SiD Muon R&D SiPM Studies, RPC Aging Studies

H. Band University of Wisconsin

Sid Muon

- Expected Backgrounds

 Barrel -Beam halo induced muons
 3 10⁻³/cm²- pulse train
 Endcap -2 γ hadrons & μ
 4 10⁻² /cm²- pulse train

 Detector design
 - Modest resolution ~ cm
 - 9-10 layers interspersed in steel flux return (8 λ)
 - X and Y coordinate readout ~ 3-4 cm pitch

Sid Muon Detector

- Baseline choice
 - Double gap RPCs operating in avalanche mode are expected to have lowest cost and have adequate reliability
 - RPC and steel boundaries staggered to minimize geometric inefficiencies
 - > 93% eff. per layer
 - Digitized by KPIX(64or128)

- Detector Option
 - MINOS style scintillating strips with SiPM readout being pursued to understand cost and performance of SiPM readout - reliable backup

3/28/10

T-995 Scintillator Strips with SiPM Readout

H.E. Fisk, A. Meyhoefer, A. Para, E. Ramberg, P. M. Rubinov Fermilab M. Wayne, M. McKenna University of Notre Dame D. Cauz, M Ouri, G. Pauletta, INFN: Roma I and Trieste/Udine J. Blazey, S. Cole, I. Viti, D. Hedin, R. Shea, Northern Illinois University, P. Karchin, A. Gutierrez Wayne State University

Circular Array 1.2mm dia. ~ 650 pixels 40 x 40 μ² _{3/28/10} ncreased fill factor: 40μx40μ => 44% 50μx50μ => 50% 100μx100μ => 76%;

Giovanni Pauletta

Scintillator Strips mounted side-by-side with 1.2mm dia. WLS fiber U-turn

TB4 Set-up at D0 ; Cosmic Rays

Single trace

Average pulse shape

180 digitizations * 4.708ns = 847ns . Small pulses and Large pulses!

Preliminary meas. of the inter-strip inefficiency

Method: Use two 1 mm spacing MWPC horizontal wire planes upstream of the strip scintillator counters to measure the vertical position of beam tracks that pass through the scintillator strips. Take data as the beam (~ 1cm) scans the crack.

Beam in the top strip 10 cm from readout end.

Runs 5045 and 5046 2/20/2010

attenuation length

Vertical Scan of Inter-strip Crack

• Beam test and analysis continuing

Muon – Bakelite RPC R&D

- RPC readout with KPiX chip previously reported at LCWS08 and LCWA09
- Aging Studies
 - Babar Forward Endcap RPCs
 H. Band, U. Wisconsin
 - Run from Nov.02 Apr. 08
 - Similar construction to Atlas/CMS RPCs
 - Wide range of rates/ current accumulated over ~ 6 years
 - Good overall efficiency but clear signs of aging

Noise Rate and Currents with Cosmic Rays

- Both noise and currents have increased over 5 years
- Average noise rate 400 Hz \rightarrow 3 kHz (area 1.5 2 m²)
- Average current < $1 \mu A \rightarrow 12 \mu A$

Endcap efficiency

RPC Efficiency with beam

0

0.8

RPC Efficiency with beam

• E

0,1 0,2 0,3

0,1 0,2 0,3 0,4 0,5 0,6

RPC Efficiency with beam

0.7

0.8 0.9

0 <mark>L</mark>

Beam/Cosmic Histories

- Difference between beam and cosmic ray determined efficiencies highlight rate induced inefficiencies
- Many RPCs have stable efficiency
- Near the beamline a rate dependent inefficiency —
- Conversion to avalanche mode restored efficiency
- Rate dependent inefficiency due to dry Bakelite restored by humidifying input gas
- Inefficiency due to poor gas flow similar in both

Noise Rate and Currents with Cosmic Rays

- About ³/₄ of current increase due to rise in ohmic current (Estimated by extrapolating the I vs V curve below the gas gain turnon)
- Remaining ¹/₄ strongly correlated with increased noise rate

- Trying to understand causes of:
 - Ohmic current
 - No correlation with integrated current seen
 - Increased noise

Cosmic vs Collisions

Final Tests

- 10 RPCs were selected for further tests
 - No HV or gas problems over 6 years
 - Finally removed from BaBar steel Mar. 2010
- 2 failure modes of most interest
 - Rate inefficiency around beamline
 - Noisy, inefficient regions near gas inlets
 - Correlate problem areas with changes in Bakelite or graphite resistivity or HV surface finish
- Quick first look at 2 RPCs reported
- Long term plan is to verify RPC Performance before autopsy

Bakelite Samples Middle East Layer 1 -Bot

East Layer 14 - Graphite

Autopsy Summary

- No evidence of graphite problems
- Linseed oil dry & smooth
- Bakelite resistance is fairly uniform
 - Lower in "bleached area"
 - Needs more precise measurements
- "Bleached" surface in areas of rate inefficiency
- Not yet clear what causes inefficiency - More detailed studies

Previous HF studies

Marble side of BaBar Bakelite plate, the marble-pattern is completely disappeared, also discolored.

Brown side of Bakelite plate shows slightly discolored mark.

C. Lu - Princeton

Figure4. HF vapor corrosive action on BaBar Bakelite surface.

3/28/10

Gas Humidity

RPC avalanche: intro

- We have been testing 3 RPC modules in avalanche mode since Oct 2005.
- The goal was to understand if operating RPC in avalanche can solve the rate capability and efficiency problem at small radii...

• ...And see if the new configuration is operationally stable and reliable.

S	REAMER	VS	AVALANCHE	
runningHV	6700V		9500V	
Gas mixture	57%Ar		22%Ar	
	39%Freon		72.9%Freon	
4%	Isobutane		4.5% Isobutane	
			0.6% SF ₆	

Muon ID Performance

10/31/07

H. Band - U. Of Wisconsin - Hawaii 2007

Outlook

Muon ID vs pion rejection

SLAC, Sep 14 2006