16β̄2
,

(18)

with δ = r |"q|20
4β2

ψ
and EQM

1 (0) = a(1+δ) exp− |"q|20
16β̄2 . Hence,

to a first approximation we’d expect that ρ ∼ 1√
r

so

that ρ(χc1) ≈
√

2ρ(χc0) and ρ(hc) → ∞. In the same
approximation we have ρ(χc0) ≈ 2βψ. Within the large

8 But note that such effects are not present within our quenched
calculation

errors on the lattice results, these relations appear to be
satisfied.

Within the quark model, the M2 transition is sup-
pressed relative to E1 by one power of v/c. It is also
rather sensitive to any charm quark anomalous magnetic
moment. Some details are worked out in [54], where they
find a value (setting κc = 0) M2(0)/E1(0) ∼ −0.06. Our
data is unfortunately not sufficiently accurate to discrim-
inate on this level - we outlined earlier in the text some
possible improvements to the calculation to remedy this.

In this first attempt at charmonium radiative transi-
tions using lattice QCD we have demonstrated that it
is possible to get reasonable agreement with experiment
and have gone some way to justifying certain results of
the more widely applied quark model. Future lattice
work in this direction will have to address the problem of
reliable excited state extraction in order to consider such
well-measured transitions as ψ′ → χcJγ.

There is, naturally, a desire to see calculations done
without the quenched approximation, but, as discussed
in section II, we do not expect unquenching to affect
radiative transitions particularly strongly, except in the
sense that it will improve the lattice state masses and
help remove the phase-space ambiguity we encountered
in section VI. However, an unquenched computation is
warranted to test models which propose a considerable
effect from coupled channels[51].

Our ultimate aim is to study photocouplings of light-
quark hybrid mesons, with this in mind the next step
will be to consider radiative transitions involving char-
monium hybrids - the non-local interpolating fields re-
quired for this study will also allow us to access higher
spin conventional charmonia such as the χc2.
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APPENDIX A: MULTIPOLE DECOMPOSITION

It is convenient to express radiative transition ampli-
tudes in terms of multipoles. In this appendix we derive
Lorentz covariant decompositions of vector current ma-
trix elements into multipoles. These decompositions do
not appear to have been explicitly presented previously
in the literature.

Our method involves writing down the most general
Lorentz covariant, current conserving and parity invari-
ant decomposition of the matrix element of the current

Promising but still work to do:
quenched
ground states
extrapolations
  Q2 -> 0
  a-> 0

χc0 → J/ψγ

[PR D73:074507 (2006)]
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                   transition 
our ‘poster boy’

〈S(!pS)|jµ(0)|V (!pV , r)〉 =

Ω−1(Q2)

(

E1(Q
2)

[

Ω(Q2)εµ(!pV , r) − ε(!pV , r).pS

(

pµ
V pV .pS − m2

V pµ
S

)

]

+
C1(Q2)
√

q2
mV ε(!pV , r).pS

[

pV .pS(pV + pS)µ − m2

Spµ
V − m2

V pµ
S

]

)

.

covariant multipole decomposition of matrix element 

E1 - electric dipole, exptally measured at Q2 =0

C1 - longitudinal, only non-zero at non-zero Q2

9

χc0 → J/ψγ
Other Approaches

Model independent symmetry relations.

Incorporated in MPE approach.

Systematic Effective Lagrangian approach. Higher states an 

issue

See review:

Heavy Quarkonium 

Physics Cern-2005-005

Vairo (plenary talk)

χ0
c → γ + J/ψ Dudek, Edwards, Richards & Mathur

[PR D73:074507 

(2006)]

• Lattice

– Covariant form factors extrapolated to Q2 = 0

5
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• hc(11P1) -> ηc(11S0) 

– Observed at CLEO, BESIII

– The dependence on dynamics cancels in 
the ratio of singlet to triplet transitions

– Using the known χc1 properties 

9

Over the past 30 years charmonium spectroscopy has
provided valuable insight into the quark-antiquark interac-
tion of quantum chromodynamics (QCD). QCD-based po-
tential models have been quite successful in predicting
masses, widths, and dominant decays of several charmo-
nium states. The central potential in most of these calcu-
lations is assumed to be composed of a vector Coulombic
potential (!1=r) and a scalar confining potential (!r).
Under these assumptions, the spin-spin interaction in the
lowest order is finite only for L " 0 states. It leads to the
hyperfine splittings !Mhf#nS$ % M#n3S1$ &M#n1S0$ be-
tween spin-triplet and spin-singlet S-wave states of char-
monium, which have been measured as !Mhf#1S$ "
M#J= $ & M#!c$ " 115 ' 2 MeV [1], !Mhf#2S$ "
M! #2S$" & M#!0

c$ " 48 ' 5 MeV [1,2]. It also
leads to the prediction that the hyperfine splitting
!Mhf!hM#3PJ$i&M#1P1$" for P-wave states should be
zero. Higher-order corrections are expected to provide no
more than a few-MeV deviation from this result [3–5].
Lattice QCD calculations [6] predict !Mhf#1P$ " (1:5 to
(3:7 MeV, but with uncertainties at the few-MeV level.
Larger values of !Mhf#1P$ could result if the confinement
potential had a vector component or if coupled channel
effects were important. In order to discriminate between
these possibilities, it is necessary to identify the hc#1P1$
state and to measure its mass to O#1 MeV$ as the mass of
the 3PJ centroid is very well known, hM#3PJ$i "
3525:36' 0:06 MeV [7].

In this Letter we report the successful identification of hc
in the isospin-violating reaction

e(e& !  #2S$!"0hc; hc ! #!c; "0 ! ##: (1)

Two methods are used: one in which the !c decays are
reconstructed (exclusive), which has an advantage in sig-
nal purity, and the other in which the !c is measured
inclusively, which has larger signal yield. Together these
approaches provide a result of unambiguous significance,
and allow a precise determination of the mass of hc and
the branching fraction product B Bh, where B %
B! #2S$ ! "0hc" and Bh % B#hc ! #!c$. Theoretical
estimates of the product B Bh vary by nearly 2 orders
of magnitude, #0:5–40$ ) 10&4 [4,5].

The Crystal Ball Collaboration at SLAC searched for hc
using the reaction of Eq. (1) but were only able to set a 95%
confidence upper limit B Bh < 16) 10&4 in the mass
range M#hc$ " #3515–3535$ MeV [8]. The FNAL E760
Collaboration searched for hc in the reaction p "p! hc !
"0J= , J= ! e(e&, and reported a statistically signifi-
cant enhancement with M#hc$ " 3526:2' 0:15'
0:2 MeV, ##hc$ * 1:1 MeV [9]. The measurement was
repeated twice by the successor experiment E835 with
!2) and !3) larger luminosity, but no confirming signal
for hc was observed in hc ! "0J= decay [5].

A data sample consisting of 3:08) 106  #2S$ decays
was obtained with the CLEO III and CLEO-c detector

configurations [10–13] at the Cornell Electron Storage
Ring. The CLEO III detector features a solid angle cover-
age for charged and neutral particles of 93%. The charged
particle tracking system achieves a momentum resolution
of !0:6% at 1 GeV, and the calorimeter photon energy
resolution is 2.2% for E# " 1 GeV and 5% at 100 MeV.
Two particle identification systems, one based on energy
loss (dE=dx) in the drift chamber and the other a ring
imaging Cherenkov (RICH) detector, are used to distin-
guish pions from kaons.

Half of the  #2S$ data were accumulated with a newer
detector configuration, CLEO-c [13], in which the silicon
strip vertex detector was replaced with an all-stereo six-
layer wire chamber. The two detector configurations also
correspond to different accelerator lattices. Studies of
Monte Carlo simulations and the data reveal no significant
differences in the capabilities of the two detector configu-
rations; therefore the CLEO III and CLEO-c datasets are
analyzed together.

The inclusive and exclusive analyses share a com-
mon initial sample of events and numerous selection cri-
teria. Details of the analyses are provided in a companion
paper [14]. Event selection for both analyses requires at
least three electromagnetic showers and two charged
tracks, each selected with standard CLEO criteria. For
showers, E# > 30 MeV is required. Candidates for ##
decays of "0 or ! mesons satisfy the requirement that
M###$ be within 3 standard deviations ($) of the known
"0 or ! mass, respectively. These candidates are kinemati-
cally fit, constraining M###$ to the appropriate mass to
improve "0=! energy resolution. Charged tracks are re-
quired to have well-measured momenta and to satisfy
criteria based on the track fit quality. They must also be
consistent with originating from the interaction point in
three dimensions.

Both techniques identify hc as an enhancement in the
spectrum of neutral pions from the reaction  #2S$ ! "0hc
[15]. For this purpose, it is useful to remove neutral pions
originating from any other reaction. It is easy to remove
most of the "0 arising from  #2S$ ! "("&J= , with
J= ! "0 ( hadrons and "0"0J= , with J= ! any.
The recoil spectra against M#"("&$ (both analyses) and
M#"0"0$ (inclusive only) show prominent peaks for J= ;
these events are removed by appropriate selection around
M#J= $.

In the exclusive analysis, !c are reconstructed in
seven channels: K0

SK
'"+, K0

LK
'"+, K(K&"("&,

"("&"("&, K(K&"0, "("&!#! ##$, and
"("&!#! "("&"0$. The sum of the branching fractions
is #9:7' 2:7$% [7]. The decay chain in Eq. (1) as well as
these !c decays are identified from reconstructed charged
particles, "0 and ! mesons. For ! decays to "("&"0, the
three-pion invariant mass is required to be within 20 MeV
of the nominal ! mass. The K0

S candidates are selected
from pairs of oppositely charged and vertex-constrained
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• ψ(3770) -> 13PJ transitions:   

- Can study relativistic effects including 
coupling to decay channels. 

- Effects of nearby open charmed 
thresholds contribute significant 
mixing  between the 13D1 and 23S1 
states:

- ϕ~	 -10°⇒	 Small J=2  E1 rate

- BESIII can measure the J=2 transition?

TABLE V: Our measurements of the photon transitions widths (statistical and systematic errors)

compared to theoretical predictions. The J =0 measurement comes from this analysis. The J =2
upper limit comes from Ref.[5]. The J = 1 measurement comes from the combination of this
analysis and of the result in Ref.[5].

Γ(ψ(3770) → γχcJ) in keV
J = 2 J = 1 J = 0

Our results < 21 70 ± 17 172 ± 30

Rosner (non-relativistic) [7] 24 ± 4 73 ± 9 523 ± 12
Ding-Qin-Chao [6]

non-relativistic 3.6 95 312

relativistic 3.0 72 199
Eichten-Lane-Quigg [8]

non-relativistic 3.2 183 254
with coupled-channels corrections 3.9 59 225
Barnes-Godfrey-Swanson [9]

non-relativistic 4.9 125 403
relativistic 3.3 77 213

predictions.
The theoretical predictions are based on potential model calculations [13] of the electric

dipole matrix element <13PJ |r|13D1 >:

ΓJ =
4

3
e2

QαE3
γCJ <13PJ |r|13D1 >2,

where eQ is the c quark charge and α is the fine structure constant. The spin factors CJ

are equal to 2/9, 1/6 and 1/90 for J = 0, 1 and 2, respectively [15]. The phase-space
factor (E3

γ) also favors the J = 0 transition. Together, the spin and phase-space factors
predict enhancement of the J = 0 width by a factor of ∼ 3.2 and ∼ 85 over J = 1 and
J = 2, respectively. In the non-relativistic limit, the matrix element is independent of J .
The measured ratios of the widths, Γ0/Γ1 = 2.5 ± 0.6 and Γ0/Γ2 > 8 (90% C.L.), are
consistent with these crude predictions, therefore, providing further evidence that ψ(3770)
is predominantly a 13D1 state. A small admixture of 23S1 wave, necessary to explain the
observed Γee(ψ(3770)), is expected to increase Γ0 and Γ2 while making Γ1 smaller [6, 7]. The
large experimental and theoretical uncertainties in ΓJ make testing of the mixing hypothesis
via radiative transitions difficult.

As evident from Table V, the naive non-relativistic calculations tend to overestimate
absolute values of the transition rates. Relativistic [6, 9] or coupled-channel [8] corrections
are necessary for quantitative agreement with the data. The latter is not surprising since
non-relativistic calculations also overestimate ψ(2S) → γχcJ transition rates [16].

We gratefully acknowledge the effort of the CESR staff in providing us with excellent
luminosity and running conditions. This work was supported by the A.P. Sloan Foundation,
the National Science Foundation, the U.S. Department of Energy, and the Natural Sciences
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TABLE II: Cancellations in Eif by node regions in initial bb̄ state.

Transition up to 1st 1st to 2nd 2nd to 3rd total

2S → 1P 0.07 −1.68 −1.61

3S → 1P 0.04 −0.12 −2.43 −2.51

3S → 2P 0.04 −0.63 0.65 0.06

[Ref CLEO PRL 94, 012001 (2005) hep-ex/0409027].

using the new measurement of CLEO-c of the leptonic width Γ(Ψ(2S)→ e+e−) = 2.54±

0.03 ± 0.11

Branching Fractions cc̄ 2S → 1P [Ref CLEO PRL, 94, 232002 hep-ex/0503028]

Branching Fractions bb̄ 3S → 2P and 2S → 1P and

3S →1P.[RefCLEOPRL, 94, 032001hep− ex/0411069]

Gamma(Υ(2S)) = 29.0 ± 1.6 Γ(Υ(3S) = 20.3 ± 2.1

(keV) [Ref CLEO PRL 94, 012001 (2005) hep-ex/0409027].

