How to Deliver Oodles and Oodles of Current to HEP Detectors in High Radiation and Magnetic Fields?

Satish K Dhawan Yale University

1 Oodle = 10,000 amps

Collaborators:

Yale University: Keith Baker

Brookhaven National Laboratory: Hucheng Chen, James Kierstead, Francesco Lanni, David Lynn, Sergio Rescia,

2010 Linear Collider Workshop (LCWS10) and International Linear Collider meeting (ILC2010) Session: LCWS: Tracking/Vertex: Silicon tracking R&D

CMS ECAL: 5 Oodles (50 Kamps). = 315 KW Power Supply output Power loss in Leads to SM = 100 KW Power loss in Regulator Card = 90 KW Power Delivered @ 2.5 V = 125 KW

Power Supply 6.3 V

64 Amps

of Power Supplies ~ 700 # of ST LDO Chips = 35 K LHC Radiation Hard made by ST Microelectronics # of LVR Cards = 3.1 K.

30 m

Yale: Designed, built, burn-in and Tested.

What can we do?

- Is there a better way to distribute power
 ?
- High Radiation
- Magnetic Field 4 T
- Load ~1 V Oodles of current
- Feed High Voltage and Convert like AC power transmission
- Commercial Technologies No Custom ASIC Chips
- Learn from Semiconductor Industry
- Use Company Evaluation Boards for

Found out at Power Technology conference 0.25 µm Lithography

- Irradiated Stopped on St. Valentines Day 2007
- We reported @ TWEPP 2008 IHP was foundry for EN5360

Length of Power Cables = 140 Meters

Type of High to Low Voltage Converters without transformers

Charge pumps

- Normally limited to integral fractions of input voltage
- Losses proportional to switch losses
- Can provide negative voltage

Buck Converter – Used in consumer & Industrial Electronics

- Needs an ASIC, Inductor and Capacitors
- Cannot provide a negative voltage
- Topology allows for more flexibility in output voltage than charge pump
- Much more common use in commercial applications

Proximity Effect

2 oz copper for coils

2 coils in series for larger L

Current Distribution in Neighboring Conductors

A proximity effect is seen in the spiral coils

Plug In Card with Shielded Buck Inductor

Different Versions

Converter Chips

Max8654 monolithic IR8341 3 die MCM

Coils

Embedded 3oz cu Solenoid 15 m Ω Spiral Etched 0.25mm

Spiral Coils Resistance in $m\Omega$

	Тор	Bottom
3 Oz PCB	57	46
0.25 mm Cu Foil	19.4	17

MAX8654 with embedded coils (#12), external coils (#17) or Renco Solenoid (#2) Vout=2.5 V

Test @ BNL Only One Chip Bonded Sensor 512 Strips – 100 µm Pitch 51 mm x 84 mm

Noise Tests with Silicon Sensors

Test @ Liverpool

Plug in Card 1 cm from Coil facing Sensor

20 µm Al foil shielding

Coil Type	Power	Input Noise electrons rms
Solenoid	DC - DC	881
Solenoid	Linear	885
Spiral Coil	DC - DC	666
Spiral Coil	Linear	664

Magnetic Field Effect

7 Tesla Field Chemistry Department Super Conducting Magnet in Persistence Mode

Effect:

Vout = 3.545 Outside

Vout = 3.546 Edge of magnet

Vout = 3.549 Center of magnet

Change= Increased Vout 1 part in 900 at 7T

Ionizing Radiation Results – Commercial Converters

D		_				
Dose	rate=	U.	.2	IV	Irad/	hr

_	ī	ī	
Device	Time in Seconds	Dose before Damage Seen (krads)	Observations Damage Mode
TPS 62110	720	40	Increasing input current
ISL 8502	730	40.6	Increasing input current
MAX 8654	850	47.2	Loss of output voltage regulation
ADP 21xx	1000	55.6	Loss of output voltage regulation
ST1510	2250	125	Loss of output voltage regulation
IR3822	2500	139	Increasing input current
EN5382	2000	111	Loss of output voltage
			regulation
EN5360 #3	864000 Tested in 2008	48000	MINIMAL DAMAGE
EN5360 #2	Tested in 2007	100000	MINIMAL DAMAGE

5 nm Oxide DC-DC

Many more tested but similar failure-Thin oxide converters survive > 200 Krads

What Makes it Rad Resistant?

Empirical Evidence: Deep submicron But what why?

What Makes it Rad Resistant?

We say thin Gate Oxide is a necessary Condition

Threshold Shift vs Gate Oxide Thickness

Poly- Si
Gate

SiO2

Si

Tunneling Region

Hole removal process by tunneling in thin-oxide MOS Structures

Can We Have High Radiation Tolerance & Higher Voltage Together ???

Controller: Low Voltage

High Voltage: Switches -

LDMOS, Drain Extension, Deep Diffusion etc

>> 20 Volts HEMT GaN on Silicon, Silicon Carbide, Sapphire

LDMOS Structure
Laterally Diffused
Drain Extension

High Voltage / high Frequency
Main market. Cellular base stations

Fig.1: Schematic cross-section of the RF-LDMOS transistor.

Fig.3a: Potential distribution at the highest operating voltage (20V) with $V_G = 0V$ (LDMOS 3 from Table 1).

