Uncertainties on the fake rate method H_{T} distributions

Huiling Hua ${ }^{1}$ Fabio lemmi ${ }^{1}$
Hongbo Liao ${ }^{1}$ Hideki Okawa ${ }^{2}$ Yu Zhang ${ }^{2}$
${ }^{1}$ Institute of High Energy Physics (IHEP), Beijing
${ }^{2}$ Fudan University, Shanghai

September 1, 2021

Uncertainties on FR method

- We are inspired by EXO-19-015
- Their idea is to perform validation of the FR method in a region with similar background composition as the signal region
- Validation is a data/MC agreement check on the variable they are going to use in final fit
- We follow a similar approach

Uncertainties and HT distributions F. Iemmi

Uncertainties on FR method H_{T}

Definition of the validation region

- As a reminder: we compute fake rates in the so-called control region $(C R)$: same requirements as $S R$, but no b tagged jets

Uncertainties and HT distributions F. Iemmi

Uncertainties on FR method

- Orthogonal to both CR and SR
- Being orthogonal to SR, we can look at data here (not blinded)

	$\mathrm{N}_{\tau_{h}}$	$\mathrm{~N}_{\ell}$	$\mathrm{N}_{\text {jets }}$	$\mathrm{N}_{\text {bjets }}$
CR	1	0	≥ 8	0
VR	1	0	≥ 8	1
SR	1	0	≥ 8	≥ 2

Definition of the validation region

- The VR background composition is similar to the one in the SR: lots of QCD, non-negligible $t \bar{t}$, some $t \bar{t}+X$

Uncertainties and HT distributions F. Iemmi

Uncertainties on FR method

- It looks fine to perform validation in this region
- Compute the QCD yield expected by the FR method in the VR MC QCD yield FR QCD yield
exp. yield 7792 12392

Validation of the FR method

- Assumed we are going to fit H_{T} distribution in this category
- We don't have a BDT here
- Perform data/MC agreement for $\mathbf{H}_{\mathbf{T}}$ distribution in the VR
- Scale the MC QCD shape to yield coming from FR method
- Interestingly, using the FR yield enhances the data/MC agreement:

	MC QCD yield	FR QCD yield
data/MC	28%	0.2%

Validation of the FR method

Uncertainties and HT distributions
F. Iemmi

Uncertainties on FR method

Remarks on validation procedure

- Based on previous slide agreement, we should assess the uncertainty on

Uncertainties and HT distributions F. Iemmi this method

- I propose to assign two uncertainties in the datacard
- One log-normal unc. of $\approx 4 \%$ for the statistical uncertainty on the yield
- One log-normal unc. of some value for the above level of agreement
- MC QCD spikes make it hard to decide the level of agreement
- Binning in EXO-19-015 is pretty coarse, rebinning could work but I don't like the idea so much
- Try to get the shape of QCD from data as well
- Statistics would be increased a lot

QCD shape estimation: general idea

- First, we need a QCD-dominated region which is sufficiently close to the SR
- We have it already, it's the CR used in the FR method
- 96% QCD purity in the CR
- Take the QCD shape from the $\mathbf{C R}$ in data

Uncertainties on FR method

- Correct for kinematic differences between CR and VR using the simulation
- Take the ratio of H_{T} shapes in VR and CR, fit it and get a transition function from CR to VR
- Apply the transition function to the data distribution in CR to get the final shape in the VR

Transition function

- Just compare shapes: normalize areas to 1
- Of course, QCD spikes are present here, so we cannot hope for a precise ratio
- Smoothen the ratio by fitting with a straight line
- This straight transition factor is applied to the H_{T} distribution of data in the CR

Uncertainties and HT distributions F. Iemmi

Uncertainties on FR method to obtain the final shape

Corrected data shape

Uncertainties and HT distributions
F. Iemmi

Uncertainties on FR method

- Blue: H_{T} shape from data in CR ; red: H_{T} shape from data in CR corrected with CRtoVR transition function

Validation of the FR method: QCD shape from data

Validation of the FR method: QCD shape from data

- What level of uncertainty should we assess for this procedure?
- By a closer look at the ratio plot, we see that none of the points disagrees by more than $\mathbf{2 0 \%}$
- Actually, all of them are compatible with one except for $1000<\mathrm{H}_{\mathrm{T}}<1100$ GeV and $1400<\mathrm{H}_{\mathrm{T}}<1500 \mathrm{GeV}$ bins
- Given that some degree of uncertainty also comes from the shape estimation, I would say that assigning a 15% uncertainty on the QCD estimation looks fair (and maybe conservative)
- Room for discussion here

H_{T} distributions

- In categories where we didn't train a BDT, we plan to fit \mathbf{H}_{T} distributions
- Check the distributions to see if this variable really separates signal from backgrounds

Uncertainties on FR method

- Of course do not plot data here: we are blinded!
- 1tau0L has a special treatment. Estimate QCD shape in the SR with identical method as for the VR (see following slide)

Transition function

- Just compare shapes: normalize areas to 1
- Of course, QCD spikes are present here, so we cannot hope for a precise ratio
- Smoothen the ratio by fitting with a straight line
- This straight transition factor is applied to the H_{T} distribution of data in the CR to obtain the final shape

Uncertainties and HT distributions F. Iemmi

Uncertainties on FR method

Corrected data shape

Uncertainties and HT distributions
F. Iemmi

Uncertainties on FR method

- Blue: H_{T} shape from data in CR ; red: H_{T} shape from data in CR corrected with CR toVR transition function

H_{T} distributions: 1tau0L

Uncertainties and HT distributions
F. Iemmi

Uncertainties on FR method

H_{T} distributions: 1tau3L

Uncertainties and HT distributions
F. lemmi

Uncertainties on FR method

H_{T} distributions: 2tau0L

Uncertainties and HT distributions
F. Iemmi

Uncertainties on FR method

H_{T} distributions: 2tau2L

Uncertainties and HT distributions
F. Iemmi

Uncertainties on FR method

