Micromegas-TPC Z resolution with charge dispersion & r-\psi resolution with an improved algorithm

Madhu Dixit TRIUMF & Carleton University

Collaborators

S. Turnbull, R. Woods, D. Attie, A. Bellerive, K. Boudjemline, P. Colas, I. Giomataris, V. Lepeltier, J.-P. Martin, K. Sachs & Y. Shin

Carleton University, University of Montreal, LAL Orsay & IRFU, CEA Saclay

International Linear Collider Workshop Beijing, China, March 26-30, 2010

<u>Outline</u>

- •ILD-TPC goal: $\sigma_0(r-\phi) \le 100 \ \mu m$ (all tracks up to 2 m drift).
- ·Not possible with proportional wire/cathode pad TPC
 - -Resolution limited by intrinsic ExB effects.
- ·Possible with conventional MPGD-TPC readout, but:
 - sub-mm readout pads (~3,000,000 channels)
 - Detector cost, complexity & heat removal problems
- ·Alternative charge dispersion MPGD readout
 - $-\sigma_0$ (r- ϕ) ~50 μ m for 2-3 mm pads published results
 - But previous analysis techniques not robust.
- \cdot A new more robust algorithm for r- ϕ resolution & results
- \cdot A first measurement of z(t) resolution for the charge dispersion readout.

Charge dispersion in a MPGD with a resistive anode

- ·Modified MPGD anode with a high resistivity film bonded to a readout plane with an insulating spacer.
- ·2-dimensional continuous RC network
- •Point charge at r = 0 & t = 0 disperses with time.
- •Time dependent anode charge density sampled by readout pads. 8
- •Equation for surface charge density function for the 2-D continuous RC network:

$$\frac{\partial \rho}{\partial t} = \frac{1}{RC} \left[\frac{\partial^2 \rho}{\partial r^2} + \frac{1}{r} \frac{\partial \rho}{\partial r} \right]$$

$$\Rightarrow \rho(r,t) = \frac{RC}{2t} e^{\frac{-r^2RC}{4t}}$$

·Madhu Dixit

·LCWS10, Beijing

 $\rho(r)$

Using the charge dispersion signal for tracking

- Unusual highly variable pulse shape.
- <u>Pulse on the charge collecting pad</u>: Large pulses with fast rise-time. The decay time depends on the system RC, the pad size & on the position of the track.
- <u>Charge dispersion pulses on adjacent pads</u>: Smaller pulse height & slower rise & decay times determined by the system RC & pad location relative to the track.
- Both the pulse shape and the pulse height contain position information
- •How to define the pad signal "amplitude" for optimum determination of position from the measured pulse?

·Madhu Dixit

GEM TPC charge dispersion simulation (B=0) Cosmic ray track, $Z = 67 \text{ mm } Ar+10\%CO_2$

Centre pulse used for normalization - no other free parameters.

•Madhu Dixit •LCWS10, Beijing •5

Cosmic ray track signals with charge dispersion readout

The pad response function (PRF)

- The PRF is a measure of pad signal "amplitude" dependence on the track position.
- With variable pulse shape & both rise time & pulse height carrying position information, there is no unique algorithm to define the PRF.
- The PRF is a tool which may be optimized for specific analysis. It is not a fundamental property of data. Much more information is contained in the digitized charge pulse shape.
- More than one PRF can be defined, optimized for single track resolution, two track resolution etc.

The track pad response function (PRF)

- Our first PRF algorithm was developed for single hit $(r-\phi)$ resolution
- •It integrated pulses over a time window with width determined by the details of pulse shape
- A σ_0 ~ 50 µm was achieved for 2 mm x 6 mm pads
- However, the PRF algorithm needed tuning & was sensitive to noise.

The PRF shape is parameterized for track fit analysis

- The PRFs are not Gaussian.
- The PRF depends on track position relative to the pad: PRF = PRF(x,z)
- PRF can be characterized by its FWHM $\Gamma(z)$ & base width $\Delta(z)$.
- PRFs determined from the data have been fitted to a functional form consisting of a ratio of two symmetric 4th order polynomials.

$$PRF[x,\Gamma(z),\Delta,a,b] = \frac{(1+a_2x^2+a_4x^4)}{(1+b_2x^2+b_4x^4)}$$

 a_2 a_4 b_2 & b_4 can be written down in terms of Γ and Δ & two scale parameters a & b.

The PRF for a Micromegas-TPC in a 5 T field

2 mm x 6 mm pads Ar+2%C4H10+3%CF4

The dependence of PRF width on z

·Madhu Dixit

·LCWS10, Beijing

A better algorithm for charge dispersion analysis

- The previous PRF algorithm parameters needed to be tuned if TPC operating conditions were changed
- We have developed a more robust algorithm not requiring fine tuning
- Tested several new ideas with simulated data
- The new algorithms were tested by reanalyzing old data
- Criteria: PRF can be applied consistently and easily over a wide range of TPC operating conditions.
- A simple fixed window algorithm works the best!