Fig.3b: Potential distribution at the lowest operating voltage (4V) with $V_G = 0V$ (LDMOS 3 from Table 1).

High performance RF LDMOS transistors with 5 nm gate oxide in a 0.25 μm SiGe:C BiCMOS technology: IHP Microelectronics

Electron Devices Meeting, 2001. IEDM Technical Digest. International

2-5 Dec. 2001 Page(s):40.4.1 - 40.4.4

Thin Oxide Devices (non IBM)

Company	Device	Process	Foundry	Oxide	Dose before	Observation
		Name/ Number	Name	nm	Damage seen	Damage Mode
IHP	ASIC custom	SG25V GOD 12 V	IHP, Germany	5		Minimal Damage
XySemi	FET 2 amps	HVMOS20080720 12 V	China	7		Minimal Damage
XySemi	XP2201	HVMOS20080720 20 V	China	7		1Q2010
Enpirion	EN5365	CMOS 0.25 μm	Dongbu HiTek, Korea	5	64 Krads	
Enpirion	EN5382	CMOS 0.25 μm	Dongbu HiTek, Korea	5	111 Krads	
Enpirion	EN5360 #2	SG25V (IHP)	IHP, Germany	5	100 Mrads	Minimal Damage
Enpirion	EN5360 #3	SG25V (IHP)	IHP, Germany	5	48 Mrads	Minimal Damage

Necessary condition for Radiation Hardness - Thin Gate Oxide

But not sufficient

IHP: Epi free, High resistivity substrate, Higher voltage, lower noise devices

Dongbu: Epi process on substrate, lower voltage due to hot carriers in gate oxide

XP2201 - 20V 2A STEP-DOWN DC to DC CONVERTER

General Description

Replacement for LHC4913:

LHC Radiation Hard LDO Made by ST Microelectronics

Use with Ferrite Coil

Features

- 2A Output Current
- Up to 95% Efficiency
- 4.5V to 20V Input Range
- Adjustable Output Voltage
- Fixed 400KHz Frequency
- Integrated 0.2Ω Switch
- 20uA Shutdown Supply Current
- Internal Soft Start
- Cycle-by-Cycle Over Current Protection
- Thermal Shutdown
- Programmable Under Voltage Lockout
- Operating Temperature: -40°C to +85°C
- Available in an 8-Pin SO Package

Engineering Samples 1Q2010

GaN HEMTs Why of Interest?

High voltage and current rating

Very high switching frequency (> 1 GHz range)

 Depletion mode are radiation Hard (details follow), Enhancement mode devices not yet available

Gallium Nitride Devices under Tests

RF GaN 20 Volts & 0.1 amp

- ❖ 8 pieces: Nitronex NPT 25015: GaN on Silicon
- ✓ Done Gamma, Proton & Neutrons
- √ 65 volts Oct 2009
- ❖ 2 pieces: CREE CGH40010F: GaN on siC
- ❖ 6 pieces: Eudyna EGNB010MK: GaN on siC
- ✓ Done Neutrons

Switch GaN

International Rectifier GaN on Silicon Under NDA

Gamma: @ BNL

Protons: @ Lansce

Neutrons: @ U of Mass Lowell

Plan to Expose same device to Gamma, Protons & Neutrons Online Monitoring

200 Mrads of Protons had no effect – switching 20 V 0.1 Amp Parts still activated after 7 months

PSOC: Power Supply On a Chip

FAN5009 8 x 8 mm MCM 12 V > 1.2 V = 88.5% @ 30 A

❖ Embedding the flipped devices allows for smallest loop inductance and for layering of components on top and bottom

IR8431 with 3 amp Load Vin= 12 V Vout = 2.5 V Load = 3 amps (Electronic)

MAX8654 Vin= 12 V Vout = 2.5 V Load = 3 amps (Electronic)

Simulation with a National Semiconductor Buck Converter

- ➤ ~ 1 MHz
- ➤ Load 3 amps Type R, Electronic, CMOS ASIC
- ➤ Vin > 12 V
- \triangleright Vout = 1.2 / 2.5 V
- ➤ Settling Time on/off, Voltage/ Current Loop?, Caps, Stability, Ripple/Noise

Circuit for simulation of converter settling times

Some Random Remarks

- Learned from commercial devices, companies & power conferences
- Can get high radiation tolerance & higher voltage simultaneously
- High frequency > smaller air coil > less material
- Goal: ~20 MHz buck, MEM on Chip size 9 mm x 9mm
- Power SOC: MEMs air core inductor on chip
- Will study feasibility of 48 / 300V converters
- Irradiations:
 - Important to run @ max operating V & I.
 - Limit power dissipation by switching duty cycle
 - Use online monitoring during irradiation for faster results
- Yale Plug Cards can be loaned for evaluation
- Collaborators are Welcome

Conclusions

- The power distribution needs of HEP detectors require new solutions/technologies to meet power and environmental requirements.
- DC/DC (Buck) Converters are potential solutions for these needs.
- The environment requires that these converters operate in high radiation environments and high magnetic fields at high switching frequencies in a small size/mass package.
- Target technologies for the switches are radiation hard GaN and 0.25 μm LDMOS. High frequency controllers driving small sized nonmagnetic/air core inductors are also required.
- Many of these components have been tested and now need integration to produce a working prototype. This is the next step in our R&D program.