Lectures on NRQCD Factorization for Quarkonium Production and Decay

> Eric Braaten Ohio State University

- I. Nonrelativistic QCD
- II. Annihilation decays
- III. Inclusive hard production

NRQCD Factorization for Quarkonium Production and Decay

- I. Nonrelativistic QCD
- II. Annihilation decays
 - Introduction
 - Color-singlet Model
 - Electromagnetic annihilation
 - Hadronic annihilation
 - NRQCD Factorization
 - Applications

III. Inclusive hard production

Introduction

Quarkonium Decays

Transitions

- radiative: $H' \rightarrow H\gamma$
- hadronic: $H' \rightarrow H \pi \pi$, $H \eta$, etc
- heavy meson pairs: $H \rightarrow M'M$

where M', M are mesons containing a heavy quark

Annihilation

- electromagnetic: $H \rightarrow e^+ e^-$, $\gamma \gamma$
- hadronic: $H \rightarrow$ light hadrons

Introduction

<u>Transition Decays</u> involve only soft scales < Mv

- radiative: $H' \rightarrow H\gamma$ matrix element $\langle H | \Psi \gamma \Psi \Psi(0) | H' \rangle$ can be calculated using lattice QCD (or lattice NRQCD)
- hadronic: $H' \rightarrow H \pi \pi$, $H \eta$, etc difficult to calculate using lattice QCD
- heavy meson pairs: H → M'M
 difficult to calculate using lattice QCD

Introduction

Annihilation Decays

- electromagnetic: $H \rightarrow e^+e^-$, $\gamma\gamma$ involves hard scale M from $Q\overline{Q}$ annihilation and soft scales $\leq Mv$ from wavefunction of H
- hadronic: H → light hadrons involves hard scale M from QQ annihilation and soft scales ≤ Mv from wavefunction of H and from light hadrons

difficult to calculate directly using lattice QCD but can use NRQCD Factorization to separate scales and simplify calculation

for annihilation decays into light hadrons

- onium = color-singlet QQ in appropriate angular momentum state
 - $\eta_{c} = c\bar{c}(\underline{I}, {}^{\prime}S_{0})$ $J/\psi = c\bar{c}(\underline{I}, {}^{3}S_{1})$
 - $\chi_{cJ} = \overline{cc(\underline{I}, {}^{3}P_{J})}$
- annihilation rate Γ into light hadrons
 - = annihilation rate of $Q\overline{Q}$ into partons

$$\begin{array}{ll} \eta_c & \rightarrow & gg, \ ggg, \ q\bar{q}g, \ \dots \\ J/\psi & \rightarrow & ggg, \ \dots \\ \chi_{c0,2} & \rightarrow & gg, \ ggg, \ q\bar{q}g, \ \dots \\ \chi_{c1} & \rightarrow & ggg, \ q\bar{q}g, \ \dots \end{array}$$

- Q and Q must be very close to annihilate
 - $\Gamma \propto$ probability density near origin
 - $\Gamma \propto |R(0)|^2$ for S-waves
 - $\propto |R'(0)|^2$ for P-waves
- QQ annihilate into partons with hard momenta of order M
 Q, Q have soft momenta of order Mv can be neglected compared to M
 - $\Gamma \propto \text{annihilation rate of } Q\overline{Q} \text{ at rest}$ can be calculate as power series in $\alpha_s(M)$

Conjectured factorization formula for decay rates into light hadrons

S-waves:
$$\Gamma = \begin{pmatrix} \text{power series} \\ \text{in } \alpha_s(M) \end{pmatrix} \times \frac{|R(0)|^2}{M^2}$$

P-waves: $\Gamma = \begin{pmatrix} \text{power series} \\ \text{in } \alpha_s(M) \end{pmatrix} \times \frac{|R'(0)|^2}{M^4}$

For S-waves,

factorization formula verified to NLO in $\alpha_s(M)$

$$\Gamma[\eta_c] = \left[\frac{2}{3}\alpha_s^2(2m_c) + \frac{572 - 31\pi^2}{24\pi}\alpha_s^3\right] \frac{|R(0)|^2}{m_c^2}$$

For P-waves, infrared divergences at order $\alpha_s(M)^3$!