A. D state transitions

ψ(3770) = cos(φ)|13
D1 > + sin(φ)|23

S1 > (5)

various χc states are:

Γ(ψ(3700)→ γχc1)

Γ(ψ(3700)→ γχc0)
= 1.32

�
−
√

3
2 + tan(φ)

√
3 + tan(φ)

�2

Γ(ψ(3700)→ γχc2)

Γ(ψ(3700)→ γχc0)
= 1.30

� √
3

10 + tan(φ)
√

3 + tan(φ)

�2

(6)

into e+e− or µ+µ−.

In addition to the four-photon cascade via the Υ(1D) states, they observe events

with the four-photon cascade via the Υ(2S) state: Υ(3S)→γχb(2P ), χb(2P )→γΥ(2S),

Υ(2S)→γχb(1P ), χb(1P )→γΥ(1S), Υ(1S)→l+l− The product branching ratio for this entire

decay sequence (including Υ(1S)→l+l−) is predicted to be 3.84 · 10−5[? ], thus comparable
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x = | < 2S|r|1P >

< 1D|r|1P >
| ∼ 0.82
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• Higher Multipoles: ψ’(2S) -> χcJ(1P)  and χcJ(1P) -> J/ψ 

- Measure helicity amplitudes A

- Theory

• M2/E1 and E3/E1 ~ O(v2)

• Anomalous quark magnetic moment: κc

•  No S-D mixing => X=0: 
• a3 = 0 

• ratios of multipole coefficients are                    
independent of κc

TABLE V: M2 and E3 multipole amplitudes for radiative transitions involving χc states. The

values of X and Y are model dependent and are defined in the text. Note X = 0 if no S-D mixing.

χcJ → J/ψ + γ

J theory E835 PDG

2 a2 ≈ −
√

5
3

k
4mc

(1 + κc) −0.093
+0.039
−0.041 ± 0.006 −0.140± 0.006

2 a3 ≈ 0 0.020
+0.055
−0.044 ± 0.009 0.011

+0.041
−0.033

1 a2 ≈ − k
4mc

(1 + κc) 0.002± 0.032± 0.004 −0.002
+0.008
−0.017

J ψ � → χcJ + γ theory

2 a2 ≈ −
√

3
2
√

10
k

mc
[(1 + κc)(1 +

√
2

5 X)− i1
5X]/[1− 1

5
√

2
X]

2 a3 ≈ −12
√

2
175

k
mc

X[1 +
3
8Y ]/[1− 1

5
√

2
X]

1 a2 ≈ − k
4mc

[(1 + κc)(1 +
2
√

2
5 X) + i 3

10X]/[1 +
1√
2
X]
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[Karl, Meshkov &Rosner PRL 45,215 (1980)]
[Sebastian, Grotch & Ridener PR D45, 3136 (1992)] 

Y =

�
r3drR1P (r)[r d

drR2Sdr − 2R2S(r)]

E1P,2S

X =
E1P,2S

E1P,2D
tan(φ)

The helicity amplitudes Aν (with 0 ≤ ν ≤ Jχ) are related to the multipole amplitudes
aJγ (with 1 ≤ Jγ ≤ Jχ + 1), using the Clebsch-Gordan coefficients 〈j1, m1; j2, m2|J, M〉, by

AJχ
ν =

∑

Jγ

√

2Jγ + 1

2Jχ + 1
a

Jχ

Jγ
〈Jγ, 1; 1, ν − 1|Jχ, ν〉 . (4)

This expression leads to the following relationships for the Jχ = 1 and Jχ = 2 cases,
respectively:

(

AJ=1
0

AJ=1
1

)

=





√

1
2

√

1
2

√

1
2 −

√

1
2





(

aJ=1
1

aJ=1
2

)

, (5)







AJ=2
0

AJ=2
1

AJ=2
2





 =











√

1
10

√

1
2

√

2
5

√

3
10

√

1
6 −

√

8
15

√

3
5 −

√

1
3

√

1
15

















aJ=2
1

aJ=2
2

aJ=2
3





 . (6)

The relationships between Bν′ and bJγ′
are identical; just swap all Aν and aJγ with Bν′ and

bJγ′
in Eqs. (4)–(6). These transformation matrices are norm-preserving, since the matrices

are orthogonal.

C. Quark magnetic moments

If we define E1, M2, and E3 to be the electric dipole, magnetic quadrupole, and electric
octupole amplitudes, respectively, the magnetic quadrupole amplitudes are related to the
anomalous magnetic moment of the charm quark κc by

aJ=1
2 ≡

M2√
E12 + M22

= −
Eγ

4mc
(1 + κc) (7)

aJ=2
2 ≡

M2√
E12 + M22 + E32

= −
3√
5

Eγ

4mc
(1 + κc) (8)

bJ=1
2 ≡

M2√
E12 + M22

=
Eγ′

4mc
(1 + κc) (9)

bJ=2
2 ≡

M2√
E12 + M22 + E32

=
3√
5

Eγ′

4mc
(1 + κc) . (10)

These expressions are correct to first order in Eγ/mc or Eγ′/mc, assuming that the ψ(1S, 2S)
are pure S states (no mixing with D states) and that the χc states are pure P states (no
mixing with F states) [3, 11].2

These first order relationships are derived from the non-relativistic interaction Hamilto-
nian for photon emission from a +2/3 charged quark:

HI = −
ec

2mc
(A∗ · p + p · A∗) − µσ · H∗ (11)

2 Note the misprint in [11] for their equation (41) describing aJ=2
2 to first order. This misprint was previously

noted in footnote 1 of Ref. [12].

6

Extract multipole coefficients:
a1 = E1/|a| ; a2 = M2/|a|; a3 = E3/|a|
 |a|2 = E12 + M22 + E32

E1 for J=0,1,2
M2 for J=1,2
E3 for J=2
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FIG. 39: A compilation of measurements of normalized mag-
netic dipole amplitudes from χc1 → γJ/ψ (aJ=1

2 ), ψ(2S) →
γχc1 (bJ=1

2 ), χc2 → γJ/ψ (aJ=2
2 ), and ψ(2S) → γχc2 (bJ=2

2 ).
The solid circles represent data from CLEO [379], which show
consistency with predictions (dashed vertical lines), unlike
some earlier measurements. The nonrelativistic theoretical
expectations are calculated with an anomalous magnetic mo-
ment of the charm quark of zero and an assumed 1.5 GeV
charm quark mass. Adapted from [379] with kind permis-
sion, copyright (2009) The Americal Physical Society

l+l−(l = e, µ) for J = 1, 2. Starting with 24× 106 ψ(2S)
decays, CLEO observes approximately 40 000 events for
J = 1 and approximately 20 000 events for J = 2, sig-
nificantly larger event samples than previous measure-
ments. Using an unbinned maximum-likelihood fit to
angular distributions, CLEO finds the normalized M2
admixtures in Table 19. For the quoted J = 2 measure-
ments, the electric octupole (E3) moments were fixed to
zero. As shown in Fig. 39, these new measurements agree
well with theoretical expectations when the anomalous
magnetic moment of the charm quark is assumed to be
zero and the mass of the charm quark is assumed to be
1.5 GeV.

FIG. 40: From CLEO [382], the energy of the transition
(lower energy) photon from ψ(3770) → γχcJ found when re-
constructing χcJ → γJ/ψ and requiring the J/ψ decay to
(a) µ+µ− or (b) e+e−. Solid circles represent data, the dotted
curve shows the smooth fitted background, the dashed curve
shows the sum of the smooth background fit and an estimated
contribution from the tail of the ψ(2S) (events individually
indistinguishable from signal), and the solid curve is a result
of a fit of the data to all background and signal components.
Background saturates the data at the χc2 and χc0, but a sig-
nificant χc1 signal is obtained. Adapted from [382] with kind
permission, copyright (2006) The Americal Physical Society

3.1.6. Observation of ψ(3770) → γχcJ (1P )

The existence of the ψ(3770) has long been established,
and it has generally been assumed to be the 13D1 char-
monium state with a small admixture of 23S1. However,
because it predominantly decays to DD, its behavior as
a state of charmonium has gone relatively unexplored
in comparison to its lighter partners. The charmonium
nature of the ψ(3770) is especially interesting given the
unexpected discoveries of the X , Y , and Z states, open-
ing up the possibility that the ψ(3770) could include
more exotic admixtures. The electromagnetic transi-
tions, ψ(3770) → γχcJ , because they are straightforward
to calculate assuming the ψ(3770) is the 3D1 state of
charmonium, provide a natural testing ground for the
nature of the ψ(3770) [27, 380, 381].

CLEO has observed these transitions in two indepen-
dent analyses. In the first [382], the χcJ were recon-
structed exclusively in the decay chain ψ(3770) → γχcJ ,
χcJ → γJ/ψ, J/ψ → $+$−, with results depicted in
Fig. 40. In the second [383], the χcJ were reconstructed
in several exclusive hadronic modes and then normalized

References

[1] M. Artuso et al. [CLEO Collaboration], Phys. Rev. D 80, 112003 (2009)

[arXiv:0910.0046 [hep-ex]].

2

• CLEO has recent results 

– Assumes a3, b3 = 0 

– theory:  κc = 0, mc =1.5 GeV

• In excellent agreement with theory.

b2J  = a2 (ψ’(2S) -> χcJ(1P))  

a2J  = a2 (χcJ(1P) -> J/ψ’)
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• M1 transition rates

– CG factor

– Wavefunction overlap

• To date the only M1 transitions observed are between states with L = 0 (S states)

•  As Eγ-> 0   Mif -> δnn‘    by wavefunction orthogonality. Transitions with n ≠ n’ are 

greatly suppresses (hindered).  Corrections to this behavior are O(v2)
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3. DECAY6

3.1. Radiative transitions

An electromagnetic transition between quarkonium
states, which occurs via emission of a photon, offers the
distinctive experimental signature of a monochromatic
photon, a useful production mechanism for discovery and
study of the lower-lying state, and a unique window on
the dynamics of such systems. Below we first review the
status and open questions regarding the relevant theoret-
ical frameworks and tools, and then describe important
measurements of charmonium and bottomonium electro-
magnetic transitions.

3.1.1. Theoretical status

The nonrelativistic nature of heavy quarkonium may
be exploited to calculate electromagnetic transitions.
Nonrelativistic effective field theories provide a way to
systematically implement the expansion in the rela-
tive heavy-quark velocity, v. Particularly useful are,
first, nonrelativistic QCD (NRQCD) coupled to electro-
magnetism [124, 352], which follows from QCD (and
QED) by integrating out the heavy quark mass scale m,
and second, potential NRQCD coupled to electromag-
netism [122, 125, 126, 353], which follows from NRQCD
(and NRQED) by integrating out the momentum trans-
fer scale mv.

Electromagnetic transitions may be classified in terms
of electric and magnetic transitions between eigenstates
of the leading-order pNRQCD Hamiltonian. The states
are classified in terms of the radial quantum number, n,
the orbital angular momentum, l, the total spin, s, and
the total angular momentum, J . In the nonrelativistic
limit, the spin dependence of the quarkonium wave func-
tion decouples from the spatial dependence. The spa-
tial part of the wave function, ψ(x), can be expressed in
terms of a radial wave function, unl(r), and the spherical
harmonics, Ylm, as ψ(x) = Ylm(θ, φ)unl(r)/r. The spa-
tial dependence of the electromagnetic transition ampli-
tudes reduces to expectation values of various functions
of quark position and momentum between the initial- and
final-state wave functions [120].

Magnetic transitions flip the quark spin. Transitions
that do not change the orbital angular momentum are
called magnetic dipole, or M1, transitions. In the non-
relativistic limit, the spin-flip transition decay rate be-
tween an initial state i = n 2s+1lJ and a final state

6 Contributing authors: E. Eichten, R. E. Mitchell, A. Vairo,
A. Drutskoy, S. Eidelman, R. Gong, C. Hanhart, B. Heltsley,
and C.-Z. Yuan

f = n′ 2s′+1lJ′ is:

Γ( i
M1−→ γ + f ) =

16

3
α e2

Q

E3
γ

M2
i

( 2J ′ + 1) SM
if |Mif |2 ,

(63)
where eQ is the electrical charge of the heavy quark Q
(eb = −1/3, ec = 2/3), α the fine structure constant,
Eγ = (M2

i − M2
f )/(2Mi) is the photon energy, and Mi,

Mf are the masses of the initial- and final-state quarko-
nia, respectively. The statistical factor SM

if = SM
fi reads

SM
if = 6 (2s + 1)(2s′ + 1)

{
J 1 J ′

s′ l s

}2 {
1 1

2
1
2

1
2 s′ s

}2

.

(64)
For l = 0 transitions, SM

if = 1. For equal quark masses
m, the overlap integral Mif is given by

Mif = (1 + κQ)

∫ ∞

0
dr unl(r)u′

n′l(r) j0

(
Eγ r

2

)
,

(65)
where jn are spherical Bessel functions and κQ is the
anomalous magnetic moment of a heavy quarkonium QQ̄.
In pNRQCD, the quantity 1+κQ is the Wilson coefficient
of the operator S†σ · eQBem/(2m)S, where Bem is the
magnetic field and S is a QQ̄ color-singlet field.

