

Status and Plan of Cluster Counting Study for the Fourth Conceptual Detector

Linghui Wu On behalf of cluster counting working group for the 4th conceptual detector

July 15, 2021

The 4th Conceptual Detector Design

Advantage: the HCAL absorbers act as part of the magnet return yoke.

Challenges: thin enough not to affect the jet resolution (e.g. BMR); stability.

Transverse Crystal bar ECAL

Advantage: better π^0/γ reconstruction.

Challenges: minimum number of readout channels; compatible with PFA calorimeter; maintain good jet resolution.

Drift chamber that is optimized for PID

Advantage: Work at high luminosity Z runs

Challenges: sufficient PID power; thin enough not to affect the moment resolution.

From Jianchun's talk in Yangzhou workshop

A drift chamber that is optimized for PID

- Preliminary design of the tracker
 - Full silicon tracker: to provide excellent momentum resolution
 - Drift chamber: to provide PID measurement with cluster counting technique
- Requirements for DC: $2\sigma K/\pi$ separation up to ~20 GeV/c
- To study the PID capability of DC with cluster counting, simulation study and prototype test are performed

Key personnel

- Performance study with standalone full simulation Guang Zhao, Shuiting Xin, Linghui Wu, Shengsen Sun
- Fast simulation of PID in CEPCSW Shuiting Xin, Guang Zhao, Linghui Wu, Gang Li
- Simulation software in CEPCSW

IHEP: Wenxing Fang, Tao Lin, Yao Zhang, Weidong Li SDU: Mengyao Liu, Xingtao Huang

Prototype test
 Mingyi Dong

Performance study with standalone full simulation

Induced current from Garfield++

Simulation of preamplifier

Simulation of noises

 Add white noises to the raw current signal

Peak finding analysis

- Moving average (MA) filter: $MA[i] = \frac{1}{M} \times \sum_{k=0}^{K < M} S[i - k] \text{ (smoothing)}$
- First difference (D1) filter:
 D1[i] = MA[i] MA[i 1]

Preliminary results

Detector size requirement for K/ π separation > 2 σ

From Guang's talk in Yangzhou workshop

Fast simulation of PID in CEPCSW

- A sampling method for quick performance study
- Tracker layout:
 - Floating DC up to Rout =1.8m(1cm*100 layers)
 - A TOF detector surrounded at R = 1.8m (time resolution = 50 ps)

- dN/dx model: $N = N_{truth} * \varepsilon$
 - *N*_{truth}: Garfield sampling
 - ε: counting efficiency, is a function of the number of primary clusters and modeled with full simulation results

Preliminary results of PID performance

Separation power

PID efficiency

• ~90% efficiency, ~10% fake efficiency, for 20 GeV/c

From Guang's talk in CEPC Phys/Det meeting on Jun23, 2021

Simulation software in CEPCSW

Simulation software in CEPCSW

- The Electronics sim:
 - Unrealistic
- Peak finding:
 - Working on
- Working on extending EDM4hep to store waveform information (cell id, vector pairs of charge and time)

Prototype test

- A prototype test system was setup to provide reference for simulation and help to understand the requirements of electronics
 - 4 layers, 6 cells/layer
 - Cell size: 16×16 mm²
 - Wire length : 600 mm
 - Read out: preamplifier + oscilloscope, Gas mixture: He/isobutene= 80:20

Preamplifiers used in **BESIII MDC**

- Tested with the transimpedance preamplifiers used in BESIII MDC
 - Gain: 12 k Ω (12 mV/ μA)
 - Rise time: 5 ns
 - Band width: 70 MHz
 - Output impedance $2 \times 50 \ \Omega$
 - Power dissipation 30 mW @ 6 V
- Can separate few clusters, not very good
- Fast preamplifier (<1ns rise time) with low noise is needed

LMH5401EVM Board

- Gain bandwidth product (GBP): 8GHz
- Gain : 12 dB

- Signals with 1ns rise time can be tested
- Gain is not enough
- Next : Change the R_f to improve the gain

Summary

- A simulation workflow for the drift chamber with cluster counting method is ready. Preliminary results show that K/π separation can achieve $3(2)\sigma$ for 10(20) GeV/c with the thickness of DC about 1m
- A fast simulation parameterized from full simulation is implemented and preliminary PID performances are studied
- Simulation software for dN/dx study in CEPCSW is in development
 - Ionization simulation using Geant4 combined with TrackHeed is implemented
 - To speed up the avalanche simulation, a parameterized method has been studied and working in progress
- A prototype test system was setup to validate the simulation and help to understand the requirements of electronics

Plan

• Simulation of performance

- Tune the simulation parameters of electronics and noises based on the experiment results
- Optimize the detector design: layout, cell size, gas ...
- Simulation software in CEPCSW
 - Extend EDM4hep to store waveform information
 - Implement electronics simulation and peak finding algorithm in CEPCSW

• Prototype test

- Provide realistic parameters of electronics and noises for simulation
- Design electronics test board

