

QCD yield estimation

F. lemmi

## Estimation of the QCD background yield in the $1\tau\, 0\text{L}$ category

Huiling Hua <sup>1</sup> **Fabio lemmi** <sup>1</sup> Hongbo Liao <sup>1</sup> Hideki Okawa <sup>2</sup> Yu Zhang <sup>2</sup>

<sup>1</sup>Institute of High Energy Physics (IHEP), Beijing

<sup>2</sup>Fudan University, Shanghai

July 14, 2021



QCD yield estimation

F. lemmi

- QCD simulations are not reliable, especially at high jet multiplicity
  - Large uncertainties on the theoretical cross sections
  - $\, \circ \,$  You usually have low selection efficiency  $\, \Longrightarrow \,$  few events to use in the analysis
- Find a QCD-enriched region (control region, CR) in data
- Important properties for a good CR:
  - It should be verified that it's indeed QCD-enriched
  - It should be depleted from signal and other backgrounds
  - It should be as kinematically close as possible to the signal region (SR)
  - It should be orthogonal to the SR

## **General idea**

- QCD is only dominant in  $1\tau\,\text{0L}$  category
  - $\approx$  50% of the background yield in  $1\tau\,0\mathsf{L}$
- All the remaining major backgrounds (tt and tt+X) and signal involve top quarks, i.e., bottom quarks in the final state
- First try: revert the request on the number of b tagged jets in the event

|             | $  N_{\tau_h}$ | $N_\ell$ | $N_{jets}$ | $N_{bjets}$ |
|-------------|----------------|----------|------------|-------------|
| 1	au 0L     | 1              | 0        | $\geq$ 8   | $\geq 2$    |
| 1	au 0L ctl | 1              | 0        | $\geq$ 8   | 0           |

- ${\ \bullet \ } N_{bjets}=0$  is meant to reject all the top-related processes
- Since setup is ready, check this for each VSjet DeepTau WP





QCD yield estimation

F. lemmi

**Yields** 



QCD yield estimation

F. lemmi

## Signal region

|      | VVT  | VT   | Т    | М    | L     | VL    | VVL   | VVVL  |
|------|------|------|------|------|-------|-------|-------|-------|
| tttt | 4    | 6    | 7    | 10   | 13    | 20    | 27    | 23    |
| tt   | 2146 | 3074 | 4384 | 6371 | 9861  | 17860 | 29339 | 25721 |
| QCD  | 368  | 2378 | 4842 | 7461 | 15443 | 32927 | 61744 | 57889 |
| tt+X | 74   | 102  | 140  | 192  | 279   | 460   | 725   | 653   |

• Control region

|      | VVT | VT   | Т    | М    | L     | VL    | VVL   | VVVL  |
|------|-----|------|------|------|-------|-------|-------|-------|
| tttt | 0   | 0    | 0    | 0    | 0     | 0     | 0     | 0     |
| tt   | 96  | 143  | 202  | 294  | 468   | 901   | 1550  | 1347  |
| QCD  | 958 | 2411 | 4581 | 8087 | 15054 | 46772 | 89186 | 81403 |
| tt+X | 4   | 5    | 6    | 8    | 12    | 25    | 46    | 41    |

F. lemmi (IHEP)

- Inspired by EXO-19-015
- The large QCD simulated yield that we get in CR should come from fake taus (do we agree on this? Important!)
- Estimate the background completely from data by doing

$$N_{\mathsf{fake-}\tau} = \sum_{\boldsymbol{p}_{\mathsf{T}},\eta} N_{\mathsf{fake-}\tau}(\boldsymbol{p}_{\mathsf{T}},\eta) = \sum_{\boldsymbol{p}_{\mathsf{T}},\eta} \left[ N_{\mathsf{F},\overline{\mathsf{T}}}(\boldsymbol{p}_{\mathsf{T}},\eta) \times \frac{\mathsf{FR}(\boldsymbol{p}_{\mathsf{T}},\eta)}{1 - \mathsf{FR}(\boldsymbol{p}_{\mathsf{T}},\eta)} \right]$$

• Using same  $(p_T, \eta)$  binning of EXO-19-015:  $p_T \in [20, 30, 75, 150, \text{Inf}]; \eta \in [0, 1.5, 2.3]$ 





QCD yield estimation

- Compute  $FR(p_T, \eta)$  in my QCD CR
- Compute N<sub>F,T</sub> in the so-called application region (AR), i.e., SR with the exception of fakeable-not-tight taus
- But before that: try closure test on MC QCD
  - Compute FR in CR, apply the method in the same CR (AR == CR)
  - Compare with number of events in CR you count from MC
  - This should close (at least approximately, I think)

[fabioiemmi@lxslc713 fake\_rate]\$ python printQCDYield.py Fake rate method has been applied in the CR Number of events by counting: 7978.89217198 Number of events from fake rate method: 8635.58006458

F. lemmi (IHEP)





QCD yield estimation

## Conclusions



QCD yield estimation

F. lemmi

- Computed FR in CR and applied the fake rate method in the very same CR
- Expect closure
- $\bullet$  MC and FR prediction differ by  ${\approx}8\%$
- Can we claim for closure?
- If so, shall I move to data?
  - Get FR from CR, apply in AR