Electric transitions do not change the quark spin.
Transitions that change the orbital angular momentum
by one unit are called electric dipole, or E1, transitions.
In the nonrelativistic limit, the spin-averaged electric
transition rate between an initial state i = n 2s+1lJ and
a final state f = n′ 2s′+1l′J′ (l = l′ ± 1) is

Γ( i
E1−→ γ + f ) =

4

3
α e2

Q E3
γ (2J ′ +1) SE

if |Eif |2 , (66)

where the statistical factor SE
if = SE

fi is

SE
if = max (l, l′)

{
J 1 J ′

l′ s l

}2

. (67)

The overlap integral Eif for equal quark masses m is given
by

Eif =
3

Eγ

∫ ∞

0
dr unl(r)un′ l′(r) ×

[
Eγ r

2
j0

(
Eγ r

2

)
− j1

(
Eγ r

2

)]
. (68)

Since the leading-order operator responsible for the elec-
tric transition does not undergo renormalization, the
electric transition rate does not depend on a Wilson coef-
ficient, analogous to the case of the quarkonium magnetic
moment appearing in the magnetic transitions.

If the photon energy is smaller than the typical in-
verse radius of the quarkonium, we may expand the
overlap integrals in Eγr, generating electric and mag-
netic multipole moments. At leading order in the multi-
pole expansion, the magnetic overlap integral reduces to

A

B

γ

Charmonium: Spectroscopy and Decays

Estia Eichten

1 Charmonium II: Transitions

1.1 E1

(1)

Rnm
J/J � =

����
E(n 3S1 → m 3PJ)
E(n 3S1 → m 3P �

J)

���� (2)

Ratio (J = 2)/(J � = 1) (J = 1)/(J � = 0)
R21(cc̄) 1.18 1.06
R21(bb̄) 1.01 1.10
R32(bb̄) 0.98 1.14

����
E(33S1 → 13P0)
E(33S1 → 23P0)

���� = 0.044± 0.008 (3)

Γ(hc → γ(k) + ηc)
Γ(χc1 → γ(k�) + J/ψ)

= [
k

k� ]
3 = 1.06 (4)

Γ(hc → γ + ηc) = 358± 32 keV (5)

SM
if = 6(2Si + 1)(2Sf + 1)

�
Ji 1 Jf

Sf 1 Si

�2 �
1 1

2
1
2

1
2 Sf Si

�2

(6)
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measurements of charmonium and bottomonium electro-
magnetic transitions.

3.1.1. Theoretical status

The nonrelativistic nature of heavy quarkonium may
be exploited to calculate electromagnetic transitions.
Nonrelativistic effective field theories provide a way to
systematically implement the expansion in the rela-
tive heavy-quark velocity, v. Particularly useful are,
first, nonrelativistic QCD (NRQCD) coupled to electro-
magnetism [124, 352], which follows from QCD (and
QED) by integrating out the heavy quark mass scale m,
and second, potential NRQCD coupled to electromag-
netism [122, 125, 126, 353], which follows from NRQCD
(and NRQED) by integrating out the momentum trans-
fer scale mv.

Electromagnetic transitions may be classified in terms
of electric and magnetic transitions between eigenstates
of the leading-order pNRQCD Hamiltonian. The states
are classified in terms of the radial quantum number, n,
the orbital angular momentum, l, the total spin, s, and
the total angular momentum, J . In the nonrelativistic
limit, the spin dependence of the quarkonium wave func-
tion decouples from the spatial dependence. The spa-
tial part of the wave function, ψ(x), can be expressed in
terms of a radial wave function, unl(r), and the spherical
harmonics, Ylm, as ψ(x) = Ylm(θ, φ)unl(r)/r. The spa-
tial dependence of the electromagnetic transition ampli-
tudes reduces to expectation values of various functions
of quark position and momentum between the initial- and
final-state wave functions [120].

Magnetic transitions flip the quark spin. Transitions
that do not change the orbital angular momentum are
called magnetic dipole, or M1, transitions. In the non-
relativistic limit, the spin-flip transition decay rate be-
tween an initial state i = n 2s+1lJ and a final state

6 Contributing authors: E. Eichten, R. E. Mitchell, A. Vairo,
A. Drutskoy, S. Eidelman, R. Gong, C. Hanhart, B. Heltsley,
and C.-Z. Yuan

f = n′ 2s′+1lJ′ is:

Γ( i
M1−→ γ + f ) =

16

3
α e2

Q

E3
γ

M2
i

( 2J ′ + 1) SM
if |Mif |2 ,

(63)
where eQ is the electrical charge of the heavy quark Q
(eb = −1/3, ec = 2/3), α the fine structure constant,
Eγ = (M2

i − M2
f )/(2Mi) is the photon energy, and Mi,

Mf are the masses of the initial- and final-state quarko-
nia, respectively. The statistical factor SM

if = SM
fi reads

SM
if = 6 (2s + 1)(2s′ + 1)

{
J 1 J ′

s′ l s

}2 {
1 1

2
1
2

1
2 s′ s

}2

.

(64)
For l = 0 transitions, SM

if = 1. For equal quark masses
m, the overlap integral Mif is given by

Mif = (1 + κQ)

∫ ∞

0
dr unl(r)u′

n′l(r) j0

(
Eγ r

2

)
,

(65)
where jn are spherical Bessel functions and κQ is the
anomalous magnetic moment of a heavy quarkonium QQ̄.
In pNRQCD, the quantity 1+κQ is the Wilson coefficient
of the operator S†σ · eQBem/(2m)S, where Bem is the
magnetic field and S is a QQ̄ color-singlet field.

Electric transitions do not change the quark spin.
Transitions that change the orbital angular momentum
by one unit are called electric dipole, or E1, transitions.
In the nonrelativistic limit, the spin-averaged electric
transition rate between an initial state i = n 2s+1lJ and
a final state f = n′ 2s′+1l′J′ (l = l′ ± 1) is

Γ( i
E1−→ γ + f ) =

4

3
α e2

Q E3
γ (2J ′ +1) SE

if |Eif |2 , (66)

where the statistical factor SE
if = SE

fi is

SE
if = max (l, l′)

{
J 1 J ′

l′ s l

}2

. (67)

The overlap integral Eif for equal quark masses m is given
by

Eif =
3

Eγ

∫ ∞

0
dr unl(r)un′ l′(r) ×

[
Eγ r

2
j0

(
Eγ r

2

)
− j1

(
Eγ r

2

)]
. (68)

Since the leading-order operator responsible for the elec-
tric transition does not undergo renormalization, the
electric transition rate does not depend on a Wilson coef-
ficient, analogous to the case of the quarkonium magnetic
moment appearing in the magnetic transitions.

If the photon energy is smaller than the typical in-
verse radius of the quarkonium, we may expand the
overlap integrals in Eγr, generating electric and mag-
netic multipole moments. At leading order in the multi-
pole expansion, the magnetic overlap integral reduces to
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seems many models 
struggle to get  this 
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Γ(J/ψ → ηcγ) = α
|%q|3

(mηc
+ mψ)2

64

27

∣

∣V̂ (0)
∣

∣

2
.

J/ψ → ηcγ

Γ = 2.0(1)(4)keV
Γ(Crys.Ball) = 1.14(33)keV

= 1 + O(v2) (i = f = 1 Li = Lf = 0)

TABLE I: Experimental results for E1 transitions n3S1 to m3PJ . The S state widths (in keV) used

are: Γ(Ψ(2S)) = 337± 13, Γ(Υ(2S)) = 29.0± 1.6 and Γ(Υ(3S) = 20.3± 2.1 .

Transition k BR Rate |Eif |

i
E1−→ f ( MeV) % ( keV) ( GeV−1)

cc̄

23S1 13P2 127 9.33± 0.14± 0.61 31.4± 2.5 2.53± 0.10

23S1 13P1 171 9.07± 0.11± 0.54 30.6± 2.3 2.06± 0.08

23S1 13P0 261 9.22± 0.11± 0.46 31.1± 2.1 1.91± 0.06

bb̄

23S1 13P2 110.6 7.24± 0.11± 0.40 2.10± 0.17 1.61± 0.06

23S1 13P1 129.6 6.93± 0.12± 0.41 2.01± 0.17 1.60± 0.07

23S1 13P0 162.6 3.75± 0.12± 0.47 1.09± 0.15 1.45± 0.10

33S1 23P2 86.0 15.79± 0.17± 0.73 3.21± 0.37 2.90± 0.16

33S1 23P1 99.2 14.54± 0.18± 0.73 2.95± 0.34 2.90± 0.16

33S1 23P0 121.6 6.77± 0.20± 0.65 1.37± 0.20 2.52± 0.17

33S1 13P0 483 0.30± 0.04± 0.10 0.061± 0.023 0.067± 0.011

where eQ is the quark charge, k is the photon energy, the statistical factor SE
if = SE

fi is

S
E
if = max (Li, Lf )





Ji 1 Jf

Lf S Li






2

. (2)

.

The spin-flip radiative transition rate between an initial state (n2s+1�J), i, and a final

state (n�2s�+1SJ �), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2Jf + 1)k3
[Mif |]2 (3)

Mif =

�
r2dr RniLi(r)j0(

rk

2
)RnfLf

(r) (4)

The widths (in keV) of the cc̄ and bs̄ S states assumed are: ‘Γ(Ψ(2S)) = 337 ± 13,

Γ(Υ(2S)) = 29.0± 1.6 and Γ(Υ(3S) = 20.3± 2.1 .

4
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• J/ψ -> ηc  M1 transition was a disaster

– Theoretically clean - no dependence on 
potential model wavefunctions: 

• Naive expectations 

• pNRQCD

• Lattice QCD

– Crystal Ball measurement (1986)

Dudek, Edwards, Richards and Mathur     
[PR D73:074507(2006)}

  Brambilla, Jia & Vairo 
[PR D73:054005 (2006)]

 Model independent - completely accessible by perturbation theory to o(v2)

No large anomalous magnetic moment 
No scalar long range interaction 

A. Model predictions

Using the same (NR) model as used for the E1 transitions ( A nonrelativistic treatment

except for finite size corrections and κQ = 0) the M1 transition rates and overlap matrix

elementsM for c̄c and b̄b S state systems is shown in Table III

Numerous papers have considered these M1 transitions including full relativistic correc-

tions[? ? ? ? ? ? ? ].

The considerations for M1 transitions is particularly complicated. In addition to the

usual issues associated with the form of the long range potential there is the unknown

value for the anomalous magnetic moment for the quark (κQ). Furthermore, the results are

dependent explicitly on the quark mass and other details of the potential. (See Eqs. ??.)

For the models (RA) and (RB) used Eventually these uncertainties will be reduced by lattice

calculations of the J/ψ to ηc transition rate.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

(1 + κc)[1 + o(v2
)] (7)

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

�
1 + CF

αs(Mj/ψ/2)

π
+

2

3
(CF αs(pJ/ψ))

2
�

(8)

B. Comparison with experiment

C. Comparison with experiment

M1 transitions have only been observed in the c̄c system. The allowed transitions in the

c̄c system below threshold are shown in Fig. 1. The transitions within the 1P system are

tiny (≈ 1 eV). Only the J/ψ → ηc and ψ � → ηc are observed experimentally [? ].

For the b̄b system CLEO [? ] sees no evidence for the hindered M1 transition Υ(3S) →

ηb(1S). The 90% cl upper bound on the branching ratio varies from 4−6×10−4 depending on

the mass splitting. For the expected splitting ≈ 910MeV the bound is 5.3× 10−4[? ]. This

rules out a number of older models[? ? ]. A comparision of the experiment results with a

variety of more modern models is shown in Table IV. For each model the assumptions for the

mixture of scalar and vector confinement and the value of κQ is exhibited explicitly. For the

model of Lahde[? ] the results are also shown without including the exchange term (NEX).

7

J/ψ → ηcγ

Up to order v2 the transition J/ψ → ηcγ is completely accessible by perturbation theory.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

»

1 + CF
αs(MJ/ψ/2)

π
−

2

3
(CF αs(pJ/ψ))2

–

The normalization scale for the αs inherited from κc is the charm mass

(αs(MJ/ψ/2) ≈ 0.35 ∼ v2), and for the αs, which comes from the Coulomb potential, is

the typical momentum transfer pJ/ψ ≈ mCF αs(pJ/ψ)/2 ≈ 0.8 GeV ∼ mv.

Γ(J/ψ → ηcγ) = (1.5 ± 1.0) keV.

1.19± 0.33 keV

half the expected theoretical result
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FIG. 1: Fits to the photon spectrum in exclusive J/ψ → γηc decays using Breit-Wigner (dotted)
and modified (solid) signal line shapes convolved with a 4.8 MeV wide resolution function. Total

background is given by the dashed line. The dot-dashed curves indicate two major background
components described in the text.

Fig. 3a. Several small nonlinear backgrounds below 560 MeV are apparent and are due
to a combination of (i) ψ(2S) → π0hc; hc → γηc; (ii) ψ(2S) → γχcJ ; χcJ → γJ/ψ; and
(iii) ψ(2S) → π0J/ψ. Based on detailed MC studies, all other backgrounds are linear, the
largest being ψ(2S) → π0Xi.

