Ionization clustering simulation and beam test for cluster counting

F. Grancagnolo

1st joint meeting BINP-IHEP-INFN on cluster counting 15 July 2021

PID full simulation with cluster counting

- Garfield++ (Heed) simulates in deep detail the ionization processes in the gas, but it would be extremely cumbersome to follow an ionization particle inside the large volume of a tracking detector.
- **GEANT4** simulates the interaction of a particle with all the materials of a large detector but it doesn't simulate the ionization clustering process which is essential for cluster counting.
- **Define a model** for a fast simulation of the cluster density and the cluster size distribution according to the predictions of **Heed**, to be used taking into account the results of the particle interactions calculated by **GEANT4**.

PID full simulation with cluster counting

PID full simulation with cluster counting

Open questions:

- **1.** Lack of experimental data on cluster density and cluster population for He based gas. Particularly in the relativistic rise region to compare predictions.
- 2. Despite the fact that the Heed model in GEANT4 reproduces reasonably well the Heed predictions, why particle separation, both with dE/dx and with dN_{cl}/dx, in GEANT4 is considerably worse than in Heed?
- 3. Despite a higher value of the dN_{cl}/dx Fermi plateau with respect to dE/dx, why this is reached at **lower values of \beta\gamma with a steeper slope**?
- 4. We are still waiting for answers from Heed and Geant4 developers to try to shed light on these questions
- 5. These questions are crucial for establishing the particle identification performance at **FCCee**, **CEPC** and **SCTF**
- 6. However, the only way to ascertain these issues is an experimental measurement!

Motivations for a beam test

Beam test plans:

- 1. First of all, need to demonstrate the **ability to count clusters**:
 - at a fixed $\beta\gamma$ (e.g. muons at a fixed momentum) count the clusters by
 - doubling and tripling the track length and changing the track angle;
 - changing the gas mixture.
- 2. Establish the **limiting parameters** for an efficient cluster counting:
 - cluster density (by changing the gas mixture)
 - space charge (by changing gas gain, sense wire diameter, track angle)
 - gas gain saturation
- 3. In optimal configuration, measure the relativistic rise as a function of $\beta\gamma$, both in dE/dx and in dN_{cl}/dx, by scanning the muon momentum from the lowest to the highest value (from a few GeV/c to about 250 GeV/c at CERN/H8).
- 4. Use the experimental results to fine tune the predictions on performance of **cluster counting** for **flavor physics** and for **jet flavor tagging** both in **DELPHES** and in **full simulation**

Motivations for a beam test

Advantages:

- no need of external trackers: only interested in path length inside the drift tube active volume
- no need of internal tracking (time-to-distance and t₀ calibrations, alignment, track finding and fitting algorithms, ...)
- no need to convert time to distance (just count clusters in the time domain)
- no worry of **multiple scattering** (irrelevant for path length differences)
- no need of particle tagging in hadron beams: use only muon beams at different momenta (different βγ)
- use selected commercial amplifiers (adapting tube impedance to 50 Ω) to minimize electronics performance limitations (bandwidth, gain, noise, ...) and neglecting power consumption
- use only **fully integrated digitizers** (**O-scope**, 16-ch. **WDB**) for ease of readout

Motivations for a beam test

٠

conceptual setup:

test configuration:

- 6 drift tubes 1 cm × 1 cm × 30 cm
 - 2 with 15 μ m sense wire, 2 with 20 μ m, 2 with 25 μ m
 - 3 drift tubes 2 cm × 2 cm × 30 cm
 - 1 with 20 μm sense wire, 1 with 25 μm , 1 with 30 μm
- 2 drift tubes 3 cm × 3 cm × 30 cm
 - 1 with 20 μm sense wire, 1 with 30 μm
- 11 preamplifier cards (1 GHz, 20 db) + termin.
 more configurations to choose from
- 11 independent HV power supply channels
- 11 digitizer (2 GSa/s, 12 bit) (WDB + O-scope)
 - max drift time ≈ 2µs for 3 cm drift at 45°
- gas mixing, control and distribution (only He and iC_4H_{10})
- 2-3 trigger scintillators (HV, discr., coinc., TU)

Aim of a parasitic beam test in 2021

tube	anode								amplifier			
	15 µm		20 µm		25 μm		30 µm		ampliner			
1x1 cm ²	1x1 cm ²		•	/	√				A		1 configuration	
1x1 cm ²			 ✓ 		1					В	(8 different geometries) (4 different amplifiers)	
2x2 cm ²			1		1		√			С		
3x3 cm ²			1				1		D			
gas gain		1×10 ⁵		5	2×10 ⁵			5×10 ⁵)5	3 configurations	
He/iC ₄ H ₁₀		90/10		85/15		80/20			75/25		4 configurations	
ð (between track and wire)				e)	0°	15°	30	•	45°	60°	5 configurations at fixed gas mixture	

Configurations of the parasitic beam test in 2021

Configurations of the parasitic beam test in 2021

- On average, 3 tubes hit per beam muon
- Assume a 20 Hz trigger rate or 60 tubes hit/s, 1 hour run \cong 2x10⁵ hits
- 1 run provides a relative error on average number of clusters/cm of less than 0.05 clusters
- Changing gas mixture: at 24 NLH (400 sccm), 1 volume exchange (4 l) every 10 min., implies a gas mixture change in 1 h (dead time). During normal operations, depending on gas tightness of the system, a reduction of a factor 10 will provide a flow rate more than adequate.
- At fixed muon momentum (180 GeV/c in week 42 Oct. 20-26):

12 counting configurations (4 gas mixture x 3 gas gain) at fixed ϑ angle < **3 x 8 hours shift** 10 counting configurations (2 gas gain x 5 ϑ angle) at fixed gas mixture < **2 x 8 hours shift**

- At fixed running conditions (90/10 gas mixture, fixed gas gain, fixed beam angle), one muon momentum value per run implies < 2 x 8 hours shift for 12-16 different momentum values on the relativistic rise.
- At least **3-4 different running conditions** may be explored.

Beam test availability in parasitic mode at CERN/H8 (2021)

week	location	main users	beam
week 42 - Oct. 20-26	PPE168	LHCb (PPE128 and/or 138) CMS MDT (PPE158)	muons at 180 GeV/c
week 43 – Oct 27-Nov 2	PPE158	LHCb (PPE168 bis) TOTEM (PPE168)	muons and hadrons
weeks 44-45 Nov. 3-14	PPE168 PPE168 bis	ATLAS TileCal (PPE158)	muons: scan in momentum

Aim of a beam test as main user in 2022

- □ Fall-back eventuality in case we were not able to complete the test program, due to the beam scheduling of the main user (ATLAS TileCal) during the weeks 44-45/2021.
- □ The aim is to complete the described test program, eventually by optimizing the same experimental setup.
- Beam request will be of two weeks, as main users, with muon beams of momenta selected from the lowest value to the highest value (a few GeV/c to 250 GeV/c), as early as possible (spring/summer 2022).