<u>P-wave Problem</u> of the Color-Singlet Model infrared divergences in the decay rates of P-wave states into light hadrons at order α_s^3 from $Q\overline{Q} \rightarrow q\overline{q}g$ $\Gamma[\chi_{c0}] = \left| 6\alpha_s^2 + \left(\frac{8n_f}{9\pi} \log \frac{m_c}{\mu} + \dots \right) \alpha_s^3 \right| \frac{|R'(0)|^2}{m^4}$ $\Gamma[\chi_{c1}] = \left[0 + \left(\frac{8n_f}{9\pi} \log \frac{m_c}{\mu} + \dots \right) \alpha_s^3 \right] \frac{|R'(0)|^2}{m^4}$ $\Gamma[\chi_{c2}] = \left| \frac{8}{5} \alpha_s^2 + \left(\frac{8n_f}{9\pi} \log \frac{m_c}{\mu} + \dots \right) \alpha_s^3 \right| \frac{|R'(0)|^2}{m^4}$

 μ = infrared cutoff on real gluon⁴

Electromagnetic annihilation

QCD factor: matrix element of local operator calculate using lattice QCD or (approximately) using lattice NRQCD

$$\langle 0 | \bar{\Psi} \vec{\gamma} \Psi(0) | J/\psi \rangle = \langle 0 | \chi^{\dagger} \vec{\sigma} \psi(0) | J/\psi \rangle$$

$$\times \left[1 + O(\alpha_s) + O(v^2) \right]$$

QCD factor: matrix element of bilocal operator $\langle 0|\bar{\Psi}\gamma^{\mu}\Psi(x_A)\bar{\Psi}\gamma^{\nu}\Psi(x_B)|\eta_c\rangle$ dominated by short distances: $x_A - x_B \sim I/M$

 \Rightarrow difficult to calculate using lattice QCD

$$\eta_c \rightarrow \gamma \gamma$$
 (cont.)

charm quark propagating from A to B is off-shell by $\sim m_c$

 \Rightarrow coupling of gluons to virtual c suppressed by $\alpha_{s}(m_{c})$

 $\eta_c \rightarrow \gamma\gamma$ (cont.)

Factor amplitude into soft part and hard part

soft factor: insensitive to separation of currents can shrink <u>virtual c line</u> to a point

hard factor: insensitive to small momenta of c, \bar{c} can set momenta = 0

$$\eta_c \rightarrow \gamma \gamma$$
 (cont.)

Factorization of amplitude:

Factorization of decay rate:

$$\Gamma[\eta_c \to \gamma \gamma] = \frac{32\pi\alpha^2}{81m_c^2} \left| \langle 0|\chi^{\dagger}\psi(0)|\eta_c \rangle \right|^2$$

$$\left(\eta_{c} \rightarrow \gamma \gamma$$
 (cont.) $\right)$

Decay rate: $\Gamma[\eta_c \to \gamma \gamma] = \frac{32\pi\alpha^2}{81m_c^2} \langle \eta_c | \psi^{\dagger}\chi(0) | 0 \rangle \langle 0 | \chi^{\dagger}\psi(0) | \eta_c \rangle$ same space-time point

source of real photon of energy *M* can be localized to within wavelength $I/M \implies x_A - x_C \sim I/M$

$$\eta_c \rightarrow \gamma\gamma$$
 (cont.)

Factorization of decay rate:

$$\Gamma[\eta_c \to \gamma\gamma] = \frac{32\pi\alpha^2}{81m_c^2} \left| \langle 0|\chi^{\dagger}\psi(0)|\eta_c \rangle \right|^2$$

Express in terms of wavefunction:

$$\langle 0|\chi^{\dagger}\psi(0)|\eta_{c}\rangle|^{2} = \frac{3}{2\pi} |R(0)|^{2}$$

$$\Gamma[\eta_c \to \gamma\gamma] = \frac{16\alpha^2}{27m_c^2} \ |R(0)|^2$$

agrees with Color-Singlet Model

 $\eta_c \rightarrow \text{light hadrons}$

at leading order in $\alpha_s(m_c)$, proceeds through $c\bar{c} \rightarrow gg$

soft gluons couple to cc pair and to light hadrons

 $\eta_c \rightarrow \text{light hadrons}$

at leading power of 1/M, energetic light hadrons form 2 jets

amplitude does not factor into soft × hard However <u>decay rate</u> factors!