Fits to the ψ(2S) → γηc photon energy spectrum with a Breit-Wigner convolved with an
experimental resolution function (with a resolution of 5.1MeV after the kinematic fit) were
unsuccessful. For a hindered M1 transition the matrix element acquires terms proportional
to E2

γ , which, when combined with the usual E3
γ term for the allowed transitions, lead to

contributions in the radiative width proportional to E7
γ [2]. We find that if we assume a

linear background, as indicated by MC simulations, we are not able to obtain a good fit to
our Eγ spectrum for the sum of exclusive ψ(2S) → γηc modes with a pure E7

γ dependence.
We therefore use the empirical procedure described below to extract the ψ(2S) → γηc yield.

Extensive cross-checks have been performed to prove that the line shape asymmetry is
not an experimental artifact. Events selected without the aid of a kinematic fit indicate
an asymmetric line shape independently in both the photon energy and the hadronic mass.
The asymmetric line shape is not correlated with ηc decay modes that include π0, K0

S, or
η candidates. No indication of either asymmetry or peaking background has been found in
detailed MC studies, where all known decays in the charmonium and light quark systems
are simulated and unknown decays are modeled with the EvtGen generator [7]. The photon

5

– CLEO measurement solves the issue

– photon line shape has long tail. 

– Recently explained (Vairo QWG 2010).                               
Same effect well understood in 
positronium transitions.                    

– Will resolve the lineshape uncertainity

• ψ’ -> η’c 

– experimental limit from CLEO

– expectation from scaling from J/ψ  
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FIG. 38: From CLEO [42], the distribution of the photon po-
lar angle in the e+e− center-of-mass frame from the transition
sequence ψ(2S) → π0hc(1P ), hc(1P ) → γηc(1S). Open cir-
cles represent data from an inclusive ηc(1S) decays and solid
circles data from exclusive ηc(1S) decays (see text). The solid
curve represents a fit of both inclusive and exclusive data to
N(1 + α cos2 θ), from which α was found to be 1.20 ± 0.53.
Adapted from [42] with kind permission, copyright (2008) The
Americal Physical Society

3.1.3. Observation of hc(1P ) → γηc(1S)

The decay chain ψ(2S) → π0hc(1P ), hc(1P ) →
γηc(1S) has been confirmed by CLEO [41, 42] using
24.5 million ψ(2S) events. While the mass difference of
the hc(1P ) and χcJ(1P ) states is a measure of the hyper-
fine splitting in the 1P cc system, the product branching
fraction can be used to glean information about the size
of the E1 transition hc(1P ) → γηc(1S).

Using both an inclusive technique (using only the π0

recoil mass and the energy of the transition photon) and
an exclusive technique (reconstructing the ηc(1S) in mul-
tiple exclusive decay channels), CLEO has measured

B(ψ(2S) → π0hc(1P )) × B(hc(1P ) → γηc(1S)) =

(4.19 ± 0.32 ± 0.45)× 10−4 . (73)

If we use the fact that theoretical predictions [376] for
the branching fraction of the isospin-violating transition
ψ(2S) → π0hc(1P ) are in the range (0.4 − 1.3) × 10−3,
we can deduce that B(hc(1P ) → γηc(1S)) is on the order
of 30% or larger.

As part of the same study, CLEO has measured
the angular distribution of the transition photon from
hc(1P ) → γηc(1S) (Fig. 38). Fitting to a curve of the
form N(1 + α cos2 θ), and combining the results from
the inclusive and exclusive analyses, it was found that
α = 1.20 ± 0.53, consistent with α = 1, the expectation
for E1 transitions.

3.1.4. Nonobservation of ψ(2S) → γηc(2S)

After years of false alarms, the ηc(2S) was finally ob-
served in B-decays and two-photon fusion (see Sec. 2.2.2),
but only in a single decay mode, KKπ. In an attempt
to both discover new decay modes and to observe it in
a radiative transition, CLEO [377] modeled an ηc(2S)
analysis after its effort on the ηc(1S), wherein a system-
atic study of many exclusive hadronic decay modes aided
in measuring the lineshapes and branching fractions in
ψ(1, 2S) → γηc(1S) transitions [371]. Eleven modes,
which were chosen based in part upon success in finding
similar ηc(1S) decays, were sought in the exclusive decay
chain ψ(2S) → γηc(2S), ηc(2S) → hadrons in CLEO’s
26 million ψ(2S) sample. One of the modes sought was
the dipion transition ηc(2S) → π+π−ηc(1S), which used
proven hadronic decay modes of the ηc(1S). No ηc(2S)
signals were found, and eleven product branching frac-
tion upper limits were set. None but one of these prod-
ucts can be used to directly set a limit on the transition
because none but one have a measured ηc(2S) branching
fraction. Using the BABAR [378] branching fraction for
ηc(2S) → KKπ allows CLEO to set an upper limit

B(ψ(2S) → γηc(2S)) < 7.6 × 10−4 . (74)

This value is greater than a phenomenological limit ob-
tained [377] by assuming the matrix element is the same
as for J/ψ → γηc(1S) and correcting the measured J/ψ
branching fraction by the ratio of total widths and phase-
space factors, (3.9 ± 1.1) × 10−4.

3.1.5. Higher-order multipole amplitudes

The radiative decays ψ(2S) → γχc1,2 and χc1,2 →
γJ/ψ are dominated by electric dipole (E1) ampli-
tudes. However, they are expected to have a small
additional contribution from the higher-order magnetic
quadrupole (M2) amplitudes. Previous measurements
of the relative sizes of the M2 amplitudes have dis-
agreed with theoretical expectations. CLEO [379] has
recently revisited this issue with a high-statistics analysis
of the decay chains ψ(2S) → γχcJ ; χcJ → γJ/ψ; J/ψ →

TABLE 19: From CLEO [379], normalized magnetic
dipole (M2) amplitudes from an analysis of ψ(2S) → γχcJ ,
χcJ → γJ/ψ decays. For the J = 2 values, the electric oc-
tupole (E3) moments were fixed to zero

Decay Quantity Value (10−2)

ψ(2S) → γχc1 bJ=1
2 2.76 ± 0.73 ± 0.23

ψ(2S) → γχc2 bJ=2
2 1.0 ± 1.3 ± 0.3

χc1 → γJ/ψ aJ=1
2 −6.26 ± 0.63 ± 0.24

χc2 → γJ/ψ aJ=2
2 −9.3 ± 1.6 ± 0.3
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FIG. 38: From CLEO [42], the distribution of the photon po-
lar angle in the e+e− center-of-mass frame from the transition
sequence ψ(2S) → π0hc(1P ), hc(1P ) → γηc(1S). Open cir-
cles represent data from an inclusive ηc(1S) decays and solid
circles data from exclusive ηc(1S) decays (see text). The solid
curve represents a fit of both inclusive and exclusive data to
N(1 + α cos2 θ), from which α was found to be 1.20 ± 0.53.
Adapted from [42] with kind permission, copyright (2008) The
Americal Physical Society

3.1.3. Observation of hc(1P ) → γηc(1S)

The decay chain ψ(2S) → π0hc(1P ), hc(1P ) →
γηc(1S) has been confirmed by CLEO [41, 42] using
24.5 million ψ(2S) events. While the mass difference of
the hc(1P ) and χcJ(1P ) states is a measure of the hyper-
fine splitting in the 1P cc system, the product branching
fraction can be used to glean information about the size
of the E1 transition hc(1P ) → γηc(1S).

Using both an inclusive technique (using only the π0

recoil mass and the energy of the transition photon) and
an exclusive technique (reconstructing the ηc(1S) in mul-
tiple exclusive decay channels), CLEO has measured

B(ψ(2S) → π0hc(1P )) × B(hc(1P ) → γηc(1S)) =

(4.19 ± 0.32 ± 0.45)× 10−4 . (73)

If we use the fact that theoretical predictions [376] for
the branching fraction of the isospin-violating transition
ψ(2S) → π0hc(1P ) are in the range (0.4 − 1.3) × 10−3,
we can deduce that B(hc(1P ) → γηc(1S)) is on the order
of 30% or larger.

As part of the same study, CLEO has measured
the angular distribution of the transition photon from
hc(1P ) → γηc(1S) (Fig. 38). Fitting to a curve of the
form N(1 + α cos2 θ), and combining the results from
the inclusive and exclusive analyses, it was found that
α = 1.20 ± 0.53, consistent with α = 1, the expectation
for E1 transitions.

3.1.4. Nonobservation of ψ(2S) → γηc(2S)

After years of false alarms, the ηc(2S) was finally ob-
served in B-decays and two-photon fusion (see Sec. 2.2.2),
but only in a single decay mode, KKπ. In an attempt
to both discover new decay modes and to observe it in
a radiative transition, CLEO [377] modeled an ηc(2S)
analysis after its effort on the ηc(1S), wherein a system-
atic study of many exclusive hadronic decay modes aided
in measuring the lineshapes and branching fractions in
ψ(1, 2S) → γηc(1S) transitions [371]. Eleven modes,
which were chosen based in part upon success in finding
similar ηc(1S) decays, were sought in the exclusive decay
chain ψ(2S) → γηc(2S), ηc(2S) → hadrons in CLEO’s
26 million ψ(2S) sample. One of the modes sought was
the dipion transition ηc(2S) → π+π−ηc(1S), which used
proven hadronic decay modes of the ηc(1S). No ηc(2S)
signals were found, and eleven product branching frac-
tion upper limits were set. None but one of these prod-
ucts can be used to directly set a limit on the transition
because none but one have a measured ηc(2S) branching
fraction. Using the BABAR [378] branching fraction for
ηc(2S) → KKπ allows CLEO to set an upper limit

B(ψ(2S) → γηc(2S)) < 7.6 × 10−4 . (74)

This value is greater than a phenomenological limit ob-
tained [377] by assuming the matrix element is the same
as for J/ψ → γηc(1S) and correcting the measured J/ψ
branching fraction by the ratio of total widths and phase-
space factors, (3.9 ± 1.1) × 10−4.

3.1.5. Higher-order multipole amplitudes

The radiative decays ψ(2S) → γχc1,2 and χc1,2 →
γJ/ψ are dominated by electric dipole (E1) ampli-
tudes. However, they are expected to have a small
additional contribution from the higher-order magnetic
quadrupole (M2) amplitudes. Previous measurements
of the relative sizes of the M2 amplitudes have dis-
agreed with theoretical expectations. CLEO [379] has
recently revisited this issue with a high-statistics analysis
of the decay chains ψ(2S) → γχcJ ; χcJ → γJ/ψ; J/ψ →

TABLE 19: From CLEO [379], normalized magnetic
dipole (M2) amplitudes from an analysis of ψ(2S) → γχcJ ,
χcJ → γJ/ψ decays. For the J = 2 values, the electric oc-
tupole (E3) moments were fixed to zero

Decay Quantity Value (10−2)

ψ(2S) → γχc1 bJ=1
2 2.76 ± 0.73 ± 0.23

ψ(2S) → γχc2 bJ=2
2 1.0 ± 1.3 ± 0.3

χc1 → γJ/ψ aJ=1
2 −6.26 ± 0.63 ± 0.24

χc2 → γJ/ψ aJ=2
2 −9.3 ± 1.6 ± 0.3

BESIII ?
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• ϒ(3S)  -> ηb  and ϒ(2S)  -> ηb hindered M1 transition 

–  Leading order zero    ->                                                   
order v2 corrections determine rate

–  Relativistic corrections poorly understood

Phenomenological models made 
widely varying predictions

QwG Workshop@BNL  JUN/2006Hajime Muramatsu 7

Search for !(2,3S) " #$b(1S)

• Hindered M1 transition:

• But E# ~911 (604) MeV from !(3S) (!(2S)) " #$b(1S) with

M($b)~9400 MeV/c2.

• CLEO has already set ULs (90%CL) on these BR’s (PRL94,032001)
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pNRQCD

- New operators contribute :

M1 hindered transitions

• Two new operators contribute:

−
1

16m2
cemS

h

S†, σ ·
ˆ

−i∇×, eeQEem˜

i

S

and

−
1

16m2
cemS

h

S†, σ ·
ˆ

−i∇r×, ri(∇ieeQEem)
˜

i

S

• Two new wave function corrections contribute:

(1) induced by the spin-spin potential;

(2) recoil correction induced by the spin-orbit potential;

Due to the recoil, the final state develops a nonzero P -wave component suppressed by a factor
v kγ/m, which, in a n3S1 → n′ 1S0 γ transition, can be reached from the initial 3S1 state
through a 1/v enhanced E1 transition.

M1 hindered transitions

• Two new operators contribute:

−
1

16m2
cemS

h

S†, σ ·
ˆ

−i∇×, eeQEem˜

i

S

and

−
1

16m2
cemS

h

S†, σ ·
ˆ

−i∇r×, ri(∇ieeQEem)
˜

i

S

• Two new wave function corrections contribute:

(1) induced by the spin-spin potential;

(2) recoil correction induced by the spin-orbit potential;

Due to the recoil, the final state develops a nonzero P -wave component suppressed by a factor
v kγ/m, which, in a n3S1 → n′ 1S0 γ transition, can be reached from the initial 3S1 state
through a 1/v enhanced E1 transition.