Two data sets were re-analyzed with the improved PRF algorithm & for z(t) resolution

KEK: 4 GeV pi+ at 1 Tesla October-Nov 2005

1. Number of Good Events: 12754

2. Gas Mixture: Argon(95%) + Isobutante(5%)

3. B Field: 1 T

4. E Field: 70 V/cm

5. Transverse Diffusion: 124 um/cm**0.5
6. Longitudinal Diffusion: 479 um/cm**0.5

7. Drift Velocity: 25.3 um/ns

8. Theta Distribution: [-5,5]

DESY: Cosmics tests at 5 Tesla Nov-Dec 2006

1. Number of Good Events: 5663

2. Gas Mixture: Argon(95%) + Isobutante(2%) + CF4(3%)

3. B Field: 5 T

4. E Field: 200 V/cm

5. Transverse Diffusion: 18.6 um/cm**0.5

6. Longitudinal Diffusion: 248 um/cm**0.5

7. Drift Velocity: 72.7 um/ns

8. Theta Distribution: [-30,30]

COSMo (Carleton-Orsay-Saclay-Montreal) TPC DESY cosmic ray tests at 5 T Nov-Dec 2006

4 GeV beam tests in a 1 Tesla magnetic field (2005)

- Micromegas 10x10 cm²
- Drift distance: 16 cm
- 126 2 mm × 6 mm pads in 7 rows
- -Preamps from ALEPH TPC at LEP

KEK 2005 beam test collaborators

Canada A.Bellerive, K.Boudjemline, M.Dixit, Carleton

E. Neuheimer, E. Rollin, K. Sachs & Y. Shin

J.-P. Martin

France J. Pouthas, V. Lepeltier & Th. Zerguerras

P.Colas & A.Giganon & I.Giomataris

<u>Germany</u> R Settles MPI (Munich)

<u>Japan</u> T. Araki, H. Fujishima, T. Higashi, , K. Kodomatsu,

A. Sugiyama, T. Yamamoto & Y. Tanaka

M. Habu, S. Matsushita, K. Nakamura & O. Nito

A. Yamaquchi

K.Fujii, M.Kobayashi, T.Matsuda & H.Yamaoka

T Watanabe

Y Kato

H. Kuroiwa & T. Takahashi

LAL Orsay

Montreal

Irfu CEA Saclay

Saga University

TUAT, Tokyo Tsukuba University

KEK/IPNS

Kogakuin University Kinnki University

Hiroshima Univ.

Resolution comparison - DESY 5 T cosmic ray tests Old algorithm vs new fixed window PRF algorithm

•Old algorithm 3652/17669

Constant $\sim 50 \, \mu \text{m}$ resolution independent of z over 15 cm.

•New algorithm 5663/17669

•Constant \sim 35 μ m resolution independent of z.

The new algorithm results in fewer track fit failures

KEK B=1T 4 GeV π + beam - resolution comparison Old algorithm vs new fixed window PRF algorithm

Transverse spatial resolution Ar+5%iC4H10 E=70V/cm D_{Tr} = 124 μ/\sqrt{cm} (Magboltz) @ B= 1T

2 mm x 6 mm pads

Residual bias is now comparable with resolution

Bias remaining after correction ~ 20-25 µm

Residual bias is now significant and comparable to resolution achievable with charge dispersion $\sigma_0(r-\phi) \sim 30 \ \mu m$

Improved fabrication and better resistive films needed to minimize RC non-uniformities and to reduce bias further

Time resolution with charge dispersion readout from DESY 5Tesla cosmic ray & KEK 4 GeV beam test data sets

Determination of z or timing resolution

The time resolution is determined from r-z track fit following the r- ϕ track fit

$$r-\phi$$
 track fit

$$\chi^2 = \sum_{rows} \sum_{i=pads} \left(\frac{A_i - PRF_i}{\delta A_i} \right)^2$$

- •Track parameters $x_0 \& \phi$ for $x_{track} = x_0 + y \tan(\phi)$ from χ^2 minimization
- ·Identify main charge collecting pad in each row for z(t) resolution fit

r-z(t) track fit performed for main charge collecting pads only

$$\chi^2 = \sum_{i=rows} \left(\frac{t_i - t_{track}}{\delta t_i} \right)^2$$

- •Determine track parameters t_0 and θ for $t_{track} = t_0 + y$ $tan(\theta)$
- •Determine t_{row} by fitting error function to main charge pulse
- •Residuals: $R = t_{row} t_{track}$
- ·Resolution determined from standard deviation of residuals

The main charge collecting pad signal shape is determined mainly by longitudinal diffusion

Timing determined by error function fit to the leading edge

r-z(t) track fit

KEK B=1T 4 GeV π + beam time resolution

Ar+5%iC4H10

E=70V/cm V_{drift} =25 μm/ns, D_{Long} = 479 μ/ \sqrt{cm}

DESY 5 T cosmic tests

Ar+2%iC4H10+3%CF4 E=200V/cm V_{drift} =73 µm/ns, D_{Long} = 249 μ / \sqrt{cm}

.24

Track angle dependence of time resolution

<u>Summary</u>

- Charge dispersion makes MPGD position sensing independent of pad width. High resolution can be achieved with relatively wide pads
- The original PRF algorithm was "undemocratic" resulting in the analysis being sensitive to noise.
- $\sigma_0(r-\phi) \sim 30 \ \mu m$ achieved for 2 mm x 6 mm pads is now comparable to the "residual bias" from anode structure RC non-uniformities.
- Improved materials and fabrication techniques should further reduce bias.
- A first measurement z resolution for Micromegas with charge dispersion readout:
 - $\sigma_0(z) \sim 550 \ \mu m \ (fast gas, v_{Drift} = 73 \ \mu m/ns)$
 - $\sigma_0(z) \sim 100 \ \mu m$ (slow gas, v _{Drift} = 25 $\mu m/ns$)
- ullet N_{eff} significantly smaller for longitudinal measurements than for transverse.