 $\eta_c \rightarrow \text{light hadrons}$

decay rate (1 of 2 diagrams)

Kinoshita-Lee-Nauenberg Theorem: infrared divergences from coupling of soft gluons to jets cancel after summing over final-state cuts

 \Rightarrow soft gluons decouple from jets

 $\eta_c \rightarrow \text{light hadrons}$

virtual c is off-shell by ~ $I/M \implies x_A - x_B \sim I/M$

source of real gluon of energy M can be localized to within wavelength $I/M \implies x_A - x_C \sim I/M$ $Q\overline{Q}$ annihilation occurs within region of size I/M

 $\eta_c \rightarrow \text{light hadrons}$

Factorization of decay rate

 $\eta_c \rightarrow \text{light hadrons}$

Transitions from soft gluon emission suppressed by powers of v

$$\Gamma[\eta_c] = \frac{4\pi \alpha_s^2(m_c)}{9m_c^2} \langle \eta_c | \psi^{\dagger} \chi \chi^{\dagger} \psi(0) | \eta_c \rangle$$
$$= \frac{2\alpha_s^2(m_c)}{3m_c^2} |R(0)|^2$$

NRQCD Factorization effects of $Q\overline{Q} \rightarrow gg \rightarrow Q\overline{Q}$ from annihilation into hard gluons are taken into account in NRQCD through local 4-fermion operators

Effective Lagrangian that takes into account $Q\bar{Q} \rightarrow gg \rightarrow Q\bar{Q}$ $\Delta \mathcal{L}_{eff} = F(\alpha_s) \ \psi^{\dagger} \chi \chi^{\dagger} \psi$

Effective Hamiltonian

$$\Delta \mathcal{H}_{\text{eff}} = -F(\alpha_s) \ \psi^{\dagger} \chi \chi^{\dagger} \psi$$

gives energy shift $\Delta E - i \Delta \Gamma/2$ $\Delta \Gamma = 2 \operatorname{Im} F(\alpha_s) \langle \eta_c | \psi^{\dagger} \chi \chi^{\dagger} \psi | \eta_c \rangle$

$$\Gamma[\eta_c] = \frac{4\pi\alpha_s^2(m_c)}{9m_c^2} \ \langle \eta_c | \psi^{\dagger} \chi \chi^{\dagger} \psi(0) | \eta_c \rangle$$

generalization to all orders in $\boldsymbol{\alpha}_s$ and to all orders in \boldsymbol{v}

NRQCD Factorization Formula for decay rate into light hadrons

$$\Gamma[H] = \sum_{n} 2 \operatorname{Im} F_{n}(\alpha_{s}) \langle H | \mathcal{O}_{n} | H \rangle$$

- sum is over all 4-fermion operators of the form $\Psi^{\dagger}(...)\chi \chi^{\dagger}(...)\Psi$
- short-distance coefficients $2 \operatorname{Im} F_n(\alpha_s)$ are power series in $\alpha_s(M)$
- NRQCD matrix elements (H | On | H) have definite scaling with v

P-wave Problem of the Color-Singlet Model Decay rates into light hadrons for P-wave states have infrared divergences at order α_s^3 from $Q\bar{Q} \rightarrow q\bar{q}g$

$$\Gamma[\chi_{c0}] = \left[6\alpha_s^2 + \left(\frac{8n_f}{9\pi} \log \frac{m_c}{\mu} + \dots \right) \alpha_s^3 \right] \frac{|R'(0)|^2}{m_c^4}$$

$$\Gamma[\chi_{c1}] = \left[0 + \left(\frac{8n_f}{9\pi} \log \frac{m_c}{\mu} + \dots \right) \alpha_s^3 \right] \frac{|R'(0)|^2}{m_c^4}$$

$$\Gamma[\chi_{c2}] = \left[\frac{8}{5}\alpha_s^2 + \left(\frac{8n_f}{9\pi} \log \frac{m_c}{\mu} + \dots \right) \alpha_s^3 \right] \frac{|R'(0)|^2}{m_c^4}$$

$$\mu = \text{infrared cutoff on real gluon}$$

Solution: NRQCD Factorization!