- wavefunction corrections:
• induced by spin-spin potential
• recoil correction induced by             
spin-orbit potential

• Can only calculate in weak coupling region.
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– Recently observed by BABAR:

• Far below theoretical expectations

54

FIG. 41: From CLEO [383], the energy of the transition
photon from (a) ψ(2S), or (b) ψ(3770) decaying to γχcJ

when the χcJ are reconstructed in exclusive hadronic modes.
Short-dashed curves represent fits to the smooth background.
The long-dashed curve in (b) represents estimated background
from the tail of the ψ(2S), for which events are individually
indistinguishable from signal. A significant ψ(3770) → γχc0

signal is obtained. Adapted from [383] with kind permission,
copyright (2006) The Americal Physical Society

to ψ(2S) → γχcJ using the same exclusive modes, with
results shown in Fig. 41. Due to differing relative rates
of the χcJ decay modes employed, the first method has
more sensitivity to the transitions to χc1,2 whereas the
second is more suited to χc0. Combining the results of
the two analyses, the partial widths of ψ(3770) → γχcJ

were found to be 172 ± 30 keV for J = 0, 70 ± 17 keV
for J = 1, and < 21 keV at 90% CL for J = 2. These
measurements are consistent with relativistic calculations
assuming the ψ(3770) is the 3D1 state of charmonium.

3.1.7. Observation of Υ(2, 3S) → γηb(1S)

The recent discovery of the ηb(1S) state by
BABAR [191] has, through a measurement of the ηb(1S)
mass, given us our first measurement of the 1S hyper-
fine splitting in the bottomonium system. This is ob-
viously an important accomplishment for spectroscopy
as it provides a window into the spin-spin interactions
within the bb̄ system. However, in addition to its con-
tributions to spectroscopy, the observation of the decays
Υ(2, 3S) → γηb(1S) has resulted in our first measure-
ments of M1 radiative transition rates in the bottomo-
nium system. A large range of theoretical predictions
have been made for these rates [384], especially for the

hindered transitions, to which the experimental measure-
ment brings much-needed constraints.

Using 109 million Υ(3S) decays and 92 million Υ(2S)
decays, BABAR [191, 192] has measured

B(Υ(3S) → γηb(1S)) = (4.8 ± 0.5 ± 0.6) × 10−4

B(Υ(2S) → γηb(1S)) = (4.2+1.1
−1.0 ± 0.9) × 10−4 . (75)

Both measurements assume an ηb(1S) width of 10 MeV.
The large systematic errors in the branching fractions are
due to the difficulty in isolating the small ηb(1S) signal
from other nearby photon lines (χbJ (2P, 1P ) → γΥ(1S)
and Υ(3, 2S) → γΥ(1S)) and from the large background
in the energy spectrum of inclusive photons.

In addition to the M1 transition rates, the energy de-
pendence of the matrix elements is also of interest. In
the case of charmonium (see below), this energy depen-
dence can introduce a nontrivial distortion of the ηc(1S)
lineshape which can artificially pull the mass measure-
ment several MeV from its true value. It is expected
that the same distortion mechanism will hold in the bot-
tomonium system. This effect must then be understood
if M1 transitions are to be used for precision ηb(1S) mass
measurements.

Studying the ηb(1S) lineshape in M1 transitions will
require a large reduction in background levels. One pos-
sibility would be to study exclusive ηb(1S) decays. Using
exclusive ηb(1S) decays could also allow a measurement
of B(Υ(1S) → γηb(1S)), the allowed M1 transition, since
background levels in the Υ(1S) inclusive photon energy
spectrum are likely prohibitively large.

3.2. Radiative and dileptonic decays

Here we review theoretical status and experimental re-
sults for radiative an dileptonic decays of heavy quarko-
nia. The simplest parton-level decay of any heavy
quarkonium vector state occurs through annihilation into
a virtual photon and thence into dilepton or quark-
antiquark pairs. The latter can be difficult to isolate from
ggg decay at the charmonium and bottomonium mass
scales, but fortunately is known to have a rate propor-
tional to R ≡ σ(e+e− → hadrons)/σ(e+e− → µ+µ−), a
quantity that is well-measured with off-resonance data
and which has a well-understood energy dependence.
Conversely, dilepton pairs have distinctive experimen-
tal signatures for which most modern detectors are opti-
mized, offering the prospect of high precision. This high
precision is quite useful in studies of both production and
decays of vector charmonium and bottomonium states.
Dileptonic widths also offer relative and absolute mea-
sures of wave function overlap at the origin. For all these
reasons, decays to &+&− are heavily studied and used to
characterize the most basic features of each vector state.

The simplest three-body decays of vector quarkonia
are to γγγ, γgg, and ggg, and their relative rates should
reflect directly upon the value of αs at the relevant mass

ΓΥ(2S)→ηbγ and Γηb(2S)→Υ(1S) γ
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N. Brambilla, Y. Jia and A. Vairo, 
Phys. Rev. D 73, 054005 (2006)
 [arXiv:hep- ph/0512369].
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• For lowest order gluon emission:

• Double transitions dominate: E1 E1, E1 M1, M1 M1

• Factorization:
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Multipole Expansion for Hadronic Transitions
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Y.P. Kuang &  T.M. Yan
    [PR D24, 2874 (1981)]

quark confining string

electric polarizability 

model

B. hadronic transitions

Applying the multipole expansion to hadronic transitions. First suggested by Gottfried

and proven by Yan.
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II. RADIATIVE TRANSITIONS

For quarkonium states, Q1Q̄2, above the ground state but below threshold for strong

decay into a pair of heavy flavored mesons, electromagnetic transitions are often significant

decay modes. In fact, the first charmonium states not directly produced in e+e− collisions,

the χJ
c states, were discovered in photonic transitions of the ψ� resonance. Even today, such

transitions continue to be used to observe new quarkonium states [1].
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A. Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightfor-

ward. Much of the terminology and techniques are familiar from the study EM transitions

in atomic and nuclear systems. The photon field Aµ
em couples to charged quarks through

the electromagnetic current:
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where the E and B fields are the chromoelectric and chomomagentic fields. Corrections to

the leading NR behaviour are determined by expansion in the quark and antiquark velocities.
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But single emission takes color singlet 
state (S) to unphysical octet state (O).
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for dressed fields            ,
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E1 E1,  E1 M1,  M1 M1            
power 
counting v v2 v3

leading EM and hadronic transitions remain proportional as c->b 
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Hadronic Transitions
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II. RADIATIVE TRANSITIONS
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For l = 0 transitions, SM
if = 1.

V. HADRONIC TRANSITONS
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where C1 and C2 are two unknown constants.

Very recently, CLEO-c also detected the channel ψ(3770)→J/ψ + π+ + π− with higher

precision, and the measured branching ratio is [29]

B(ψ(3770)→J/ψ + π+
+ π−

) = (0.214± 0.025± 0.022)%. (10)

With the ψ(3770) total width (??), the partial width is

Γ(ψ(3770)→J/ψ + π+
+ π−

) = 50.5± 16.9 keV. (11)

We can also determine C2/C1 from (12) and (??), and the result is

C2/C1 = 1.52
+0.35
−0.45. (12)

This is consistent with the value (??) determined from the BES data, but with higher

precision.

An alternative way of calculating this kind of transition rate taking the approach to the

H factor proposed by Ref. [4] was carried out in Ref. [22]. The so obtained transition rate

is smaller than the above theoretical prediction by two orders of magnitude. So it strongly

disagrees with (??) and (12). Therefore the approach given in Ref. [4] is ruled out by the

BES and CLEO-c experiments.

9
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are nearly indistinguishable. The T. M. Yan model without higher order corrections is slightly
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0.8 using Eqn. 10 [20], we obtain the results shown in Fig. 7. The fit yields κ = 0.210±0.027
with a χ2/DOF = 26/40.

We have also fit the joint cos θ∗π and mππ distribution (Eqn. 8). This approach does not
require integrating over one of the variables and is sensitive to any cos θ∗π - mππ correlation.
Using this approach, we obtain a κ = 0.183 ± 0.002 and a χ2/DOF = 1618/1482. The

13

BES ψ� → J/ψ + π+π−

detailed 
study
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FIG. 1: The decay process under study and the main background process, denoted in the text as

“ππ γ γ”. Note that these have the same γ2, so that the energy of this photon is not a distinguishing
observable.

denoted E1, and the mass recoiling against the pion pair, Mrec, to define our signal. In
calculating Mrec we also used the four vector of γ1 so that Mrec actually represents the mass
difference of the 2P and 1P states; i.e.,

Mrec ≡
√

(P3S − Pγ1)2 −
√

(P3S − Pγ1 − Pπ1 − Pπ2)2 , (1)

with P denoting the four-vector momentum. In the second, we increased our efficiency
by only reconstructing one of the pions (a “one-pion” analysis) and used as variables the
missing mass of the event and E1.

II. THE CHANNEL χ′
b → π+π−χb

In event selection for our study of χ′
b → π+π−χb we required four well-measured primary

charged tracks, two of which had to have high momenta (in excess of 3.75 GeV/c) and
had to have calorimeter and momentum information consistent with being either e+e− or
µ+µ−.1 These two putative lepton tracks also had to have an invariant mass within 300
MeV of the Υ(1S) mass, which is a very loose requirement (∼ ±5σ). The other track(s) had
to have measured momentum 50 < p < 750 MeV/c and have a dip angle with respect to
the beam axis corresponding to | cos θ| < 0.93. To reduce QED backgrounds and facilitate
comparison to other, established channels, we made additional, highly efficient requirements

1 More details on the charged pion analyses are available in the MS thesis of K. M. Weaver, Observation

of χ′
b
→ π+π−χb, Cornell University, 2005 (unpublished).

5

P state -> P state

Assume only S wave term =>  J = J’

result of
Γππ = (0.83 ± 0.22 ± 0.08 ± 0.19) keV ,

with the uncertainties being statistical, systematics from our analyses, and systematics from
outside sources. This result for χ′

b → ππχb can be compared to values derived from the
PDG[12] of Γ(Υ(3S) → ππΥ(2S)) = (1.3±0.2) keV for a process with somewhat less Q and
Γ(Υ(2S)→ ππΥ(1S)) = (12 ± 2) keV for a process with considerably more Q. Our result
is consistent with the theoretical expectations of Kuang and Yan[20], who have calculated
Γππ = 0.4 keV.

In summary, we have searched the CLEO III data at the Υ(3S) resonance for the decay
χ′

b → ππχb using four different approaches. The combined probability that the signal process
is absent is small, leading to the conclusion that the null hypothesis cannot be substantiated.
Under the assumption of no D-wave contributions we obtain a partial width for each of the
J ′ = J = 1 and J ′ = J = 2 transitions of Γππ = (0.83 ± 0.22 ± 0.08 ± 0.19) keV.
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CLEO

2PJ -> 1PJ’ + 2π - First observation[CLEO] 
Results agree with Kuang and Yan (1988)  

FIG. 4: Distributions in π+π−"+"− events of the π+π− mass (left) and polar angle (right) of the

positively charged lepton from data (open circles) and MC (solid line line).

13

CLEO

state (n�2s�+1SJ �), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2J �
+ 1)k3

S
M
if [Mif |]2 (8)

where the statistical factor SM
if = SM

fi is

S
M
if = 6(2s + 1)(2s� + 1)
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For l = 0 transitions, SM
if = 1.

V. HADRONIC TRANSITONS

g2
E

6
�πα(q1)πβ(q2)|Ea

kEa
l |0� =

δαβ�
(2ω1)(2ω2)

�
C1δklq

µ
1 q2µ + C2

�
q1kq2l + q1lq2k −

2

3
δkl (q1 · q2)

��

where C1 and C2 are two unknown constants.

Very recently, CLEO-c also detected the channel ψ(3770)→J/ψ + π+ + π− with higher

precision, and the measured branching ratio is [29]

B(ψ(3770)→J/ψ + π+
+ π−

) = (0.214± 0.025± 0.022)%. (10)

With the ψ(3770) total width (??), the partial width is

Γ(ψ(3770)→J/ψ + π+
+ π−

) = 50.5± 16.9 keV. (11)

We can also determine C2/C1 from (12) and (??), and the result is

C2/C1 = 1.52
+0.35
−0.45. (12)

This is consistent with the value (??) determined from the BES data, but with higher

precision.

An alternative way of calculating this kind of transition rate taking the approach to the

H factor proposed by Ref. [4] was carried out in Ref. [22]. The so obtained transition rate

is smaller than the above theoretical prediction by two orders of magnitude. So it strongly

disagrees with (??) and (12). Therefore the approach given in Ref. [4] is ruled out by the

BES and CLEO-c experiments.

