

Uncertainties and HT distributions

F. lemmi

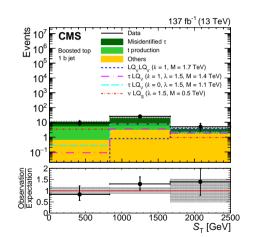
Uncertainties on FR method

H<sub>T</sub> distributions

# Uncertainties on the fake rate method $$H_{\mathsf{T}}$$ distributions

Huiling Hua <sup>1</sup> **Fabio lemmi** <sup>1</sup> Hongbo Liao <sup>1</sup> Hideki Okawa <sup>2</sup> Yu Zhang <sup>2</sup>

<sup>1</sup>Institute of High Energy Physics (IHEP), Beijing


<sup>2</sup>Fudan University, Shanghai

September 1, 2021

### Uncertainties on FR method

- We are inspired by EXO-19-015
- Their idea is to perform validation of the FR method in a region with similar background composition as the signal region
- Validation is a data/MC agreement check on the variable they are going to use in final fit
- We follow a similar approach







Uncertainties and HT distributions F. lemmi

Uncertainties on ER method

### Definition of the validation region

- As a **reminder**: we **compute fake rates in** the so-called **control region** (CR): same requirements as SR, but no b tagged jets
- I defined the validation region (VR) to be both close to CR and SR: same definition of SR but exactly 1 b tagged jet
- Orthogonal to both CR and SR
- Being orthogonal to SR, we can look at data here (not blinded)

|                | $N_{\tau_h}$ | $N_\ell$ | $N_{jets}$ | $N_{bjets}$ |
|----------------|--------------|----------|------------|-------------|
| CR             | 1            | 0        | $\geq$ 8   | 0           |
| CR<br>VR<br>SR | 1            | 0        | $\geq$ 8   | 1           |
| SR             | 1            | 0        | $\geq$ 8   | $\geq 2$    |



Uncertainties and HT distributions

F. lemmi

Uncertainties on FR method

### Definition of the validation region

 The VR background composition is similar to the one in the SR: lots of QCD, non-negligible tt

 , some tt

 +X

|    | tīttī | tī      | QCD     | $t\bar{t}+X$ |
|----|-------|---------|---------|--------------|
| CR | 0.09  | 287.46  | 6051.20 | 8.17         |
| VR | 0.98  | 2321.43 | 7792.01 | 78.91        |
| SR | 8.79  | 5389.60 | 6539.06 | 162.25       |

Uncertainties and HT distributions

F. lemmi

Uncertainties on FR method

- It looks fine to perform validation in this region
- Compute the QCD yield expected by the FR method in the VR

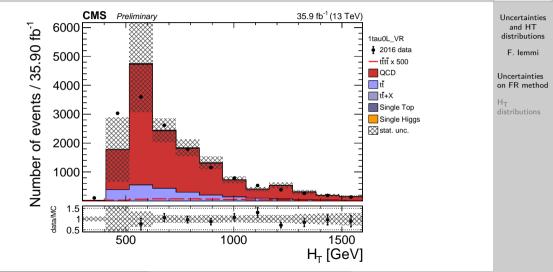
|            | MC QCD yield | FR QCD yield |
|------------|--------------|--------------|
| exp. yield | 7792         | 12392        |

### Validation of the FR method

- Assumed we are going to fit H<sub>T</sub> distribution in this category
   We don't have a BDT here
- ${\scriptstyle \bullet}$  Perform data/MC agreement for  $H_T$  distribution in the VR
- Scale the MC QCD shape to yield coming from FR method
- Interestingly, using the FR yield enhances the data/MC agreement:

|         | MC QCD yield | FR QCD yield |
|---------|--------------|--------------|
| data/MC | 28%          | 0.2%         |




Uncertainties and HT distributions

F. lemmi

Uncertainties on FR method

### Validation of the FR method





### Remarks on validation procedure

- Based on previous slide agreement, we should assess the uncertainty on this method
- I propose to assign two uncertainties in the datacard
  - $\bullet~$  One log-normal unc. of  $\approx 4\%$  for the statistical uncertainty on the yield
  - One log-normal unc. of some value for the above level of agreement
- MC QCD spikes make it hard to decide the level of agreement
- Binning in EXO-19-015 is pretty coarse, rebinning could work but I don't like the idea so much
- Try to get the shape of QCD from data as well
  - Statistics would be increased a lot



Uncertainties and HT distributions

F. lemmi

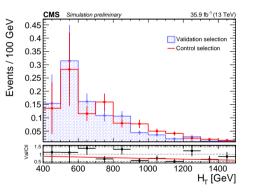
Uncertainties on FR method

### QCD shape estimation: general idea

- First, we **need a QCD-dominated region** which is sufficiently close to the SR
  - We have it already, it's the CR used in the FR method
  - 96% QCD purity in the CR
- Take the QCD shape from the CR in data
- Correct for kinematic differences between CR and VR using the simulation
- $\bullet\,$  Take the ratio of  $H_T$  shapes in VR and CR, fit it and get a transition function from CR to VR
- Apply the transition function to the data distribution in CR to get the final shape in the VR