NRQCD Factorization Formula for decays of P-wave states into light hadrons at leading order in v

$$\Gamma[\chi_{cJ}] = 2 \operatorname{Im} F(\underline{1}, {}^{3}P_{J}) \langle \chi_{cJ} | \mathcal{O}(\underline{1}, {}^{3}P_{J}) | \chi_{cJ} \rangle + 2 \operatorname{Im} F(\underline{8}, {}^{3}S_{1}) \langle \chi_{cJ} | \mathcal{O}(\underline{8}, {}^{3}S_{1}) | \chi_{cJ} \rangle$$

- Ist term is Color-Singlet Model
- 2nd term takes into account ccg Fock state of XcJ (color-octet mechanism)
- both NRQCD matrix elements scale like v⁵
- infrared divergence in 1st term at order $\alpha_s(M)^3$ can be absorbed into 2nd term

- color-singlet matrix element $\langle \chi_{cJ} | \mathcal{O}(\underline{1}, {}^{3}P_{J}) | \chi_{cJ} \rangle$ receives contribution from dominant *cc* Fock state suppressed by v² from P-wave operator
- color-octet matrix element $\langle \chi_{cJ} | \mathcal{O}(\underline{8}, {}^{3}S_{1}) | \chi_{cJ} \rangle$ where $\mathcal{O}(\underline{8}, {}^{3}S_{1}) = \psi^{\dagger} \vec{\sigma} T^{a} \chi \cdot \chi^{\dagger} \vec{\sigma} T^{a} \psi^{\dagger}$ receives contribution from ccg Fock state suppressed by v² from probability of ccg Fock state

 $\Gamma[\chi_{cJ}] = 2 \operatorname{Im} F(\underline{1}, {}^{3}P_{J}) \langle \chi_{cJ} | \mathcal{O}(\underline{1}, {}^{3}P_{J}) | \chi_{cJ} \rangle$ $+ 2 \operatorname{Im} F(\underline{8}, {}^{3}S_{1}) \langle \chi_{cJ} | \mathcal{O}(\underline{8}, {}^{3}S_{1}) | \chi_{cJ} \rangle$

infrared divergence in color-singlet term at order $\alpha_s(M)^3$ can be absorbed into color-octet term

- color-singlet term at order $\alpha_s(M)^3$
- color-octet term at order α_s(M)²

NRQCD Factorization Formula

at leading order in v and leading order in $\alpha_s(m_c)$

5 NRQCD matrix elements are related by heavy-quark spin symmetry

Heavy-quark spin symmetry

 $\langle \mathcal{O}(\underline{1}, {}^{3}P_{J}) \rangle_{\chi_{cJ}}$ is same for J = 0, 1, 2 $\langle \mathcal{O}(\underline{8}, {}^{3}S_{1}) \rangle_{\chi_{cJ}}$ is same for J = 0, 1, 2

 \Rightarrow only two independent NRQCD matrix elements

short-distance coefficients have been calculated to next-to-leading order in $\alpha_s(m_c)$

<u>S-wave annihilation decays</u>

S-wave multiplet spin-triplet: J/ψ spin-singlet: η_c

5 annihilation decays: $J/\psi \rightarrow e^+e^ \eta_c \rightarrow \gamma\gamma$ $J/\psi \rightarrow \text{ light hadrons (via gluons)}$ $J/\psi \rightarrow \text{ light hadrons (via virtual photon)}$ $\eta_c \rightarrow \text{ light hadrons}$ $(also J/\psi \rightarrow \gamma\gamma\gamma)$

<u>S-wave annihilation decays</u> (cont.)