9

Determines

D state -> S state

22



Estia Eichten     Topical Seminars on Frontier of Particle Physics: Charm and Charmonium Physics       August 27-31, 2010 (Beijing)                      
23

Known hadronic transitions

64

TABLE 32: Partial widths for observed hadronic transitions.
Experimental results are from PDG08 [18] unless otherwise
noted. Partial widths determined from known branching frac-
tions and total widths. Quoted values assume total widths
of Γtot(χb2(2P )) = 138 ± 19 keV [457], Γtot(χb1(2P )) =
96 ± 16 keV [457], Γtot(Υ(13D2)) = 28.5 keV [458, 459] and
Γtot(Υ(5S)) = 43 ± 4 MeV [32]. Only the charged dipion
transitions are shown here, but the corresponding measured
π0π0 rates, where they exist, are consistent with a parent
state of I = 0. Theoretical results are given using the Kuang
and Yan (KY) model [451, 455, 460]. Current experimental
inputs were used to rescale the parameters in the theory par-
tial rates. (|C1| = 10.2 ± 0.2 × 10−3, C2/C1 = 1.75 ± 0.14,
C3/C1 = 0.78 ± 0.02 for the Cornell case)

Transition Γpartial (keV) Γpartial (keV)

(Experiment) (KY Model)

ψ(2S)

→ J/ψ + π+π− 102.3 ± 3.4 input (|C1|)
→ J/ψ + η 10.0 ± 0.4 input (C3/C1)
→ J/ψ + π0 0.411 ± 0.030 [435] 0.64 [456]
→ hc(1P ) + π0 0.26 ± 0.05 [43] 0.12-0.40 [376]

ψ(3770)

→ J/ψ + π+π− 52.7 ± 7.9 input (C2/C|)
→ J/ψ + η 24 ± 11

ψ(3S)
→ J/ψ + π+π− < 320 (90% CL)

Υ(2S)

→ Υ(1S) + π+π− 5.79 ± 0.49 8.7 [461]
→ Υ(1S) + η (6.7 ± 2.4) × 10−3 0.025 [455]

Υ(13D2)

→ Υ(1S) + π+π− 0.188 ± 0.046 [59] 0.07 [462]

χb1(2P )

→ χb1(1P ) + π+π− 0.83 ± 0.33 [457] 0.54 [463]
→ Υ(1S) + ω 1.56 ± 0.46

χb2(2P )

→ χb2(1P ) + π+π− 0.83 ± 0.31 [457] 0.54 [463]
→ Υ(1S) + ω 1.52 ± 0.49

Υ(3S)

→ Υ(1S) + π+π− 0.894 ± 0.084 1.85 [461]
→ Υ(1S) + η < 3.7 × 10−3 0.012 [455]
→ Υ(2S) + π+π− 0.498 ± 0.065 0.86 [461]

Υ(4S)

→ Υ(1S) + π+π− 1.64 ± 0.25 4.1 [461]
→ Υ(1S) + η 4.02 ± 0.54
→ Υ(2S) + π+π− 1.76 ± 0.34 1.4 [461]

Υ(5S)

→ Υ(1S) + π+π− 228 ± 33
→ Υ(1S) + K+K− 26.2 ± 8.1
→ Υ(2S) + π+π− 335 ± 64
→ Υ(3S) + π+π− 206 ± 80

prising, since the similarly-defined ratio, Rη[Υ(2S)] ≈
10−3, is actually less than half of the KY model expecta-
tions (see Table 32) and the experimental upper bound on
Rη[Υ(3S)] is already slightly below KY-model expecta-
tions. Much theoretical work remains in order to under-
stand the hadronic transitions of the heavy QQ̄ systems
above threshold.

Many of the new XY Z states (see Secs. 2.3) are
candidates for so-called hadronic molecules. If this
were the case, and they indeed owe their existence to
nonperturbative interactions among heavy mesons, the
QCDME needs to be extended by heavy meson loops.
These loops provide nonmultipole, long-ranged contri-
butions, so as to allow for the inclusion of their influ-
ence. However, if hadron loops play a significant, some-
times even nonperturbative, role above D̄D threshold,
one should expect them to be at least of some importance
below the lowest inelastic threshold. Correspondingly,
one should expect to find some systematic deviations be-
tween quark-model predictions and data. By including
intermediate heavy-meson effects within the framework
of QCDME, Refs. [465, 466] obtained improved agree-
ment with the experimental data on dipion transitions in
the ψ and Υ systems.

Alternatively, in Ref. [467] a nonrelativistic effective
field theory (NREFT) was introduced that allows one
to study the effect of heavy-meson loops on charmo-
nium transitions with controlled uncertainty. In this
work, it was argued that the presence of meson loops
resolves the long-standing discrepancy between, on the
one hand, the values of the light-quark mass-differences
extracted from the masses of the Goldstone bosons, and
on the other, the ratio of selected charmonium transi-
tions, namely ψ(2S) → J/ψπ0/ψ(2S) → J/ψη. NREFT
uses the velocity of the heavy mesons in the intermediate
state, v ∼

√
|M − 2MD|/MD, as expansion parameter.

Thus, for transitions of states below DD̄ threshold, the
analytic continuation of the standard expression is to be
used. For low-lying charmonium transitions, v is found
to be of order 0.5. A typical transition via a D-meson
loop may then be counted as

v3/(v2)2 × vertex factors . (110)

For the transition between two S-wave charmonia, which
decay into D(∗)D̄(∗) via a P–wave vertex, the vertex fac-
tors scale as v2. Thus the loop contributions appear to
scale as order v, and, for values of the velocity small
relative to those that can be captured by QCDME, are
typically suppressed. However, in certain cases enhance-
ments may occur. For example, for ψ(2S) → J/ψπ0 and
ψ(2S) → J/ψη, flavor symmetry is broken, and therefore
the transition matrix element needs to scale as δ, the en-
ergy scale that quantifies the degree of flavor-symmetry
violation in the loop and which originates from the mass
differences of charged and neutral D-mesons. However,
if an energy scale is pulled out of the integral, this needs
to be balanced by removing the energy scale v2 from the
power-counting. Thus the estimate for the loops contri-
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Known hadronic transition 

64

TABLE 32: Partial widths for observed hadronic transitions.
Experimental results are from PDG08 [18] unless otherwise
noted. Partial widths determined from known branching frac-
tions and total widths. Quoted values assume total widths
of Γtot(χb2(2P )) = 138 ± 19 keV [457], Γtot(χb1(2P )) =
96 ± 16 keV [457], Γtot(Υ(13D2)) = 28.5 keV [458, 459] and
Γtot(Υ(5S)) = 43 ± 4 MeV [32]. Only the charged dipion
transitions are shown here, but the corresponding measured
π0π0 rates, where they exist, are consistent with a parent
state of I = 0. Theoretical results are given using the Kuang
and Yan (KY) model [451, 455, 460]. Current experimental
inputs were used to rescale the parameters in the theory par-
tial rates. (|C1| = 10.2 ± 0.2 × 10−3, C2/C1 = 1.75 ± 0.14,
C3/C1 = 0.78 ± 0.02 for the Cornell case)

Transition Γpartial (keV) Γpartial (keV)

(Experiment) (KY Model)

ψ(2S)

→ J/ψ + π+π− 102.3 ± 3.4 input (|C1|)
→ J/ψ + η 10.0 ± 0.4 input (C3/C1)
→ J/ψ + π0 0.411 ± 0.030 [435] 0.64 [456]
→ hc(1P ) + π0 0.26 ± 0.05 [43] 0.12-0.40 [376]

ψ(3770)

→ J/ψ + π+π− 52.7 ± 7.9 input (C2/C|)
→ J/ψ + η 24 ± 11

ψ(3S)
→ J/ψ + π+π− < 320 (90% CL)

Υ(2S)

→ Υ(1S) + π+π− 5.79 ± 0.49 8.7 [461]
→ Υ(1S) + η (6.7 ± 2.4) × 10−3 0.025 [455]

Υ(13D2)

→ Υ(1S) + π+π− 0.188 ± 0.046 [59] 0.07 [462]

χb1(2P )

→ χb1(1P ) + π+π− 0.83 ± 0.33 [457] 0.54 [463]
→ Υ(1S) + ω 1.56 ± 0.46

χb2(2P )

→ χb2(1P ) + π+π− 0.83 ± 0.31 [457] 0.54 [463]
→ Υ(1S) + ω 1.52 ± 0.49

Υ(3S)

→ Υ(1S) + π+π− 0.894 ± 0.084 1.85 [461]
→ Υ(1S) + η < 3.7 × 10−3 0.012 [455]
→ Υ(2S) + π+π− 0.498 ± 0.065 0.86 [461]

Υ(4S)

→ Υ(1S) + π+π− 1.64 ± 0.25 4.1 [461]
→ Υ(1S) + η 4.02 ± 0.54
→ Υ(2S) + π+π− 1.76 ± 0.34 1.4 [461]

Υ(5S)

→ Υ(1S) + π+π− 228 ± 33
→ Υ(1S) + K+K− 26.2 ± 8.1
→ Υ(2S) + π+π− 335 ± 64
→ Υ(3S) + π+π− 206 ± 80

prising, since the similarly-defined ratio, Rη[Υ(2S)] ≈
10−3, is actually less than half of the KY model expecta-
tions (see Table 32) and the experimental upper bound on
Rη[Υ(3S)] is already slightly below KY-model expecta-
tions. Much theoretical work remains in order to under-
stand the hadronic transitions of the heavy QQ̄ systems
above threshold.

Many of the new XY Z states (see Secs. 2.3) are
candidates for so-called hadronic molecules. If this
were the case, and they indeed owe their existence to
nonperturbative interactions among heavy mesons, the
QCDME needs to be extended by heavy meson loops.
These loops provide nonmultipole, long-ranged contri-
butions, so as to allow for the inclusion of their influ-
ence. However, if hadron loops play a significant, some-
times even nonperturbative, role above D̄D threshold,
one should expect them to be at least of some importance
below the lowest inelastic threshold. Correspondingly,
one should expect to find some systematic deviations be-
tween quark-model predictions and data. By including
intermediate heavy-meson effects within the framework
of QCDME, Refs. [465, 466] obtained improved agree-
ment with the experimental data on dipion transitions in
the ψ and Υ systems.

Alternatively, in Ref. [467] a nonrelativistic effective
field theory (NREFT) was introduced that allows one
to study the effect of heavy-meson loops on charmo-
nium transitions with controlled uncertainty. In this
work, it was argued that the presence of meson loops
resolves the long-standing discrepancy between, on the
one hand, the values of the light-quark mass-differences
extracted from the masses of the Goldstone bosons, and
on the other, the ratio of selected charmonium transi-
tions, namely ψ(2S) → J/ψπ0/ψ(2S) → J/ψη. NREFT
uses the velocity of the heavy mesons in the intermediate
state, v ∼

√
|M − 2MD|/MD, as expansion parameter.

Thus, for transitions of states below DD̄ threshold, the
analytic continuation of the standard expression is to be
used. For low-lying charmonium transitions, v is found
to be of order 0.5. A typical transition via a D-meson
loop may then be counted as

v3/(v2)2 × vertex factors . (110)

For the transition between two S-wave charmonia, which
decay into D(∗)D̄(∗) via a P–wave vertex, the vertex fac-
tors scale as v2. Thus the loop contributions appear to
scale as order v, and, for values of the velocity small
relative to those that can be captured by QCDME, are
typically suppressed. However, in certain cases enhance-
ments may occur. For example, for ψ(2S) → J/ψπ0 and
ψ(2S) → J/ψη, flavor symmetry is broken, and therefore
the transition matrix element needs to scale as δ, the en-
ergy scale that quantifies the degree of flavor-symmetry
violation in the loop and which originates from the mass
differences of charged and neutral D-mesons. However,
if an energy scale is pulled out of the integral, this needs
to be balanced by removing the energy scale v2 from the
power-counting. Thus the estimate for the loops contri-

• Will return to this at the end.



Estia Eichten     Topical Seminars on Frontier of Particle Physics: Charm and Charmonium Physics       August 27-31, 2010 (Beijing)                      
25

Narrow States Below Threshold

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.  [Rev. Mod. Phys. 80, 1161 (2008)]
FIG. 1 Known charmonium states and candidates, with selected decay modes and transitions. Red

(dark) arrows denote recent observations.

to charmonium and Section V to the bb̄ levels and includes a brief mention of interpolation

to the bc̄ system. Section VI summarizes.

II. OVERVIEW OF QUARKONIUM LEVELS

Since the discovery of the J/ψ more than thirty years ago, information on quarkonium

levels has grown to the point that more is known about the cc̄ and bb̄ systems than about

their namesake positronium, the bound state of an electron and a positron. The present

status of charmonium (cc̄) levels is shown in Fig. 1, while that of bottomonium (bb̄) levels

is shown in Fig. 2. The best-established states are summarized in Tables I and II.

The levels are labeled by S, P , D, corresponding to relative orbital angular momentum

L = 0, 1, 2 between quark and antiquark. (No candidates for L ≥ 3 states have been

seen yet.) The spin of the quark and antiquark can couple to either S = 0 (spin-singlet)

or S = 1 (spin-triplet) states. The parity of a quark-antiquark state with orbital angular

momentum L is P = (−1)L+1; the charge-conjugation eigenvalue is C = (−1)L+S. Values

5
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Narrow States Below Threshold

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.  [Rev. Mod. Phys. 80, 1161 (2008)]FIG. 2 Transitions among bb̄ levels. There are also numerous electric dipole transitions S ↔ P ↔ D

(not shown). Red (dark) arrows denote objects of recent searches.

of JPC are shown at the bottom of each figure. States are often denoted by 2S+1[L]J , with

[L] = S, P, D, . . .. Thus, L = 0 states can be 1S0 or 3S1; L = 1 states can be 1P1 or 3P0,1,2;

L = 2 states can be 1D2 or 3D1,2,3, and so on. The radial quantum number is denoted by n.

III. THEORETICAL UNDERPINNINGS

A. Quarks and potential models

An approximate picture of quarkonium states may be obtained by describing them as

bound by an interquark force whose short-distance behavior is approximately Coulombic

(with an appropriate logarithmic modification of coupling strength to account for asymptotic

freedom) and whose long-distance behavior is linear to account for quark confinement. An

example of this approach is found in Eichten et al. (1975, 1976, 1978, 1980); early reviews

may be found in Appelquist et al. (1978); Grosse and Martin (1980); Novikov et al. (1978);

Quigg and Rosner (1979). Radford and Repko (2007) presents more recent results.