Uncertainties and HT distributions


F. lemmi

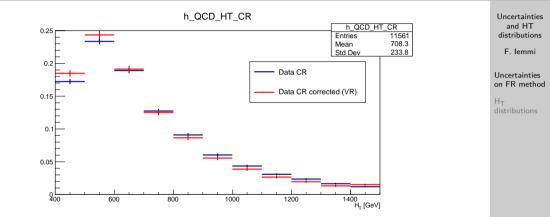
Uncertainties on FR method

**Transition function** 



- Just compare shapes: normalize areas to 1
- Of course, QCD spikes are present here, so we cannot hope for a precise ratio
- Smoothen the ratio by fitting with a straight line
- This straight transition factor is applied to the H<sub>T</sub> distribution of data in the CR to obtain the final shape



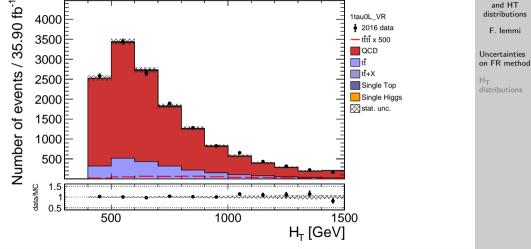

Uncertainties and HT distributions

F. lemmi

Uncertainties on FR method

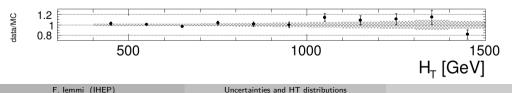
### Corrected data shape






 $\bullet$  Blue:  $H_T$  shape from data in CR; red:  $H_T$  shape from data in CR corrected with CRtoVR transition function

F. lemmi (IHEP)


### Uncertainties and HT distributions

# Validation of the FR method: QCD shape from data Uncertainties and HT distributions 4000 11au0L\_VR 12016 data 4000 3500 11au0L\_VR 11au0L\_VR



### Validation of the FR method: QCD shape from data

- What level of uncertainty should we assess for this procedure?
- By a closer look at the ratio plot, we see that none of the points disagrees by more than 20%
- $\bullet\,$  Actually, all of them are compatible with one except for  $1000 < H_T < 1100$  GeV and  $1400 < H_T < 1500$  GeV bins
- Given that some degree of uncertainty also comes from the shape estimation, I would say that assigning a 15% uncertainty on the QCD estimation looks fair (and maybe conservative)
- Room for discussion here





Uncertainties and HT distributions

F. lemmi

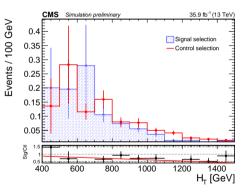
Uncertainties on FR method

### $H_{\mathsf{T}}$ distributions

- $\bullet\,$  In categories where we didn't train a BDT, we plan to fit  $H_T$  distributions
- Check the distributions to see if this variable really separates signal from backgrounds
- Of course do not plot data here: we are blinded!
- 1tau0L has a special treatment. Estimate QCD shape in the SR with identical method as for the VR (see following slide)



Uncertainties and HT distributions


F. lemmi

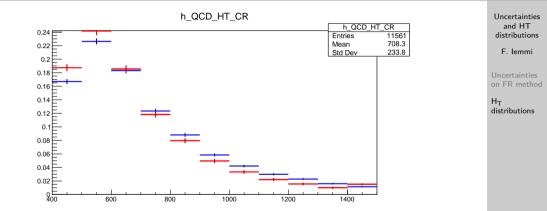
Uncertainties on FR method

**Transition function** 



- Just compare shapes: normalize areas to 1
- Of course, QCD spikes are present here, so we cannot hope for a precise ratio
- Smoothen the ratio by **fitting** with a straight line
- This straight transition factor is applied to the H<sub>T</sub> distribution of data in the CR to obtain the final shape




Uncertainties and HT distributions

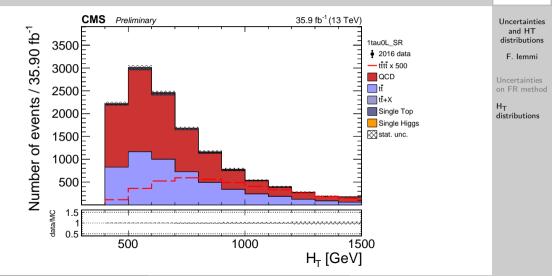
F. lemmi

Uncertainties on FR method

### Corrected data shape






 $\bullet$  Blue:  $H_T$  shape from data in CR; red:  $H_T$  shape from data in CR corrected with CRtoVR transition function

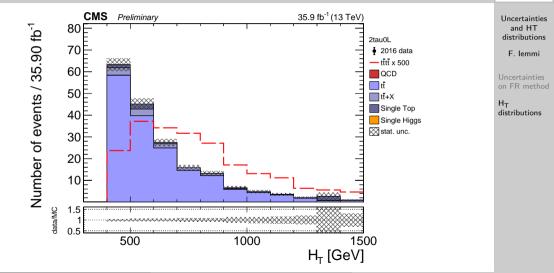
F. lemmi (IHEP)

### Uncertainties and HT distributions

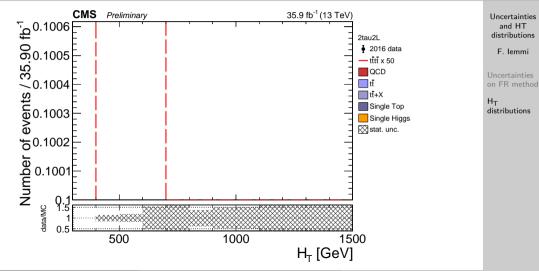
## $H_T$ distributions: 1tau0L






## H<sub>T</sub> distributions: 1tau3L






## H<sub>T</sub> distributions: 2tau0L





### H<sub>T</sub> distributions: 2tau2L