at leading order in v^2 , one independent NRQCD matrix element:

$$|\langle 0|\chi^{\dagger}\psi(0)|\eta_{c}\rangle|^{2} = \frac{3}{2\pi} |R_{1S}(0)|^{2}$$

at next-to-leading order in v^2 , three independent NRQCD matrix elements:

$$\begin{aligned} \left| \langle 0 | \chi^{\dagger} \psi(0) | \eta_c \rangle \right|^2 &= \frac{3}{2\pi} |R_{\eta_c}(0)|^2 \\ \left| \langle 0 | \chi^{\dagger} \vec{\sigma} \psi(0) | J/\psi \rangle \right|^2 &= \frac{3}{2\pi} |R_{J/\psi}(0)|^2 \\ \langle v^2 \rangle &= m_c^2 \frac{\langle 0 | \chi^{\dagger} \vec{D}^2 \psi(0) | \eta_c \rangle}{\langle 0 | \chi^{\dagger} \psi(0) | \eta_c \rangle} \end{aligned}$$

S-wave annihilation decays (cont.)

perturbative QCD corrections
to short-distance coefficients can be large!
$$\Gamma[J/\psi \to e^+e^-] = \frac{8\pi\alpha^2}{27m_c^2} \left(1 - \frac{16\alpha_s(m_c)}{3\pi}\right) |\langle 0|\chi^{\dagger}\vec{\sigma}\psi(0)|J/\psi\rangle|^2$$
$$40\% \text{ correction if } \alpha_s(m_c) = 0.25$$

relativistic corrections of order v^2 can be large $\Gamma[J/\psi \rightarrow e^+e^-] = \frac{8\pi\alpha^2}{27m_c^2} |\langle 0|\chi^{\dagger}\vec{\sigma}\psi(0)|J/\psi\rangle|^2 \left(1 - \frac{4}{3}\langle v^2\rangle\right)$ 40% correction if $v^2 = 0.3$

P-wave annihilation decays

P-wave multiplet spin-triplet: Xc0, Xc1, Xc2 spin-singlet: hc

6 annihilation decays:

 $\chi_{c0} \rightarrow \gamma \gamma$

$$\chi_{c2} \rightarrow \gamma \gamma$$

- $\chi_{c0} \rightarrow \text{light hadrons}$
- $\chi_{cl} \rightarrow \text{light hadrons}$
- $\chi_{c2} \rightarrow \text{light hadrons}$
- $h_c \rightarrow$ light hadrons (see talk by Ying Fan)

P-wave annihilation decays (cont.)

at leading order in v², two independent NRQCD matrix elements $|\langle 0|\chi^{\dagger}\vec{D}\psi(0) - \vec{D}\chi^{\dagger}\psi(0)|h_c\rangle|^2 = \frac{18}{\pi} |R'_{1P}(0)|^2$ $\langle h_c|\psi^{\dagger}T^a\chi\chi^{\dagger}T^a\psi^{\dagger}|h_c\rangle$ short-distance coefficients have been calculated to NLO in $\alpha_s(m_c)$ expected accuracy in decay rates: v² \approx 30%

at next-to-leading order in v², 6 independent NRQCD matrix elements

Comparisons of NRQCD Factorization with Experiment

Inclusive *P*-Wave Quarkonium Decays

• IR finite predictions first possible with NRQCD factorization.

Ratio	PDG04	PDG00	LO	NLO
$rac{\Gamma(\chi_{c0} ightarrow \gamma \gamma)}{\Gamma(\chi_{c2} ightarrow \gamma \gamma)}$		12.6±9.7	pprox 3.75	pprox 5.43
$\frac{\Gamma(\chi_{c2} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}{\Gamma(\chi_{c0} \to \gamma\gamma)}$		271±196	pprox 347	pprox 383
$\frac{\Gamma(\chi_{c0} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}{\Gamma(\chi_{c0} \to \gamma\gamma)}$		3545±2576	pprox 1300	pprox 2781
$\frac{\Gamma(\chi_{c0} \to l.h.) - \Gamma(\chi_{c2} \to l.h.)}{\Gamma(\chi_{c2} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}$		12.1±3.2	pprox 2.75	pprox 6.63
$\frac{\Gamma(\chi_{c0} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}{\Gamma(\chi_{c2} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}$		13.1±3.3	pprox 3.75	pprox 7.63

 $m_c = 1.5 \text{ GeV. } \alpha_s(2m_c) = 0.245.$

Compiled by A. Vairo.