6

ππ



Estia Eichten     Topical Seminars on Frontier of Particle Physics: Charm and Charmonium Physics       August 27-31, 2010 (Beijing)                      
27

Mππ distributions

3S -> 1S ?
3S -> 2S ✓
2S -> 1S ✓

CLEO
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4S -> 1S ✓
4S -> 2S ?



Estia Eichten     Topical Seminars on Frontier of Particle Physics: Charm and Charmonium Physics       August 27-31, 2010 (Beijing)                      

 

don’t show leading (S-wave) two pion 
invariant mass distribution 

Υ(3S) → Υ + ππ

Υ(4S) → Υ(2S) + ππ

Many proposals for explaining the ϒ(3S)->ϒ transition 
but most don’t survive new results for ϒ(4S): 

◊ Final State Interactions

➤

◊ exotic intermediate state

◊ dynamical accident - suppress the leading E1E1 term

 Problem: Compare ϒ(4S)->ϒ(2S), ϒ(2S)->ϒ(1S) and ψ(2S) -> J/ψ  

  essentially the same phase space but different distributions. 

 Problem:  Compare ϒ(4S)->ϒ(2S), ϒ(3S)->ϒ(1S)  
  similiar distributions but shifted masses 

  Worth a closer look.  

◊ coupling to decay channels

 Problem:  Compare ϒ(3S)->ϒ(1S) to ψ(2S)->J/ψ,ϒ(4S)->ϒ(1S)  

  Coupled channel effects should be larger in second set.

29

Puzzles
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Predicted  for ϒ
(3S)->ϒ(1S)

Kuang &Yan (1981)  

Like the E1 case ?
 Δn =2 overlaps suppressed.

Toy model

�

nl

|Ψnl >< Ψnl|
Ei − Enl

∼ 1

Ei − ETH

string

+ · · ·

Below lowest threshold

TABLE VI: Two pion transitions (1−− → 1−− + π+π−) observed in quarkonium systems

cc̄

Transition mmax
ππ (MeV) Branching Fraction Partial Width (kEV)

ψ� → J/ψ + π+π− 589 (0.503 ± 0.019(a) 142 ± 8.6

ψ(3773)→ J/ψ 676 (2.69 ± 0.45 ± 0.36)x10−3(b) 20

bb̄

Transition mmax
ππ (MeV) Branching Fraction Partial Width (kEV)

Υ� → Υ 563 0.278 ± 0.014(a) 8.50 ± 0.64

Υ�� → Υ� 332 (4.8 ± 0.9)× 10−2(a) 1.06 ± 0.20

Υ�� → Υ 895 (6.54 ± 0.49)x10−2(a) 1.44 ± 0.20

Υ��� → Υ� 557 (1.29 ± 0.32) x 10−4(c) 2.7 ± 0.8

Υ��� → Υ 1120 (0.90 ± 0.15) x 10−4(c) 1.8 ± 0.4

TABLE VII: Toy model of overlap for two pion transitions: n3S1− > m3S1 + π+π−.

Transition G( GeV5) < f |r2|i > ( GeV−2) G(< f |r2|i >)2 × 10+2

ψ(2S)→ J/ψ 2.3× 10−2 −3.0 20

Υ(2S)→ Υ 2.1× 10−2 −1.19 3.0

Υ(3S)→ Υ 3.3× 10−1 −2.4× 10−1 1.9

Υ(3S)→ Υ(2S) 9.1× 10−4 −3.7 1.2

Υ(4S)→ Υ 1.2 −9.8× 10−2 1.2

Υ(4S)→ Υ(2S) 2.0× 10−2 −4.6× 10−1 0.21

17
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◊ dynamical accident - suppress the leading E1E1 term
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If leading <E1 E1> suppressed, can <M1 M1> be significant   

Voloshin hep-ph/606258 Detailed study: S-wave

Here in the first replacement the cross terms between r and q are dropped since they cancel in

tµνλσ due to the C symmetry (p1 ↔ p2), while the gαβ term in the last transition is dropped,

since such structure cancels in the traceless tensor t. Using Eq.(22) one readily finds from

the formula (19) the expressions for the S and D wave amplitudes:

Sµνλσ =
8π2

3b

{

(q2 + m2) (gµλgνσ − gµσgνλ) (23)

−
3

2
κ

(

1 +
2m2

q2

)

[

qµqλgνσ + qνqσgµλ − qνqλgµσ − qµqσgνλ −
1

2
q2 (gµλgνσ − gµσgνλ)

]

}

,

and

Dµνλσ =
8π2

3b

9κ

4
(#µλgνσ + #νσgµλ − #νλgµσ − #µσgνλ) . (24)

4 Two-pion transition amplitudes with the relativistic

corrections

Using the formulas in the equations (2), (5) and (7) and the expressions (23) and (24) for

the dipion production amplitudes in the chiral limit, one can readily find the amplitude of

the transition ψ2 → π+π−ψ1 between generic 3S1 states of a heavy quarkonium. After a

straightforward calculation one finds the S wave decay amplitude

S(ψ2 → π+π−ψ1) = (25)

−
4π2

b
α(12)

0

[

(1 − χM) (q2 + m2) − (1 + χM) κ

(

1 +
2m2

q2

) (

(q · P )2

P 2
−

1

2
q2

)]

(ψ1 · ψ2) ,

as well as three types of D wave amplitude: one unrelated to the spins of the quarkonium

states

D1(ψ2 → π+π−ψ1) = −
4π2

b
α(12)

0 (1 + χM)
3κ

2

#µνP µP ν

P 2
(ψ1 · ψ2) , (26)

and two amplitudes with the correlation with the polarization of the initial and the final

resonances

D2(ψ2 → π+π−ψ1) =
4π2

b
α(12)

0

(

χ2 +
3

2
χM

)

κ

2

(

1 +
2m2

q2

)

qµqνψ
µν (27)

and

D3(ψ2 → π+π−ψ1) =
4π2

b
α(12)

0

(

χ2 +
3

2
χM
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]
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In these formulas the following notation is used: P stands for the 4-momentum of the initial

quarkonium resonance, ψµ
1 and ψµ

2 are the polarization 4-vectors for the 3S1 states, and ψµν

is the spin-2 structure ψµν = ψµ
1 ψν

2 + ψν
1ψ

µ
2 − (2/3) (ψ1 · ψ2) (P µP ν/P 2 − gµν). Finally, χM

and χ2 stand for the ratia

χM =
αM

α0
, χ2 =

α2

α0
(29)

and encode the relative magnitude of the O(v2/c2) relativistic effects due to respectively the

chromo-magnetic interaction (Eq.(6)) and the 3D1 −3 S1 mixing.

The three D waves correspond to different angular correlations. The first one, D1, given

by Eq.(26) corresponds to a D-wave motion in the c.m. frame of two pions, which correlates

with the motion of the c.m. system in the laboratory frame, i.e. with the direction of $q.

This D wave arises in the leading nonrelativistic approximation [18] and is in fact observed

and measured experimentally [9] for the transition ψ(2S) → π+π−J/ψ. The second D-wave

amplitude, D2 in Eq.(27), corresponds to the two pions being in the S wave in their c.m.

system and describes the correlation of the spins of the initial and the final resonances with

the D-wave motion of the two-pion system as a whole. Finally, the amplitude D3 given

by Eq.(28) corresponds to a D-wave motion of the pions in their c.m. frame, which D

wave is correlated with the spins of the quarkonium states. It can be noted that the two

latter amplitudes are proportional to a product of two relatively small parameters κ and

α2 + (3/2) αM ∼ v2/c2. Neither D2 nor D3 have yet been observed experimentally, although

a study [23] of polarization effects in the decay Υ(2S) → π+π−Υ, utilizing a transversal po-

larization of the DORIS beams qualitatively confirms that these spin-dependent amplitudes

are quite small. (A discussion can be found in the review [24].)

The transitions between 1S0 states of quarkonium have not been observed yet. One may

hope however that with a dedicated effort a two-pion transition from the recently found

ηc(2S) resonance: ηc(2S) → π+π−ηc can be observed and studied. Within the approach

discussed here such transition is closely related to the familiar decay ψ(2S) → π+π−J/ψ,

and in fact can be used for a useful calibration of the total width of ηc(2S) [25]. Clearly,

on the theoretical side the transitions between 1S0 states are simpler than those between

the 3S1 ones since no polarization effects are involved. On the other hand the effect of the

M1 interaction (Eq.(6)) is enhanced for the 1S0 states (Eq.(7)) by a factor of 3, so that the

relevant transition amplitudes of a generic η2 → π+π−η1 transition are given by

S(η2 → π+π−η1) = (30)

11
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where q = p1 + p2 is the total four-momentum of the dipion.

Few remarks are due regarding effects of higher order in αs. The trace term in Eq.(19)

receives no renormalization, provided that the coefficient b is replaced by β(αs)/α2
s with

β(αs) = bα2
s + O(α3

s) being the full beta function in QCD. This modification however only

affects the overall normalization of the trace part, and can in fact be absorbed into the

definition of the heavy quarkonium amplitudes. On the contrary, the relative coefficient of

the traceless term in Eq.(19), i.e. the parameter κ, does depend on the normalization scale,

which scale is appropriate to be chosen as the characteristic size of the heavy quarkonium [18].

However, given other uncertainties in the analysis of the two-pion transitions, the logarithmic

variation of κ is a small effect. In particular, this effect is likely to be smaller than the

discussed in this paper relativistic effects in the amplitudes of the two-pion emission.

The matrix element in Eq.(19) describes the production of the two pions in two partial

waves in their center of mass system: the S wave and the D wave. The two waves can

be measured separately, and also any effects of the final state interaction between pions

are different in these two orbital states. Therefore it is quite instructive for the subsequent

discussion to explicitly separate the S and D waves in the matrix element, i.e. to rewrite

the amplitude (19) in the form

− 〈π+(p1)π
−(p2)|F

a
µνF

a
λσ|0〉 = Sµνλσ + Dµνλσ . (20)

Clearly, the trace term in Eq.(19) corresponds to a pure S wave, while the traceless term

proportional to κ contains both waves. In order to perform explicit partial wave separation

in tµνλσ it is helpful to introduce [18] the four vector r = p1 − p2 describing the relative

momentum of the two pions, which reduces to a purely spatial vector in the c.m. system of

the pions ((r · q) = 0). Then the tensor

%µν = rµrν +
1

3

(

1 −
4m2

q2

)

(q2 gµν − qµqν) (21)

is also purely spatial in the c.m. frame and corresponds to pure D wave. Using this tensor

one can make the following series of replacements for the terms of the generic structure

p1αp2β in the tensor tµνλσ:

p1αp2β →
1

4
qαqβ −

1

4
rαrβ =

1

4
qαqβ +

1

12

(

1 −
4m2

q2

)

(q2 gαβ − qαqβ) −
1

4
%αβ

→
1

6

(

1 +
2m2

q2

)

qαqβ −
1

4
%αβ . (22)

9

rµ = (k1µ − k2µ)

Pµ = MAδ0
µ

Expect noticeable presence of D2 and D3 in   ϒ
(3S) ->ϒ +ππ decay
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BUT - In addition to the suppression of the M1-M1 term 
by <v2> relative to the dominate E1-E1 term: 

Radial overlap amplitude: with the hybrid states 

�

nl

|Ψnl >< Ψnl|
Ei − Enl

∼ 1

Ei − ETH

string

+ · · ·

Again below lowest intermediate state threshold

In this limit the overlap vanishes since <f|i>=0 (i≠f)

The M1-M1 term is highly suppressed !
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FIG. 8: Plots overlaying projections of the data (points with error bars) and the fit result (his-

tograms) onto the Mππ and cos θX variables. The plots are summed over electrons and muons, but
are differentiated by pion charge. The neutral modes (open symbols, dashed lines) show only a
positive distribution in cos θX because the two pions are indistinguishable. For the charged modes

(solid symbols, solid lines) the angle is that of the π+.

and proportional to 1/
√

ai, where ai is the Monte Carlo phase space yield in bin i. Hence,

σi =
√

di + d̃2
i /ai.

The bins for which di = 0 require special treatment, and σi is modified appropriately. To
minimize the effect of such bins with zero yield, we sum over muon and electron final states.
This takes a weighted average over the distributions, rather than taking account of the

14
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QQ(n3S1) -> QQ(m3S1) + π+π-Upsilon dipion transition in CLEO    DPF'06 Honolulu    T. Skwarnicki 5

Initial Theory 

• In Multipole Expansion model, the 3rd term involves magnetic 

interactions (spin flip) and can be neglected compared to the leading 

E1*E1 transition [Yan PR,D22,1652 (80)].  

C 0!

• In QCD-motivated calculation of soft-pion piece in E1*E1 transition, 

expect S-wave to dominate in the non-relativistic limit producing 

M("") distribution similar to the one due to the 1st term 
[Voloshin,Zakharov,PRL,45,688(80); Novikov, Shifman, ZP,C8,43(81)]

A B!

• Observation of #(2S)$#(1S)"" with the 

same M("") distribution was a great 

success of this theoretical framework and 

reinforced A-dominance dogma

• Consistent with the phenomenological 

observation by Brown&Cahn, that M("") 
in %(2S)$J/%(1S)"" was well 

reproduced by assuming B=C=0

[ ]22

1 2 1 2 2 1A B C( )( 2 ) ( ) ( )( ) ( )( )M q m EE q q q q!" " " " " " " "& & & &= ' ( + ' + ' ' + ' '

M"" (GeV) 

Fit, No C stat. effcy. (π±) effcy.(π0) bg. sub.

Υ(3S) → Υ(1S)ππ
"(B/A)

#(B/A)

−2.523

±1.189

±0.031

±0.051

±0.019

±0.026

±0.011

±0.018

±0.001

±0.015

Υ(2S) → Υ(1S)ππ
"(B/A)

#(B/A)

−0.753

0.000

±0.064

±0.108

±0.059

±0.036

±0.035

±0.012

±0.112

±0.001

Υ(3S) → Υ(2S)ππ
"(B/A)

#(B/A)

−0.395

±0.001

±0.295

±1.053

±0.025

±0.180

±0.120

±0.001

Fit, float C stat. effcy. (π±) effcy.(π0) bg. sub.

Υ(3S) → Υ(1S)ππ
|B/A|
|C/A|

2.89
0.45

±0.11
±0.18

±0.19
±0.28

±0.11
±0.20

±0.027
±0.093

TABLE IV: Combined fit results for all transitions with statistical and systematic uncertainties.

The systematic uncertainties are in order: π± detection efficiency, π0 detection efficiency, and
background subtraction for the Υ(3S) → Υ(2S)ππ transition. The upper set of results are for
the fits assuming contributions to the amplitude from only the A and B terms. The bottom two

lines are the fit results when the C term is allowed to be non-zero. The imaginary part of the
ratio has a two-fold ambiguity and is only known to within a sign. Note that for the transition

Υ(3S) → Υ(2S)ππ we do not have fits for the charged di-pion case.

of the Brown and Cahn decay amplitude (Eqn. 1) are included in our model, and the fits
account for the structure of the decay without introduction of new physics or contributions
from resonances.

The matrix elements are indicated as points in the complex plane in Fig. 12. For the
“anomalous” Υ(3S) → Υ(1S)ππ transition we fit for the presence of the “suppressed” C
term as a test for the breakdown of the underlying assumptions leading to the standard
matrix element. This term is not significant when systematic errors are taken into account
and the quality of the fit to the data is good without it. Therefore, we set an upper limit of
|C/A| < 1.09 at 90% C.L..

We note in particular that the treatment of the di-pion transitions via the full allowed
matrix element under the assumptions in Refs. [3, 4, 23, 24, 25] allows two matrix elements,
only one of which has traditionally been assumed to be non-zero. The description of the
Υ(3S) → Υ(1S)ππ transition di-pion mass and angular structure as anomalous is only true
in the limit of this assumption. This analysis shows in particular that the description of the
decay process in terms of the two favored amplitude terms, with complex form factors con-
stant over the Dalitz plane, suffices to describe the decay distributions of Υ(3S) → Υ(1S)ππ,
Υ(3S) → Υ(2S)ππ, and Υ(2S) → Υ(1S)ππ, provided the form factors are allowed to vary
with the transition. For the Υ(3S)→ Υ(1S)ππ transition, we find |B/A| = 2.79±0.05, which
could imply a large magnitude of B or a suppressed A; recent theoretical considerations [20]
favor the latter interpretation. While smaller than in the case of Υ(3S) → Υ(1S)ππ, |B/A|
is also determined to be non-zero for the case of Υ(2S) → Υ(1S)ππ. The large imaginary
part of B/A is intriguing [27].

While there are not yet first principles predictions of the values of the matrix elements
of the decays studied here, this analysis does provide complete measurements of the relative
matrix element magnitudes and phases that can serve as a point of comparison with ab initio
QCD calculations.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent
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Hindered M1-M1 term => C≈0.     
Consistent with CLEO results.  

Small D-wave contributions

Useful to look at polarization info.                            
Dubynskiy & Voloshin [hep-ph/0707.1272]

Fit, no C, total error

Υ(3S) → Υ(1S)ππ

"(B/A)

#(B/A)
|B/A|
δBA

−2.52 ± 0.04

±1.19 ± 0.06
2.79 ± 0.05

155(205) ± 2

Υ(2S) → Υ(1S)ππ

"(B/A)
#(B/A)

|B/A|
δBA

−0.75 ± 0.15
0.00 ± 0.11

0.75 ± 0.15
180 ± 9

Υ(3S) → Υ(2S)ππ
"(B/A)
#(B/A)

−0.40 ± 0.32
0.00 ± 1.1

Fit, float C, total error

Υ(3S) → Υ(1S)ππ
|B/A|
|C/A|

2.89 ± 0.25
0.45 ± 0.40

TABLE V: Fit results for all transitions with total uncertainties. These numbers represent the final
result of this analysis. In the case of the magnitude ratio |C/A|, we also quote a limit as detailed

in the text. The phase angles are quoted in degrees, and have a two-fold ambiguity of reflection in
the real axis.

FIG. 12: Complex values of matrix element ratio B/A from combined fits for the three transitions
under the assumption that C = 0. Note the two-fold ambiguity in the imaginary part.

luminosity and running conditions. D. Cronin-Hennessy and A. Ryd thank the A.P. Sloan
Foundation. This work was supported by the National Science Foundation, the U.S. De-
partment of Energy, and the Natural Sciences and Engineering Research Council of Canada.
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FIG. 11: The left plot shows the amplitude component functions SA, SB, DA, and DB as a function

of Mππ ≡
√

q2. These are summed to obtain the total amplitude. The partial rate to S-wave and
D-wave components are shown in the right plot for the Υ(3S) → Υ(1S)ππ decay as determined

from the results of this analysis: B/A = −2.52+1.19i. Note that the D-wave contribution is largest
in the low to intermediate range of q2, and is suppressed at both extrema by angular momentum
barrier effects. Note further that this is not a resonance phenomenon despite its shape in Mππ and

the changing angular structure.

This partial wave extraction becomes much more complex if the form factors are assumed
to be variable over the Dalitz space, for example due to resonant structure/enhancement in
the decay. This will introduce higher powers of cos2 θX to the overall amplitude and will
need higher partial wave components to account for the variation.

The presence of D-wave components in the angular distribution of the decay is not in
itself an indication of resonances contributing, nor the presence of unaccounted-for physics.
The presence of a q2-dependent D-wave component could simply be a consequence of angu-
lar momentum barriers in the three body phase space of the decay. The data do not demand
the introduction of a q2-dependent magnitude or phase for B/B. These small D-wave com-
ponents are consistent with those derived in a recent paper by Voloshin [20], in which he
emphasizes the importance of relativistic and chromo-magnetic effects.

IV. SYSTEMATIC UNCERTAINTIES

We address three sources of systematic uncertainty in the measurements of B/A and
C/A: model dependence, detector efficiency and resolution, and backgrounds.

In Sect. III we showed that our model provides a very good description of the data in the
(q2, cos θX) plane and that the presence or absence of the chromo-magnetic coupled term in
the amplitude has little effect on |B/A| and δBA.

Uncertainty in the estimation of the detector efficiency and resolution contributes most
significantly in the charged mode analyses due to our limited knowledge of the tracking
efficiency at very low momentum. In that the low momentum region is precisely where
the matrix element has potential suppression in the B term, this can potentially cause a

18

3S->1S 
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CHAPTER 4

For instance, the amplitude for the decay (4.149) is given by:

M(3S1→3S1 + ππ) =
4i
√

MSMS′

f 2
π

ε′ · ε∗ (ASS′p1 · p2 + BSS′v · p1v · p2) (4.158)

where ε and ε′ are the polarisation vectors of quarkonium states; p1, p2 are the momenta of the two pions.
It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process
in question, which contains a third independent term given by:

CSS′
4i
√

MSMS′

f 2
π

(
ε′ · p1ε

∗ · p2 + ε′ · p2ε
∗ · p1

)
. (4.159)

In the nonrelativistic limit in QCDME, Yan [230] finds CSS′ = 0. It is interesting to note that, within
the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-
metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, the π0 − η − η′ mixings can be derived, which should
be taken into account in predicting single pseudoscalar meson transitions of heavy quarkonia (cf. Sec-
tion 7.2). Let us define

m̂ ≡




mu 0 0
0 md 0
0 0 ms



 . (4.160)

The Lagrangian that gives mass to the pseudoscalar octet (massless in the chiral limit) and causes π0 − η
mixing is

Lm = λ0〈m̂(Σ + Σ†)〉, (4.161)
and that giving rise to the mixing of η′ with π0 and η is

Lηη′ =
ifπ

4
λ̃〈m̂(Σ − Σ†)〉η′, (4.162)

where λ̂ is a parameter with the dimension of a mass. At first order in the mixing angles the physical
states π̃0, η̃, and η̃′ determined from the above Lagrangians are:

π̃0 = π0 + εη + ε′η′, η̃ = η − επ0 + θη′, η̃′ = η′ − θη − ε′π0, (4.163)

in which the mixing angles are

ε =
(md − mu)

√
3

4(ms −
mu + md

2
)
, ε′ =

λ̃(md − mu)√
2(m2

η′ − m2
π0)

, θ =

√
2

3

λ̃

(
ms −

mu + md

2

)

m2
η′ − m2

η
. (4.164)

7.2 Predictions for hadronic transitions in the single-channel approach
In this section, we give the predictions for HTs in the single-channel approach. In this approach, the
amplitude of HT is diagrammatically shown in Fig. 4.13 in which there are two complicated vertices:
namely, the MGE vertex of the heavy quarks and the vertex of hadronization (H) describing the conver-
sion of the emitted gluons into light hadrons. In the following, we shall treat them separately.

Let us first consider the HT processes n3
i S1→n3

fS1 + π + π. To lowest order, these are double
electric-dipole transitions (E1E1). The transition amplitude can be obtained from the S matrix element
(4.143). After some algebra, we obtain [230, 231, 237]

ME1E1 = i
g2
E

6

∑

KLK ′L′

〈Φfh|x · E|KL〉
〈

KL

∣∣∣∣
1

Ei − H (0)
QCD − iD0

∣∣∣∣K
′L′

〉
〈K ′L′|x · E|Φi〉, (4.165)
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Single light hadron transitions

• Need higher order: E1-M1 O(v) CP = -- couples to ω; E1-M1 and E1-E2     

O(v)  amd M1-M1, E1-M2 in O(v2) CP = +- couples to π, η;   M1-M1, E1-

E3, E2-E2 CP=++; ... 

• final states π, η,η’ proceed from two gluon component ofη’ 

• SU(3) and chiral symmetry breaking  - chiral effective theory

• Many puzzles in relative strengths for η in the charmonium and 

bottomium systems.   Opportunites for new theoretical insights.
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Transitions for states above threshold

• Rare processes

• ψ(3770)  E1 transitions and ππ transitions already 

• ψ(4040):  Γ ~ 80 MeV

– Rate for ψ (4040)  -> J/ψ+ ππ expected to be about 25 keV [scaling from 

the ϒ(3S) -> ϒ(1S) + ππ] (<340 KeV at present).  Compare Mππ distributions 
with ψ(4040) -> J/ψ+ ππ with ϒ(3S) -> ϒ(1S) + ππ].  Others? η and π0  

– E1 rates (naive): 
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• ψ(4160):  Γ ~ 100 MeV

– Hadronic transitions: ππ, π, n
– E1 rates:

37

->  13F2  + γ  if this transition is kinematically allow
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Issues and Outlook

•  Multipole expansion approach for EM and hadronic transitions works well 
with some initially puzzling exceptions: 

– E1 transitions rate for  ϒ(3S) -> χb (1PJ) +γ

– M1 transition rates for ϒ(3S) ->ηb (1P)+γand  ϒ(2S) ->ηb (1P)+γ

– The two pion invariant mass distributions for the ϒ(3S) -> ϒ(1S)+ππ  and                   
ϒ(4S) -> ϒ(2S)+ππ transitions do not show the expected  strong  S-wave 
leading order E1-E1 behavior.   

• In all these cases the leading order MPE coefficient is dynamically 
suppressed [as predicted]

– E1 rates -  Cancellations in overlap for states with nodes in radial 
wavefunctions.  Here nearly complete. [Moxhay & Rosner PR D28, 1132 
(1983); McClary and Byers PR D28, 1692 (1983)]

– M1 rates - Hindered M1 transitions.  Zero in leading order.
– Two pion: - Again suppressed overlap. [Kuang and Yan PR D24, 2874 

(1981)]
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• Theoretical control of the non leading terms in the MPE is still poor.  Modern 
tools (effective field theories and nonperturbative LQCD) combined with more 
detailed high statistics experimental data (BESIII, LHCb, super B factories, ...) 
with be needed to pin down these terms.

• Studying the EM and hadronic transitions for states well above threshold will 
add to our understanding of these issues (3S and 2D states in charmonium)
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• The ϒ(5S) -> ϒ(1S)+ππ,  ϒ(5S) -> ϒ(2S)+ππ transitions

• Very large rates and nonstandard Mππ

• Failure of usual multipole expansion

– <r2> too large?

– too relativistic?

– nearby hybrid state   ✓

40

One more thing

Belle
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phase space (GeV-7)

If lowest hybrid mass near Υ(5S) a few states dominate sum. Results 

sensitive to mass value.      

Overall scale of transitions more than an order  of magnitude larger 
than theory expects. 

theory -  hadronic transition rates
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Will discuss Above Threshold in the last lecture