Mainly from E835 (χ_{c0} total width and $\chi_{c0} \rightarrow \gamma \gamma$). Also from Belle ($\chi_{c0} \rightarrow \gamma \gamma$), CLEO, and BES.

Comparisons of NRQCD Factorization with Experiment

Inclusive *P*-Wave Quarkonium Decays

• IR finite predictions first possible with NRQCD factorization.

Ratio	PDG04	PDG00	LO	NLO
$rac{\Gamma(\chi_{c0} o \gamma \gamma)}{\Gamma(\chi_{c2} o \gamma \gamma)}$	5.1±1.1	12.6±9.7	pprox 3.75	\approx 5.43
$egin{aligned} rac{\Gamma(\chi_{c2} ightarrow l.h.) - \Gamma(\chi_{c1} ightarrow l.h.)}{\Gamma(\chi_{c0} ightarrow \gamma\gamma)} \end{array}$	404±98	271±196	pprox 347	pprox 383
$\frac{\Gamma(\chi_{c0} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}{\Gamma(\chi_{c0} \to \gamma\gamma)}$	3609±752	3545±2576	pprox 1300	pprox 2781
$\frac{\Gamma(\chi_{c0} \to l.h.) - \Gamma(\chi_{c2} \to l.h.)}{\Gamma(\chi_{c2} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}$	7.9±1.4	12.1±3.2	pprox 2.75	pprox 6.63
$\frac{\Gamma(\chi_{c0} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}{\Gamma(\chi_{c2} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}$	8.9±1.5	13.1±3.3	pprox 3.75	pprox 7.63

 $m_c = 1.5 \text{ GeV. } \alpha_s(2m_c) = 0.245.$

Compiled by A. Vairo.

Mainly from E835 (χ_{c0} total width and $\chi_{c0} \rightarrow \gamma \gamma$). Also from Belle ($\chi_{c0} \rightarrow \gamma \gamma$), CLEO, and BES.

Phenomenological analysis -- Maltoni

• Global fit (Maltoni):

– χ^2 /d.o.f. = 15.0/10.

 $\langle \chi_{cJ} | \mathcal{O}_1(^3 P_J) | \chi_{cJ} \rangle = (7.2 \pm 0.9) \times 10^{-2} \text{ GeV}^5.$ $\langle \chi_{cJ} | \mathcal{O}_8(^3 S_1) | \chi_{cJ} \rangle = (4.3 \pm 0.9) \times 10^{-3} \text{ GeV}^3.$

Lattice NRQCD calculations

• Lattice (GTB, D.K. Sinclair, S. Kim):

 $\langle \chi_{cJ} | \mathcal{O}_1(^3 P_J) | \chi_{cJ} \rangle = (8.0 \pm 1.7) \times 10^{-2} \,\text{GeV}^5.$ $\langle \chi_{cJ} | \mathcal{O}_8(^3 S_1) | \chi_{cJ} \rangle = (4.6 \pm 2.5) \times 10^{-3} \,\text{GeV}^3.$

Bodwin, Sinclair, and Kim 1996

Summary

NRQCD Factorization

- rigorous formalism for calculating
 - electromagnetic annihilation rates
 - decay rates into light hadrons
- separates hard scale $\sim M$ from soft scales $\leq Mv$
- reduces problem to
 - perturbative QCD calculation of short-distance coefficients
 - lattice NRQCD calculation of matrix elements (or treat them as phenomenological parameters)

Summary

- for S-wave and P-wave charmonium states, agreement with experiment to within expected theoretical errors
- can theoretical errors be decreased?
 - NLO perturbative QCD corrections are not small calculate NNLO corrections?
 - NLO v² corrections are not small include NRQCD matrix elements to next order in v²? must calculate them using lattice NRQCD (too many to be treated as phenomenological parameters)